Stability and reconstruction for some inverse problems on the identification of boundary terms and inverse scattering

Eva Sincich

Radon Institute for Computational and Applied Mathematics

INRIA - February 8th, 2008

Two inverse corrosion problems

- The linear model
- The nonlinear model

2 Two inverse scattering problems

- The impedance scattering problem
- The sound soft obstacle problem

The corrosion problem : physical models

The voltage potential u satisfies

 $\Delta u = 0$ in Ω ,

where Ω represents the electrostatic conductor.

The boundary conditions

L) A linear boundary condition

$$\frac{\partial u}{\partial \nu} = -\varphi u \quad ,$$

where $\varphi \ge 0$ is the *Robin coefficient*.

NL) A *nonlinear* boundary condition due to *Butler* and *Volmer*

$$rac{\partial u}{\partial
u} = \lambda(\exp(lpha u) - \exp(-(1-lpha)u)) \; .$$

Some results on the *linear* model

- P.G. Kaup, F. Santosa, M. Vogelius (1995) Reconstruction of the profile loss by thin plate approximation.
- D.Fasino, G.Inglese (1999, 2001) Reconstruction of the Robin coefficient by thin plate approximation and Galerkin method.
- S.Chaabane, I.Fellah, M.Jaoua, J.Leblond (1999, 2003) Logarithmic stability in 2D and directional Lipschitz stability for the Robin coefficient.
- G.Alessandrini, L.Del Piero, L.Rondi (2003) Logarithmic stability result in 2D for the Robin coefficient.
- E.S.(2007) Lipschitz stability for a piecewise constant Robin coefficient.

The simplified mathematical model which describes the electrochemical phenomenon of surface *corrosion* in metals is the following

where Ω =electrostatic conductor, *u*=electrostatic potential, *g*=prescribed current density, γ =*Robin coefficient* due to the corrosion damage, Γ_2 =accessible portion, Γ_1 =inaccessible portion, Γ_D =grounded portion.

An inverse problem for a piece-wise constant Robin coefficient

To determine the **Robin coefficient** γ from the knowledge of the *electrostatic* potential $u|_{\Gamma_2}$ and from the *current density* $\frac{\partial u}{\partial \nu}|_{\Gamma_2}$ provided the following a priori hypothesis hold,

- i) some bounds on the current density : $\|g\|_{C^{0,\alpha}(\Gamma_2)} \leq G$, $\|g\|_{L^{\infty}(\Gamma_2)} \geq m$;
- ii) a priori assumption on the *Robin* term :

$$\gamma(\mathbf{x}) = \sum_{j=1}^{N} \gamma^{j} \chi_{\Gamma_{1}^{j}}(\mathbf{x}) , \quad 0 \leqslant \gamma^{j} < J \quad , \quad j = 1, \cdots, N$$

where, for any j = 1, ..., N, γ^j are real *unknown* numbers and Γ_1^j are *known* and disjoint portions of Γ_1 such that $\cup_{j=1}^{N} \overline{\Gamma_1^j} = \overline{\Gamma_1}$.

Theorem (E.S. - Inverse problem, 2007)

Let γ_i , i = 1, 2 be two piecewise constant Robin coefficients of the form

$$\gamma_i(x) = \sum_{j=1}^N \gamma_i^j \chi_{\Gamma_1^j}(x) , \ x \in \Gamma_1, \ i = 1, 2 .$$

Let $u_i \in H^1(\Omega)$, i = 1, 2 be the two weak solutions to the problem (R) with $\gamma = \gamma_i$ respectively.

Then there exists a constant C > 0 depending on the a-priori data only such that

 $\|\gamma_1 - \gamma_2\|_{\mathsf{L}^{\infty}(\mathsf{\Gamma}_1)} \leqslant \mathsf{C} \|\mathsf{u}_1 - \mathsf{u}_2\|_{\mathsf{L}^2(\mathsf{\Gamma}_2)} .$

The exponential behavior of the Lipschitz constant

Corollary (E.S. - Inverse problems, 2007)

There exists $N_0 \in \mathbb{N}$ such that for any $N \geqslant N_0$ we have that

 $C_N \ge k_1 \exp(k_2 N^{\frac{1}{2n-1}})$

where k_1, k_2 positive constants depending on the a priori data only and $C = C_N$ is the Lipschitz constant in the previous Lipschitz stability estimate.

The nonlinear profile problem

The more accurate mathematical model which describes the electrochemical phenomenon of surface *corrosion* in metals is the following

where Ω =electrostatic conductor, *u*=electrostatic potential, *g*=prescribed current density, *f*=nonlinear term due to the corrosion damage, Γ_2 =accessible portion, Γ_1 =inaccessible portion, Γ_D =grounded portion.

The boundary value problem (C) might not be well posed, indeed this the case when g = 0 and f(u) = pu, where p > 0 is an eigenvalue of a Steklov type eigenvalue problem.

Some results on the nonlinear model

- K. Bryan, O. Kavian, M.Vogelius, J.M.Xu (1998-2002) Existence and uniqueness of solutions to the *direct* problem.
- G. Alessandrini, E.S. (2005-2006) Logarithmic stability and reconstruction for the nonlinear corrosion profile.
- D. Fasino, G. Inglese (2005) Logarithmic stability in 2D and numerical approximation of the nonlinear corrosion profile.
- S. Chaabane, M. El Guénichi, J. Leblond, M. Zghal (2006) -Identification, stability and BEP algorithm for the nonlinear term in 2D.
- H. Cao, V. Pereverzev, E.S. (2007) Regularized reconstruction algorithm for the identification of the nonlinear term.
- P. Kügler, E.S. (2008) Tikhonov regularization and convergence rates for the determination of the nonlinear term.

To determine the **nonlinear coefficient** f by the knowledge of the *voltage* potential $u|_{\Gamma_2}$ and the current density $\frac{\partial u}{\partial \nu}|_{\Gamma_2}$ provided the following a priori assumptions hold,

- i) an energy bound : $\int_{\Omega} |\nabla u|^2 \leqslant E^2 ;$
- ii) some bounds on the current density : $\|g\|_{C^{0,\alpha}(\Gamma_2)} \leq G$, $\|g\|_{L^{\infty}(\Gamma_2)} \geq m$;
- iii) a priori assumptions on the *nonlinear* term : $f : \mathbb{R} \to \mathbb{R}, f(0) = 0$, $|f(u) - f(v)| \leq L|u - v|$, for every $u, v \in \mathbb{R}$.

Theorem (G. Alessandrini, E.S. - Applicable Analysis, 2006)

Let $u_i \in H^1(\Omega)$ be weak solutions to the problem (C), with $f = f_i$ and $g = g_i$ respectively and let $\psi_i = u_i|_{\Gamma_2}$, i = 1, 2. If

$$\begin{aligned} \|\psi_1 - \psi_2\|_{L^2(\Gamma_2)} &\leq \varepsilon \ ,\\ \|g_1 - g_2\|_{L^2(\Gamma_2)} &\leq \varepsilon \ , \end{aligned}$$

then
$$\|f_1 - f_2\|_{L^{\infty}(V)} &\leq C|\log(\varepsilon)|^{-1} \end{aligned}$$

where

$$V = (\alpha, \beta) \subseteq [-CE, CE] ,$$

is such that

$$\beta - \alpha > \frac{\exp[-(m/c)^{-\gamma}]}{2}$$

with $0 < \theta < 1, C, c > 0, \gamma > 1$.

The reconstruction result for f - 1st approach

By the approximate electrostatic measurements $\{\psi_{\varepsilon}, g_{\varepsilon}\}$ of $\{u|_{\Gamma_2}, \frac{\partial u}{\partial \nu}|_{\Gamma_2}\}$ we want to recover an approximate profile f_{ε} . We reformulate the Cauchy problem associated to the **(C)** in terms of the regularized inversion of the following compact operator $T: \frac{\partial u}{\partial \nu}\Big|_{\Gamma_{\varepsilon}} \rightarrow \frac{\partial u}{\partial \nu}\Big|_{\Gamma_{\varepsilon}}.$

Theorem (G. Alessandrini, E.S. - J. Comput. Appl. Math., 2007)

lf

$$\|\psi-\psi_{\varepsilon}\|_{H^{\frac{1}{2}}_{00}(\Gamma_{2})}\leqslant \varepsilon \quad \text{and} \quad \|g-g_{\varepsilon}\|_{H^{\frac{1}{2}}_{00}(\tilde{\Gamma_{2}})^{*}}\leqslant \varepsilon \ ,$$

then

$$\|u_{\varepsilon} - u\|_{C^{1}(\Gamma_{1})} \rightarrow 0 \quad as \ \varepsilon \rightarrow 0$$

where $u_{\varepsilon} \in H^1(\Omega)$ is a weak solution to a mixed boundary value problem defined by means of a regularization strategy R^{ε} for the compact operator T.

The reconstruction result for f - 1st approach

Theorem (G. Alessandrini, E.S. - J. Comput. Appl. Math., 2007)

Let $u \in H^1(\Omega)$ be a weak solution to the problem (C), with $\psi = u|_{\Gamma_2}$. If, given $\varepsilon > 0$, we have that $\psi_{\varepsilon} \in H^{\frac{1}{2}}_{00}(\Gamma_2)$ and $g_{\varepsilon} \in H^{\frac{1}{2}}_{00}(\Gamma_2^{\rho})^*$

$$\begin{split} \left\| \psi - \psi_{\varepsilon} \right\|_{\mathcal{H}^{\frac{1}{2}}_{00}(\Gamma_{2})} \leqslant \varepsilon \ , \\ \left\| g - g_{\varepsilon} \right\|_{\mathcal{H}^{\frac{1}{2}}_{00}(\Gamma_{2}^{\rho})^{*}} \leqslant \varepsilon \end{split}$$

then there exist an interval V such for a.e. $t \in V$

$$f_{arepsilon}(t) o f(t)$$
 as $arepsilon o 0$,

where

$$f_{\varepsilon}(t) = \frac{1}{\int_{\{x \in \Gamma_1: u_{\varepsilon=t}\}} |\nabla_{x'} u_{\varepsilon}|^{-1} d\sigma_{n-2}} \int_{\{x \in \Gamma_1: u_{\varepsilon=t}\}} \frac{\partial u_{\varepsilon}}{\partial \nu} |\nabla_{x'} u_{\varepsilon}|^{-1} d\sigma_{n-2} .$$

Eva Sincich (RICAM)

The reconstruction result for f - 2nd approach

(H. Cao, S. Pereverzev, E.S. - Ricam Report, submitted)

We split the original *nonlinear* problem in two *linear* problems.

- a) We reduce the resolution of the Cauchy problem into the resolution of a linear operator equation which is regularized by discretization
- b) Once we know by the step a) the Dirichlet and the Neumann traces of u on Γ_1 we can define the linear operator

$$B: f \to f(u(x))$$

and we solve the equation $Bf = \frac{\partial u(x)}{\partial x}$

Eva Sincich (RICAM)

The reconstruction result for f - 2nd approach

.

(H. Cao, S. Pereverzev, E.S. - Ricam Report, submitted)

 ${\rm i})$ The linear case

$$\begin{split} \Omega &= [0,\pi] \times [0,1] \\ \Gamma_2 &= [0,\pi] \times [0] , \\ \Gamma_1 &= [0,\pi] \times [1] , \\ \Gamma_D &= \{0\} \times [0,1], \{\pi\} \times [0,1] . \end{split}$$

$$g = -\sin(x) ,$$

$$f(t) = -t ,$$

$$u(x, y) = [\sinh(y) - \cosh(y)] \sin(x)$$

The reconstruction result for f - 2nd approach

(H. Cao, S. Pereverzev, E.S. - Ricam Report, submitted)

$\operatorname{ii})$ The nonlinear case

$$g = -\frac{5y+4}{(4y+5)^2} ,$$

$$f(t) = \begin{cases} \frac{1}{3}(-4t+1)(-3t+2) \text{ if } t \le \frac{5}{12} \\ -\frac{1}{3}t - \frac{1}{36} \text{ if } t \ge \frac{5}{12} \end{cases} ,$$

$$u(x,y) = \frac{y+2}{(y+2)^2 + x^2} .$$

The reconstruction result for f - 3rd approach (P.Kügler, E.S. - in preparation)

We consider the set of admissible profiles f

$$K = \left\{ f \in H^1(I) : f(0) = 0 , -L < f' < 0 \right\}$$

where L > 0 is a constant and the interval $I = [u_{min}, u_{max}]$ is such that $u_{min} < u_f < u_{max}$ holds for u_f solution to the direct problem (C) for any $f \in K$.

We denote with z_{δ} the noisy data

 $||z-z_{\delta}||_{L^2(\Gamma_2)} \leq \delta.$

We assume that the exact data z is attainable from $f^{\dagger} \in K$. **Problem**: For $\beta > 0$, find a parameter $f_{\beta}^{\delta} \in K$ that minimizes

$$J_{\beta}(f) = \int_{\Gamma_2} |u_f - z^{\delta}|^2 + \beta \|f - f^*\|_I^2$$

over K for a suitable choice of β and f^* .

The reconstruction result for f - 3rd approach (P.Kügler, E.S. - in preparation)

We proved the

- Existence: a minimizer f_{β}^{δ} exists for any $z^{\delta} \in L^{2}(\Gamma_{2})$;
- Stability: for a fixed regularization parameter β, the minimizers of J_β depend continuously on the data z^δ;
- Convergence: the regularized solutions f_{β}^{δ} converge toward the true parameter f^{\dagger} as both the noise level δ and the regularization parameter β (chosen by an a priori rule) tend to zero;

We found the following convergence rates when $\beta\sim\delta$

•
$$\|u_{f_{\beta}^{\delta}} - z^{\delta}\|_{L^{2}(\Gamma_{2})}^{2} = O(\delta);$$

• $\|f_{\beta}^{\delta} - f^{\dagger}\|_{H^{1}(I)}^{2} = O(|\log(\delta)|^{-\theta});$

where $0 < \theta < 1$.

The reconstruction result for f - 3rd approach

(P.Kügler, E.S. - in preparation)

ii) The numerical test

$$g = -\frac{5y+4}{(4y+5)^2} ,$$

$$f(t) = \begin{cases} \frac{1}{3}(-4t+1)(-3t+2) \text{ if } t \le \frac{5}{12} \\ -\frac{1}{3}t - \frac{1}{36} \text{ if } t \ge \frac{5}{12} \end{cases} ,$$

$$u(x,y) = \frac{y+2}{(y+2)^2 + x^2} .$$

The scattering of an acoustic time-harmonic plane wave by an obstacle partially coated by a material with surface *impedance* λ is modeled by the following mixed boundary value problem for the Helmholtz equation

$$\begin{cases} \Delta u + k^2 u = 0 & \text{in } \mathbb{R}^3 \setminus \overline{D}, \\ u = 0 & \text{on } \Gamma_D, \\ \frac{\partial u}{\partial \nu} + i\lambda(x)u = 0 & \text{on } \Gamma_I, \\ \lim_{r \to \infty} r\left(\frac{\partial u^s}{\partial r} - iku^s\right) = 0, \quad r = ||x||. \end{cases}$$
(Sc)

Impedance scattering problem - Formulation

where D=obstacle, $u = e^{ikx \cdot \omega} + u^s$ =acoustic field, $e^{ikx \cdot \omega}$ =incident wave, u^s =scattered wave, k=wave number, ω =incident direction, λ =surface *impedance*, Γ_I =coated portion, Γ_D =remaining portion. Moreover Γ_I is $C^{1,1}$ smooth.

Remark: The *direct* problem is well-posed.

F. Cakoni. - D. Colton. - P. Monk, Inverse Problems 2001, N = 2, $\lambda = const. > 0$

Impedance scattering problem - The inverse problem

The scattered field u^s has the following asymptotic behavior

$$u^{s}(x) = \frac{\exp\left(ikr\right)}{r} \left\{ u_{\infty}(\hat{x}) + O\left(\frac{1}{r}\right) \right\} \quad ,$$

as r tends to ∞ , uniformly with respect to $\hat{x} = \frac{x}{\|x\|}$.

To determine the surface impedance λ by the knowledge of the *far field* pattern u_{∞} provided the following a priori assumptions hold,

i) bound on the Lipschitz continuity of the *impedance* : $\|\lambda\|_{C^{0,1}(\Gamma_I)} \leq \Lambda$;

ii) uniform lower bound : $\lambda(x) \ge \lambda_0 > 0.$

Impedance scattering problem - The stability theorem

By *stability* we mean the *quantitative* evaluation of the *continuous dependence* of the unknown impedance λ upon the far field measurement u_{∞} .

Theorem (E.S. - SIAM J. Math. Anal., 2006)

Let $u_i \in H^1_{loc}(\mathbb{R}^3 \setminus \overline{D})$ be the weak solutions to the problem (Sc) with $\lambda = \lambda_i$ and $u_{\infty} = u_{i,\infty}$, i = 1, 2 respectively. If, for ε sufficiently small we have

$$\|u_{1,\infty}-u_{2,\infty}\|_{L^2(\partial B_1(0))} \leq \varepsilon,$$

then

$$\|\lambda_1 - \lambda_2\|_{L^{\infty}(\tilde{\Gamma_I})} \leq const. |\log(\varepsilon)|^{-\theta}$$

The scattering of an acoustic time-harmonic plane wave, at a given number k > 0 and at a given direction $\omega \in \mathbb{S}^2$ by a sound soft obstacle $D \in \mathbb{R}^3$ is modeled by the following Dirichlet problem for the Helmholtz equation

$$\begin{cases} \Delta u + k^2 u = 0 & \text{in } \mathbb{R}^3 \setminus \overline{\mathbb{D}}, \\ u = 0 & \text{on } \partial \mathbb{D}, \\ \lim_{r \to \infty} r \left(\frac{\partial u^s}{\partial r} - iku^s \right) = 0, \quad r = ||x||. \end{cases}$$
(Ss)

where $u = e^{ikx \cdot \omega} + u^s$.

Sound soft problem - The inverse problem : $u_\infty o D$

About the literature ...

Uniqueness

A classical result due to Schiffer (1966): the knowledge of $u_{\infty}(\omega, \hat{x})$ for all $\omega, \hat{x} \in \mathbb{S}^2$ and at a fixed k > 0 uniquely determines the scattering obstacle.

Conjecture: Formally the obstacle D should be determined from its scattering amplitude at a fixed energy k > 0 and at a fixed incident direction $\omega \in S^2$.

- The conjecture is still unproven for general domains *D*.
- On the contrary there are several uniqueness results when *D* has a geometrical constraint imposed, for example ...

Sound soft problem - Uniqueness under geometrical constraints

Smallness condition : If D is constrained to lie in a disk with a sufficiently small radius which depends on the wave number k.

• D. Colton, B.D. Sleeman, IMA J. Appl. Math. 1983.

Closeness condition : If *D* is sufficiently close to an obstacle of a known shape.

- R. Kress, W. Rundell, Inverse Problems 1994.
- P. Stefanov, G. Uhlmann, Proc. Amer. Math. Soc. 2003.

Polyhedral condition : If *D* is a polyhedral scatterer.

- C. Liu, A. Nachman, 1994.
- J. Cheng, M. Yamamoto, Inverse Problems 2003.
- G. Alessandrini, L. Rondi, Proc. Amer. Math. Soc. 2005.

SSP - The inverse problem with the closeness condition

To determine *locally* the sound soft obstacle **D** by the knowledge of the *far* field pattern u_{∞} at a fixed incident direction ω and at a fixed energy k > 0 provided

i) there exist two obstacles D_+ and D_- such that

$$\operatorname{Vol}(D_+\setminus D_-) < rac{4\pi^4}{3}k^{-3}\;,$$

ii) $D_- \subset D \subset D_+$.

Remark: Let k_0^2 be a Dirichlet eigenvalue of $-\Delta$ in a bounded domain G then by the Faber-Krahn inequality

$$k_0^3 \geqslant \frac{4\pi^4}{3\operatorname{Vol}(G)}$$

Sound soft problem - Uniqueness and stability

The uniqueness holds under the *closeness* condition.

Theorem (Stefanov-Uhlmann, Proc.Amer.Math.Soc. 2004)

If D_1 and D_2 are two obstacles satisfying the above assumptions and such that $u_{1,\infty} = u_{2,\infty}$ then $D_1 = D_2$.

The stability holds under the *closeness* condition.

Theorem (E.S., M. Sini - Ricam Report, submitted)

If D_1 and D_2 are two obstacles satisfying the above assumptions and such that $u_{1,\infty} = u_{2,\infty}$ $\|u_{1,\infty} - u_{2,\infty}\|_{L^2(\partial B_1(0))} \leq \varepsilon$

then

$$d_{H}(D_1,D_2)\leqslant const.|\log(arepsilon)|^{- heta}$$

Merci!

3