Approximation non linéaire multiéchelle. Appplication à la compression d'images.

Karine Dadourian

LATP, Ecole Centrale Marseille

En collaboration avec : Jacques Liandrat et Sergio Amat, Université polytechnique de Cartegene

Problème: palier aux problèmes de "flous" dans la compression d'images

reconstruction d'une image à partir de sa forme compressée avec une méthode linéaire

→ définir, utiliser et étudier des méthodes non-linéaires

APPROXIMATION MULTIECHELLE

Pour $f^J \in l^\infty(\mathbb{Z})$ données disrètes définies sur une grille X^J de pas 2^{-J}

Schéma de subdivision application à la construction de courbe et de surface à partir d'une échelle large J0, construire f^J par itération

$$f^{J_0} \xrightarrow{S} S(f^{J_0}) \xrightarrow{S} \dots \xrightarrow{S} S^{J-J_0}(f^{J_0})$$

APPROXIMATION MULTIECHELLE

Pour $f^J \in l^\infty(\mathbb{Z})$ données disrètes définies sur une grille X^J de pas 2^{-J}

Schéma de subdivision application à la construction de courbe et de surface à partir d'une échelle large J0, construire f^J par itération

$$f^{J_0} \xrightarrow{S} S(f^{J_0}) \xrightarrow{S} \dots \xrightarrow{S} S^{J-J_0}(f^{J_0})$$

Analyse Multirésolution (AMR) application en compression d'images

pour f^J défini sur une échelle fine J, **approximer** \mathbf{f}^J **par** $\tilde{\mathbf{f}}^J$ **avec** $\tilde{\mathbf{f}}^J = \mathbf{T}_{AMR}^{-1} \mathbf{T}_{\epsilon} \mathbf{T}_{AMR} \mathbf{f}^J$

$$f^J \quad \leftrightarrow \quad (f^{J-1}, d^J) \leftrightarrow \quad \cdots \leftrightarrow \quad T_{AMR} f^J = (f^{J_0}, d^{J_0+1}, \dots, d^J)$$

en notant $d^j = f^j - S(f^{j-1})$

PLAN DE LA PRÉSENTATION

Schémas de subdivision

- Généralitées
- Méthodes d'études de schémas linéaires
- Exemples de schémas linéaires

Une classe de schémas non-linéaires

- Propriétés
- Exemples d'études
- Extension 2d

Analyse Multirésolution non-linéaire associée

- Etude de la stabilité
- Exemple d'application
- Tests numériques

Schémas de subdivision

Schémas de Subdivision: Définition

Définition

On appelle schéma de subdivision S un opérateur sur $l^{\infty}(\mathbb{Z})$ défini par

$$\forall f \in l^{\infty}(\mathbb{Z}), \, \forall n \in \mathbb{Z} \quad (Sf)_n = \sum_{m \in \mathbb{Z}} a_{n,n-2m}(f) f_m$$

que l'on peut décomposer

$$(Sf)_{2n} = \sum_{k \in \mathbb{Z}} a_{n,2k}(f) f_{n-k}$$
 et $(Sf)_{2n+1} = \sum_{k \in \mathbb{Z}} a_{n,2k+1}(f) f_{n-k}$

Schémas de Subdivision: Définition

Définition

On appelle schéma de subdivision S un opérateur sur $l^{\infty}(\mathbb{Z})$ défini par

$$\forall f \in l^{\infty}(\mathbb{Z}), \, \forall n \in \mathbb{Z} \quad (Sf)_n = \sum_{m \in \mathbb{Z}} a_{n,n-2m}(f) f_m$$

que l'on peut décomposer

$$(Sf)_{2n} = \sum_{k \in \mathbb{Z}} a_{n,2k}(f) f_{n-k}$$
 et $(Sf)_{2n+1} = \sum_{k \in \mathbb{Z}} a_{n,2k+1}(f) f_{n-k}$

schéma linéaire,
$$(Sf)_n = \sum_{m \in \mathbb{Z}} a_{n-2m} f_m$$

Points initiaux

Échelle $1_{-p.6/39}$

Convergence

Pour la convergence du schéma, sont équivalents

1.
$$\forall f \in l^{\infty}$$
, $\exists \mathbf{S}^{\infty} \mathbf{f}$ continue tel que $\lim_{j \to +\infty} \sup_{n} |(S^{j}f)_{n} - S^{\infty}(f)(2^{-j}n)| = 0$

2. pour $\phi_0 \in C_c^0$ vérifiant $\sum_n \phi_0(x - n) = 1$ et la condition de stabilité L^∞ $A||f|| \leq ||\sum_n f_n \phi_0(.-n)|| \leq B||f||$ la suite de fonction $\mathbf{f^j(x) = \sum_n S^j(f)_n \phi_0(2^j x - n)}$ converge uniformement

3. <u>Dans le cas linéaire</u>, existence d'une fonction d'échelle $\phi \in C_c^0(\mathbb{R})$ (vérifiant la condition de stabilité) On a $\phi = \lim_{j \to +\infty} S^j(\delta_{n,0})$ et $S^{\infty}f(x) = \sum_n f_n\phi(x-n)$

N.Dyn 91, A.Cavaretta, W.Dahmen et C.A.Micchelli 91

Régularité

On note $d^k f$ l'opérateur aux différences d'ordre k:

$$d^k f = d(d^{k-1}f)$$
 avec $df_n = f_{n+1} - f_n$.

et S_k le schéma aux différences d'ordre k tel que $d^k(Sf) = S_k(d^k f)$.

<u>Dans le cas linéaire</u>: pour tout $f, S^{\infty}f \in C^k(\mathbb{R})$ ssi

(i)
$$S_{k+1}$$
 existe

(ii) il existe $L \in \mathbb{N}$ et $0 < \rho < 2^{-k}$ tel que $\forall f \in l^{\infty} ||\mathbf{S}_{k+1}^{L} \mathbf{f}||_{\infty} \le \rho^{L} ||\mathbf{f}||_{\infty}$

De plus, $S^{\infty}f \in C^{\alpha-}$ avec $\alpha = -log_2(\rho)$

Régularité

Stabilité de l'opérateur S^{∞}

On dit qu'un schéma convergeant est stable si

 $\forall f, g \in l^{\infty}(\mathbb{Z}^s)$ on a $||S^{\infty}f - S^{\infty}g||_{L^{\infty}} \leq C||f - g||_{l^{\infty}}$

<u>Dans le cas linéaire</u>: convergence \Rightarrow stabilité

Régularité

```
Stabilité de l'opérateur S^{\infty}
```

lacksquare Ordre d'approximation de l'opérateur \mathbf{S}^∞

On définit $\mathbf{ordre}(\mathbf{S}^{\infty}) = \mathbf{r} \ \mathbf{Si}$

pour $g \in C^{\infty}(\mathbb{R}), f^{0} = g(nh)_{n} ||S^{\infty}(f^{0}) - g||_{L^{\infty}} \leq Ch^{r}$

Lien entre ordre de S *et* S^{∞} : **ordre**(**S**) = **r** et S **stable** \Rightarrow **ordre**(**S**^{∞}) = **r**

Régularité

Stabilité de l'opérateur S^{∞}

lacksquare Ordre d'approximation de l'opérateur \mathbf{S}^∞

Reproduction des polynômes

S reproduit exactement les polynômes d'ordre k si pour tout $l \leq k$

$$p = (n^l)_n \quad \Rightarrow \quad (Sp)_n = (2^{-1}n)^l.$$

CS à l'ordre: *S reproduit* **exactement** *les polynômes de degré* $r - 1 \Rightarrow$ $\mathbf{o}(\mathbf{S}) = \mathbf{r}$

Schémas Linéaires: Méthodes

avec des polynômes trigonométriques

— CS de convergence et estimation de la régularité

avec des valeurs propres (traduction matricielle)

— CN de convergence et de régularité

Schémas Linéaires: Méthodes

avec des polynômes trigonométriques
 — CS de convergence et estimation de la régularité

avec des valeurs propres (traduction matricielle) → CN de convergence et de régularité

en comparant avec un schéma convergeant

```
Convergence: S converge si
```

(i) $\exists S_0$ convergeant avec ϕ_0 vérifiant la condition de stabilité

(ii)
$$\exists M > 0, \forall f \in l^{\infty} ||\mathbf{Sf} - \mathbf{S_0f}||_{\infty} \leq \mathbf{MD(f)}$$

(iii) $\exists L \in \mathbb{N}, \exists \mathbf{c} < \mathbf{1}, \forall f \in l^{\infty}, \mathbf{D}(\mathbf{S}^{\mathbf{L}}\mathbf{f}) \leq \mathbf{c}\mathbf{D}(\mathbf{f})$

avec D un opérateur $l^{\infty} \mapsto \mathbb{R}^+$

(A.Cavaretta, W.Dahmen et C.A.Micchelli 91)

Régularité: de plus si
$$S_0^{\infty} f \in C^{\alpha-}$$
, $S^{\infty} f \in C^{\beta-}$ avec $\beta = \min\left\{-\frac{\log_2(c)}{L}, \alpha\right\}$
(K.D, J.L 07)

Intérêt: extension au cas non-linéaire, au cas multidimensionel

Schémas Linéaires: Exemples (schémas splines)

Les schémas approximants splines

- la fonction d'échelle ϕ est la fonction spline de degré m
- **régularité optimale** C^{m-} pour la taille du support de a
- pas de reproduction exacte de polynômes (const et degré 1 seulement)
- ordre d'approximation égal à 2

 $S^8(f)$ avec S_{spline_3}

Schémas Linéaires: Exemples (schémas de Lagrange)

Les schémas interpolants de Lagrange $S_{l,r}$

- S définie par la valeur du polynôme de Lagrange $p_{n,l,r}$ construit avec $\{(n+j, f_{n+j})_{j=-l+1...r}\}$
- $(Sf)_{2n} = f_n$ et $(Sf)_{2n+1} = p_{n,l,r}(n+\frac{1}{2})$
- reproduction exacte de polynômes optimale pour le nombre de points utilisé
 - convergence et régularité difficiles à montrer

avec des schémas centrés

pour $f^0 = (\delta_{n,0})_n$: $S^8(f)$ avec $S_{\mathbf{2},\mathbf{2}}$

 $S^8(f)$ avec $S_{{f 3},{f 3}}$

Schémas Linéaires: Exemples (schémas de Lagrange)

Les schémas interpolants de Lagrange $S_{l,r}$

- S définie par la valeur du polynôme de Lagrange $p_{n,l,r}$ construit avec $\{(n+j, f_{n+j})_{j=-l+1...r}\}$
- $(Sf)_{2n} = f_n$ et $(Sf)_{2n+1} = p_{n,l,r}(n+\frac{1}{2})$
- reproduction exacte de polynômes optimale pour le nombre de points utilisé
 - convergence et régularité difficiles à montrer

avec des schémas décentrés

pour $f^0 = (\delta_{n,0})_n$: $S^8(f)$ avec $S_{1,8}$

 $S^8(f)$ avec $S_{1,9}$

Schémas Linéaires: Exemples (schémas de Lagrange)

Les schémas interpolants de Lagrange $S_{l,r}$

- S définie par la valeur du polynôme de Lagrange $p_{n,l,r}$ construit avec $\{(n+j, f_{n+j})_{j=-l+1...r}\}$
- $(Sf)_{2n} = f_n$ et $(Sf)_{2n+1} = p_{n,l,r}(n+\frac{1}{2})$
- reproduction exacte de polynômes optimale pour le nombre de points utilisé

convergence et régularité difficiles à montrer

centré l = n (*G. Deslaurier et S. Dubuc 89, I. Daubechies 92*): pour tout $f, S^{\infty} f \in C^{0.4l}$

décentré l < r (K. D et J. L 07):

 $\forall l, \exists r_l \text{ tel que } S_{l,r} \text{ diverge pour } r \geq r_l \text{ (estimation théorique de } r_l)$

Une classe de schémas non-linéaires

Schémas non-linéaires: Motivation et Cadre

Répondre

aux problèmes d'adaptivité:

grille non-uniforme (*I.Daubechies, I.Gustov et W.Sweldens 99, V.Maxim et M-L.Mazure 04*) propriétés géométriques (*F.Kuijt et R.Van Damme 98, M.S.Floater et C.A.Michelli 98, M.Marinov, N.Dyn et D.Levin 05*) reproduction de fonctions (*G.Morin, J.Warren et H.Weimer 01, C.Beccari, G.Casciola et L.Romani 07*)

aux problèmes d'oscillations:

pour $f^0 = (\delta_{n,0})_n$: $S^8(f)$ avec $S_{2,2}$

Etude de schémas non-linéaires

Notre cadre

On étudie pour $f \in l^{\infty}(\mathbb{Z})$

$\mathbf{S_{NL}}(\mathbf{f}) = \mathbf{S}(\mathbf{f}) + \mathbf{F}(\delta \mathbf{f}) \quad \text{ avec}$

- S un schéma linéaire **convergeant**, de régularité $C^{\alpha-}$
- F un opérateur **non-linéaire**,
- δ un opérateur linéaire (opérateur aux différences d^k)

Convergence et Régularité (théorème)

$$\begin{array}{ll} S_{NL} \text{ converge si} \\ (\mathbf{i}) & \exists M > 0, \ \forall f \in l^{\infty} & ||\mathbf{F}(\mathbf{f})||_{\infty} \leq \mathbf{M} ||\mathbf{f}||_{\infty} \\ (\mathbf{ii}) & \exists L \in \mathbb{N}, \exists c < 1, \forall f \in l^{\infty}, & ||\delta(\mathbf{S_{NL}^L f})||_{\infty} \leq \mathbf{c} ||\delta \mathbf{f}||_{\infty} \end{array}$$

De plus,
$$S_{NL}^{\infty} f \in C^{\beta-} \text{ avec } \beta = \min \left\{ -\frac{\log_2(c)}{L}, \alpha \right\}$$

Etude de schémas non-linéaires

Stabilité (théorème)

 $S_{NL}~{\rm est}~{\rm stable}~{\rm si}$

(i) S_{NL} converge ou reproduit exactement les constantes,

- (ii) $\exists M > 0, \forall f, g \in l^{\infty} \quad ||\mathbf{F}(\mathbf{f}) \mathbf{F}(\mathbf{g})||_{\infty} \leq \mathbf{M}||\mathbf{f} \mathbf{g}||_{\infty},$
- (iii) $\exists L \in \mathbb{N}, \exists c < 1, \forall f, g \in l^{\infty}, \quad ||\delta(\mathbf{S}_{\mathbf{NL}}^{\mathbf{L}}\mathbf{f}) \delta(\mathbf{S}_{\mathbf{NL}}^{\mathbf{L}}\mathbf{g})||_{\infty} \leq \mathbf{c} ||\delta\mathbf{f}||_{\infty}$

Etude de schémas non-linéaires

Stabilité (théorème)

 S_{NL} est **stable** si

(i) S_{NL} converge ou reproduit exactement les constantes, (ii) $\exists M > 0, \forall f, g \in l^{\infty} \quad ||\mathbf{F}(\mathbf{f}) - \mathbf{F}(\mathbf{g})||_{\infty} \leq \mathbf{M}||\mathbf{f} - \mathbf{g}||_{\infty},$ (iii) $\exists L \in \mathbb{N}, \exists c < 1, \forall f, g \in l^{\infty}, \quad ||\delta(\mathbf{S_{NL}^L}\mathbf{f}) - \delta(\mathbf{S_{NL}^L}\mathbf{g})||_{\infty} \leq \mathbf{c}||\delta\mathbf{f}||_{\infty}$

Ordre (théorème)

Si
(i)
$$S_{NL}$$
 converge
(ii) il existe S un schéma linéaire, convergeant tel que $||S_{NL} - S||_{\infty} = O(h^p)$
alors $\mathbf{o}(\mathbf{S}_{\mathbf{NL}}^{\infty}) = \min(\mathbf{p}, \mathbf{o}(\mathbf{S}))$

(K.D, S.Amat, J.Liandrat 05-07)

stencil 3

n n+1 n+2 n+3

n-2 n-1

Ex1 schéma NL: le schéma WENO à 6 points

Construction (schéma interpolant)

S_{WENO} est une combinaison convexe de 3 schémas linéaires

 $S_{\mathsf{WENO}} = \alpha_1 S_1 + \alpha_2 S_2 + \alpha_3 S_3$

avec

S₁ le schéma de Lagrange complétement décentré S_{3,1}
 S₂ le schéma de Lagrange centré S_{2,2}
 S₃ le schéma de Lagrange complétement décentré S_{1,3}

 α_i poids dépendant de la "régularité" de f a_i "mesure" la régulartité avec $d^2 f$

$$\alpha_i = \frac{a_i}{a_1 + a_2 + a_3} \quad \text{avec} \quad a_i = \frac{const_i}{(\epsilon + b_i)^2} \quad \text{et} \quad b_i = b_i (d^2 f)$$

(T.Chan, X-D.Liu et S.Osher 94, G.Jiang et C-W.Shu 96 pour EDP, A.Cohen, N.Dyn et B.Matei 03 résultats pour la compression d'images)

Ex1 schéma NL: le schéma WENO à 6 points

Convergence et régularité

on peut écrire

$$(S_{\text{Weno}}f)_{2n+1} = \frac{f_n + f_{n+1}}{2} + F_{\text{Weno}}(d^2f)_{2n+1}$$

avec

I le schéma de Lagrange
$$(S_{1,1}f)_{2n+1} = \frac{f_n + f_{n+1}}{2}$$
 converge
 $\forall f, \quad ||F_{\mathsf{WENO}}(f)||_{\infty} \leq \frac{1}{2}||f||_{\infty}$
 $|d^2(S_{\mathsf{WENO}}f)_{2n}| \leq ||d^2f||_{\infty}$ et $|d^2(S_{\mathsf{WENO}}f)_{2n+1}| \leq \frac{1}{2}||d^2f||_{\infty}$
on itère pour avoir

$$||d^2(S^2_{\text{WENO}}f)||_{\infty} \le \frac{13}{16}||d^2f||_{\infty}$$

Avec le théorème de convergence et de régularité linéaire + perturbation,

 S_{WENO} converge et $S_{\mathsf{WENO}}^{\infty} f \in C^{0.215-}$

(K. D, J. L et S. A 06)

Ex1 schéma NL: le schéma weno à 6 points

Régularité Numérique

$$\operatorname{avec} - \log_2\left(\frac{||f_{n+1}^{j+1} - f_n^{j+1}||_{\infty}}{||f_{n+1}^j - f_n^j||_{\infty}}\right), \text{ on obtient } S^{\infty}_{\mathsf{WENO}} f \in C^{1-1}$$

Ordre

avec le théorème sur l'ordre, $o(S^\infty_{\rm WENO})=5$

Construction (*schéma interpolant*)

On part de

$$(S_{2,2}f)_{2n+1} = \frac{f_n + f_{n+1}}{2} \left| -\frac{1}{8} \frac{d^2 f_n + d^2 f_{n+1}}{2} \right|$$

vérifiant

$$\left|\frac{x+y}{2}\right| \le \max(|x|,|y|)$$

Construction (*schéma interpolant*)

On part de

$$(S_{2,2}f)_{2n+1} = \frac{f_n + f_{n+1}}{2} - \frac{1}{8}\frac{d^2f_n + d^2f_{n+1}}{2}$$
$$(S_{\mathsf{PPH}}f)_{2n+1} = \frac{f_n + f_{n+1}}{2} - \boxed{\frac{1}{8}H_2(d^2f_n, d^2f_{n+1})}$$

avec

$$H_2(x,y) = \frac{sign(x) + sign(y)}{2} \left| \frac{xy}{x+y} \right|$$

vérifiant

$$|H_2(x,y)| \le 2min(|x|,|y|)$$

(S.Amat, R.Donat, J.Liandrat, JC.Trillo 03)

Construction (*schéma interpolant*) On part de

 $(S_{2,2}f)_{2n+1} = \frac{f_n + f_{n+1}}{2} - \frac{1}{8}\frac{d^2f_n + d^2f_{n+1}}{2}$ $(S_{\mathsf{PPH}}f)_{2n+1} = \frac{f_n + f_{n+1}}{2} - \frac{1}{8}H_2(d^2f_n, d^2f_{n+1})$ $(S_{\mathsf{POWERP}}f)_{2n+1} = \frac{f_n + f_{n+1}}{2} \left[-\frac{1}{8}H_{\mathbf{p}}(d^2f_n, d^2f_{n+1})\right]$

(K.D, S.A et J.L 05)

avec

$$H_p(x,y) = \frac{sign(x) + sign(y)}{2} \frac{|x+y|}{2} \left(1 - \left|\frac{x-y}{x+y}\right|^p\right)$$

(S.Serna and A.Marquina 04 dans les EDP)

Convergence

Pour tout
$$p$$
, S_{POWERP} converge et $S_{POWERP}^{\infty} f \in C^{1-}$

(K. D, S. A et J. L 05)

Stabilité: pour $p \leq 2$, S_{POWERP} stable

(S.Amat et J.Liandrat 05)

Ordre: pour $p \leq 2$, $o(S_{\text{POWERP}}^{\infty}) = 3$, sinon $o(S_{\text{POWERP}}^{\infty}) = 2$

Convergence

Pour tout p, S_{POWERP} converge et $S_{POWERP}^{\infty} f \in C^{1-} \Rightarrow$ estimation optimale

(K. D, S. A et J. L 05)

Stabilité: pour $p \leq 2$, S_{POWERP} stable

(S.Amat et J.Liandrat 05)

Ordre: pour $p \le 2$, $o(S_{\text{POWERP}}^{\infty}) = 3$, sinon $o(S_{\text{POWERP}}^{\infty}) = 2$

Construction

On part du schéma approximant

$$(Sf)_{2n} = p_{n,2,2}(n+\frac{1}{4}) = -\frac{7}{128}f_{n-1} + \frac{105}{128}f_n + \frac{35}{128}f_{n+1} - \frac{5}{128}f_{n+2}$$
$$(Sf)_{2n+1} = p_{n,2,2}(n+\frac{3}{4}) = -\frac{5}{128}f_{n-1} + \frac{35}{128}f_n + \frac{105}{128}f_{n+1} - \frac{7}{128}f_{n+2}$$

(N.Dyn, M.S.Floater and K.Hormann 05)

Polynôme interpolateur $p_{n,2,2}$ des points • (- -)

Construction

On part du schéma approximant

$$(Sf)_{2n} = p_{n,2,2}(n+\frac{1}{4}) = -\frac{7}{128}f_{n-1} + \frac{105}{128}f_n + \frac{35}{128}f_{n+1} - \frac{5}{128}f_{n+2}$$

$$(Sf)_{2n+1} = p_{n,2,2}(n+\frac{3}{4}) = -\frac{5}{128}f_{n-1} + \frac{35}{128}f_n + \frac{105}{128}f_{n+1} - \frac{7}{128}f_{n+2}$$

$$\Rightarrow$$
 perturber f_{n-1} ou f_{n+2} selon $sign(|d^2f_n| - |d^2f_{n+1}|)$

Polynôme interpolateur $p_{n,2,2}$ des points \bullet (- -) et aux points modifiées \blacksquare (-)

Construction

On part du schéma approximant

$$(Sf)_{2n} = p_{n,2,2}(n+\frac{1}{4}) = -\frac{7}{128}f_{n-1} + \frac{105}{128}f_n + \frac{35}{128}f_{n+1} - \frac{5}{128}f_{n+2}$$

$$(Sf)_{2n+1} = p_{n,2,2}(n+\frac{3}{4}) = -\frac{5}{128}f_{n-1} + \frac{35}{128}f_n + \frac{105}{128}f_{n+1} - \frac{7}{128}f_{n+2}$$

 \Rightarrow perturber f_{n-1} ou f_{n+2} selon $sign(|d^2f_n| - |d^2f_{n+1}|)$

On obtient

$$(S_{\mathsf{PPHA}}f)_{2n} = (S_{\mathbf{spline}_2}f)_{2n} + F(d^2f)_{2n}$$
$$(S_{\mathsf{PPHA}}f)_{2n+1} = (S_{\mathbf{spline}_2}f)_{2n+1} + F(d^2f)_{2n+1}$$

(K.D, J.L et S.A 07)

Convergence et Stabilité

 S_{PPHA} converge, $S_{\mathsf{PPHA}}^{\infty} f \in C^{1.19}$ et est stable

(K.D, J.L et S.A 07)

Régularité Numérique: $S_{\text{PPHA}}^{\infty} f \in C^{2.438-}$

Convergence et Stabilité

$$S_{\mathsf{PPHA}}$$
 converge, $S_{\mathsf{PPHA}}^{\infty} f \in C^{1.19}$ et est stable

(K.D, J.L et S.A 07)

Régularité Numérique: $S_{\text{PPHA}}^{\infty} f \in C^{2.438-}$

Ordre:

pour $g \in C^{\infty}([0,1])$ et $f = (g((n-\frac{1}{2})h))_n$, $||S^{\infty}_{\mathsf{PPHA}}f - g||_{\infty} = O(h^3)$

-p.22/39

Construction de courbes

avec des schémas approximants

 $S^8(f^0)$ avec $\mathbf{S_{spline_2}}$

 $S^8(f^0)$ avec ${\bf S}_{[{\bf DFH05}]}$

 $S^8(f^0)$ avec ${\bf S}_{\rm PPHA}$

avec des schémas interpolants

 $S^8(f^0)$ avec ${f S_{2,2}}$

 $S^8(f^0)$ avec ${f S}_{\sf PPH}$

Schéma 2d: des constructions possibles

Pour *S*, un schéma 1d,

on étend S à deux variables en utilisant des directions alternées (*ligne puis colonnes*)

1

$$(S_{2d}f)_{2n,m} = (Sf_{n,.})_m$$
$$(S_{2d}f)_{n,m} = S((\mathbf{S}_{2d}\mathbf{f})_{2.,\mathbf{m}})_n$$

dans le cas interpolant

Schéma 2d: des constructions possibles

Pour *S*, un schéma 1d,

on étend S à deux variables en utilisant des directions alternées (*ligne puis colonnes*)

Construction classique par "produit tensoriel"

$$(S_{2d}f)_{2n,m} = (Sf_{n,.})_m$$
$$(S_{2d}f)_{n,m} = S((\mathbf{S}_{2d}\mathbf{f})_{2.,\mathbf{m}})_n$$

Question: Est ce que la convergence de S_{1d} implique la convergence du schéma S_{2d} associé?

<u>Dans le cas linéaire</u>: S_{1d} converge \implies le schéma S_{2d} associé converge

(N.Dyn 91)

Schémas 2d non-linéaires: résultats généraux

les théorèmes lin+pertur de convergence, régularité et stabilité restent vrais

Problème

Pour un schéma 1d non-linéaire $S_{NL}f = Sf + F(\delta f)$ vérifiant les hypothèses du théorème 1d:

$$\begin{aligned} \forall f \in l^{\infty}(\mathbb{Z}) \quad ||\mathbf{F}(\mathbf{f})|| &\leq \mathbf{M} ||\delta \mathbf{f}|| \\ &||\delta(\mathbf{S_{NL}f})|| &\leq \mathbf{c} ||\delta \mathbf{f}||, \end{aligned}$$

le schéma S_{NL2d} associé converge?

Schémas 2d non-linéaires: résultats généraux

Résultat généraux: Pour un schéma 2d s'écrivant: $S_{NL2d}f = S_{2d}f + F_{2d}(\Delta_{2d}f)$

les théorèmes lin+pertur de convergence, régularité et stabilité restent vrais

Problème

Pour un schéma 1d non-linéaire $S_{NL}f = Sf + F(\delta f)$ vérifiant les hypothèses du théorème 1d:

$$\begin{aligned} \forall f \in l^{\infty}(\mathbb{Z}) \quad ||\mathbf{F}(\mathbf{f})|| &\leq \mathbf{M} ||\delta \mathbf{f}|| \\ &||\delta(\mathbf{S_{NL}f})|| &\leq \mathbf{c} ||\delta \mathbf{f}||, \end{aligned}$$

le schéma S_{NL2d} associé converge?

1. on peut écrire $S_{NL2d}f = S_{2d}f + F_{2d}(\Delta_{2d}f)$ avec $\Delta_{2d}f_{n,m} = (\delta(f_{.,m})_n, \delta(f_{n,.})_m) = (\delta_{ligne}f_{n,m}, \delta_{colonne}f_{n,m})$

2. Contraction 2d à montrer...

Schémas 2d non-linéaires: étude du problème

On suppose que le schéma linéaire S vérifie $||S||_{\infty} = 1$ et δ un opérateur aux différences.

On définit pour une échelle *j*

$$L_j = \sup_{n,m} |(\delta_{ligne} f_{n,.}^j)_m| \quad \text{et} \quad V_j = \sup_{n,m} |(\delta_{colonne} f_{.,m+1}^j)_n|$$

On obtient

$$\begin{pmatrix} L_{j+1} \\ V_{j+1} \end{pmatrix} = A \begin{pmatrix} L_j \\ V_j \end{pmatrix}$$

avec
$$A = \begin{pmatrix} c+1/2(M||\delta||_1)^2 & M||\delta||_1 \\ cM||\delta||_1 & c \end{pmatrix}$$
 pour la construction "produit tensoriel"

Schémas 2d non-linéaires: étude du problème

On suppose que le schéma linéaire S vérifie $||S||_{\infty} = 1$ et δ un opérateur aux différences.

On obtient

$$\begin{pmatrix} L_{j+1} \\ V_{j+1} \end{pmatrix} = A \begin{pmatrix} L_j \\ V_j \end{pmatrix}$$

avec
$$A = \begin{pmatrix} c + 1/2(M||\delta||_1)^2 & M||\delta||_1 \\ cM||\delta||_1 & c \end{pmatrix}$$
 pour la construction "produit tensoriel"

Convergence (théorème)

Si $\rho(A) < 1$ alors le schéma S_{NL2d} converge

Régularité (théorème)

Si
$$\rho(A) < 1$$
 alors $S_{NL2d}^{\infty} \in C^{\beta-}$ avec $\beta = \sup_k \frac{-log_2(||\mathbf{A}^{\mathbf{k}}||_{\infty})}{k}$

Schémas 2d non-linéaires: Exemples

Ici $\delta = d^2$ avec $||\delta||_1 = 4$. Pour la construction "produit tensoriel"

Ex1: le schéma **POWERP** ($c = \frac{1}{2}$, $M = \frac{1}{8}$ et $\rho(A) = 0.922$)

 $\Rightarrow S_{\text{POWERP2d}}$ converge vers une fonction limite $C^{\beta-}$ avec $\beta \approx 0.14$

Ex2: le schéma PPHA scheme ($c = \frac{7}{16}$, $M = \frac{7}{64}$ et $\rho(A) = 0.7787$)

$$L = 1 \quad ||A||_{\infty} = 0.9707$$

 $\Rightarrow S_{\text{PPHA}2d}$ converge vers une fonction limite $C^{\beta-}$ avec $\beta \approx 0.36$

Applications aux analyses multirésolutions

AMR généralisée: construction A. Harten 93

AMR généralisée

- *F* espaces de fonctions
- $(V^j)_j$ espaces discrets (construits par discrétisation \mathcal{D}_j de \mathcal{F})
- Opérateur de décimation $D_{j+1}^j: V^{j+1} \longrightarrow V^j$ tel que $V^{j-1} = D_j^{j-1}(V^j)$,
- Opérateur de prédiction $P_j^{j+1}: V^j \longrightarrow V^{j+1}$ défini par un schéma S

AMR généralisée: construction A. Harten 93

Intérêt

définir une transformée AMR

$$\mathbf{v}^{\mathbf{J}} \Leftrightarrow \{v^{J-1}, d^{J}\} \Leftrightarrow \{v^{J-2}, d^{J-1}, d^{J}\} \Leftrightarrow T_{\mathsf{AMR}}v^{J} = \{\mathbf{v}^{\mathbf{0}}, \mathbf{d}^{\mathbf{1}}, .., \mathbf{d}^{\mathbf{J}}\}$$

avec d^j les détails défini par $\mathbf{d^{j+1}} = \mathbf{v^{j+1}} - (\mathbf{Sv^j})$

$$\Rightarrow$$
 compresser v^J en seuillant $(d^j)_{j=1...J}$

Problème

$$D_{j+1}^{j}$$
 et P_{j}^{j+1} doivent vérifiés $\mathbf{D_{j+1}^{j}P_{j}^{j+1}} = \mathbf{Id}_{\mathbf{V^{j}}}$

→ on choisit une **discrétisation par valeurs ponctuelles**

$$(\mathcal{D}_j f)_n = f(2^{-j}n)$$

 $(D_{j+1}^j v^{j+1})_n = v_{2n}^{j+1}$
 S est un **schéma interpolant**

AMR non-linéaire: résultats de stabilité

Définition de la Stabilité pour une AMR

$$\| \|f^{j} - \tilde{f}^{j}\|_{\infty} \leq C \left(\|f^{0} - \tilde{f}^{0}\|_{\infty} + \sum_{l=1}^{j} \|d^{l} - \tilde{d}^{l}\|_{\infty} \right)$$
$$\begin{cases} \|f^{0} - \tilde{f}^{0}\|_{\infty} \leq C \|f^{j} - \tilde{f}^{j}\|_{\infty} \\ \|d^{l} - \tilde{d}^{l}\|_{\infty} \leq C \|f^{j} - \tilde{f}^{j}\|_{\infty} \quad \forall l \in 1 \dots j - 1 \end{cases}$$

AMR non-linéaire: résultats de stabilité

Définition de la Stabilité pour une AMR

. . .

Résultat de Stabilité pour une AMR associée à des schémas <u>linéaires</u>

S converge \implies AMR associée est stable

AMR non-linéaire: résultats de stabilité

Définition de la Stabilité pour une AMR

Résultat de Stabilité pour une AMR associée à des schémas <u>linéaires</u>

Résultat de Stabilité pour une AMR associée à $\mathbf{S_{NL}f} = \mathbf{Sf} + \mathbf{F}(\delta \mathbf{f})$

L'AMR associée est **stable** si

. . .

(i) $\exists M > 0$ tel que $\forall d, d' \in l^{\infty}$ $||\mathbf{F}(\mathbf{d}) - \mathbf{F}(\mathbf{d}')||_{\infty} \leq \mathbf{M}||\mathbf{d} - \mathbf{d}'||_{\infty}$ (ii) $\exists c < 1$ tel que $\forall f, g \in l^{\infty}$ $||\delta(\mathbf{S_{NL}f} - \mathbf{S_{NL}g})||_{\infty} \leq \mathbf{c}||\delta(\mathbf{f} - \mathbf{g})||_{\infty}$

 \longrightarrow existence d'hypothèses sur S_{NL}^L ou sur l'AMR associée

→ extension au 2d possible, existence d'un résultat liant les constantes 1d et la stabilité 2d

 \rightarrow concernant la stablité de S_{WENO} (difficile à établir) et de S_{POWERP} (établi pour p = 2 S.A et J.L 05)

K. D, J. L et S. A 05-07_p.31/39

Ex 1 AMR NL: le schéma GC(géométriquement controlé)

Définition (schéma interpolant)

$$(S_{gc}f)_{2n+1} = (f_n + f_{n+1})(w(f)_n + \frac{1}{2}) - w(f)_n(f_{n+1} + f_{n+2})$$

avec w(f) défini par w(f) = h(df, c, w)

 $S^5(f^0)$ avec $S_{2,2}$

Convergence et Régularité

 $S_{\rm GC}$ converge et $S_{\rm GC}^{\infty} f \in C^1$

(M.Marinov, N.Dyn et D.Levin 05)

Ex 1 AMR NL: le schéma GC (géométriquement controlé)

Intérêt pour des AMR

pour $f^0 = (\delta_{n,0})_n$: $S^8(f^0)$ avec $S_{2,2}$

Ex 1 AMR NL: le schéma GC (géométriquement controlé)

Intérêt pour des AMR

pour
$$f^0 = (\delta_{n,0})_n$$
: $S^8(f^0)$ avec $S_{2,2}$

 $S^8(f^0)$ avec $S_{
m GC}$

Stabilité de l'AMR associée

On écrit

$$(S_{\rm GC}f)_{2n+1} = \frac{f_n + f_{n+1}}{2} + F_{\rm GC}(\mathbf{df})_{2n+1}$$

Avec le théorème de stabilité linéaire + perturbation,

L'AMR associée et le schéma S_{GC} sont stables

(K.D, S.A et J.L 08) _{p.33/39}

AMR COMPARAISON: test numérique 1d

Localisation des détails $|d_n^j| > \epsilon$ à chaque échelle On considère $T_{AMR}f^J = (f^{J_0}, d^{J_0+1}, \dots, d^J)$ avec les grilles dyadiques X^{J_0} $(J_0 = 3)$ et X^J (J = 8). Seuil $\epsilon = 10^{-3}$.

AMR COMPARAISON: test numérique 2d

Compression et décompression $\tilde{f}^J = T_{AMR}^{-1} T_{\epsilon} T_{AMR} f^J$ avec J = 8 et $J_0 = 4$ Seuil $\epsilon = 10$. nnz=nombre de détails non-nuls. $psnr = 10log_{10} \left(\frac{255^2}{\sum |f_{n,m}^J - \tilde{f}_{n,m}^J|^2} \right)$.

points initiaux f^J

avec le schéma WENO *nnz=5401. psnr=35.48.*

avec le schéma linéaire $S_{2,2}.nnz=5710. psnr=35.41.$

le schéma PPH nnz=5401. psnr=36.22.

le schéma GC nnz=5400. psnr=36.316.

AMR COMPARAISON: test numérique 2d

Compression et décompression $\tilde{f}^J = T_{AMR}^{-1} T_{\epsilon} T_{AMR} f^J$ avec J = 9 et $J_0 = 5$ Seuil $\epsilon = 10$. nnz=nombre de détails non-nuls. $psnr = 10log_{10} \left(\frac{255^2}{\sum \sum |f_{n,m}^J - \tilde{f}_{n,m}^J|^2} \right)$.

points initiaux f^J

avec le schéma WENO *nnz=3235. psnr=42.38.*

avec le schéma linéaire $S_{2,2}.nnz=5165$. psnr=39.51.

le schéma GC nnz=3216. psnr= 38.63.

Schémas linéaires

résultats de convergence et de divergence des schémas de Lagrange quelconques

récapitulatif des résultats obtenus

convergence (.) et divergence (\mathbf{x}) des schémas de Lagrange à l points (en abcisse) et r points à droite (en ordonnée)

. . .

Schémas linéaires

Schémas non-linéaires

- Ithéorèmes complets d'études de schémas Linéaire +Perturbation en 1d et 2d
- application à de nombreux exemples
- construction de schémas non-linéaires C^1 (même $C^{2.8}$) et stable
- étude de lien entre convergence 1d et 2d

. . .

. . .

Schémas linéaires

Schémas non-linéaires

AMR non-linéaires

- théorème de stabilté d'AMR associée aux schémas Linéaire+Perturbation en 1d et 2d
- application à 2 exemples: un schéma C^1 , un schéma construit en base 3 (non exposé).

Schémas linéaires

Schémas non-linéaires

AMR non-linéaires

Travail en cours: Différences finies et schémas à partir d'un opérateur donné, construction et étude théorique d'opérateurs ayant une erreur homogène sur une grille adaptée

Perspectives

Schémas linéaires

problème ouvert pour certains schémas de Lagrange

Schémas non-linéaires

stabilité de S_{WENO} , S_{POWERP} ($p \ge 3$), construction d'autres schémas

AMR non-linéaires

- extension à d'autres normes du théorèmes établis
- définition d'une décimation pour des schémas approximants non-linéaires (S_{PPHA}?)

Applications

- détection des contours (segmentation d'images)
- imagerie médicale, ...

Merci de votre attentation

Pour plus d'information:

http://www.latp.univ-mrs.fr/ dadouria/