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@ Two inverse corrosion problems
@ The linear model
@ The nonlinear model

© Two inverse scattering problems
® The impedance scattering problem
@ The sound soft obstacle problem
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The corrosion problem : physical models

The voltage potential u satisfies
Au=0inQ
where Q represents the electrostatic conductor.
The boundary conditions

L) A linear boundary condition

ou

% = —pu ,
where ¢ > 0 is the Robin coefficient.

NL) A nonlinear boundary condition due to Butler and Volmer

% = Aexp(au) — exp(—(1 — a)u)) .
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Some results on the linear model

@ P.G. Kaup, F. Santosa, M. Vogelius (1995) - Reconstruction of the
profile loss by thin plate approximation.

@ D.Fasino, G.Inglese (1999, 2001) - Reconstruction of the Robin
coefficient by thin plate approximation and Galerkin method.

@ S.Chaabane, |.Fellah, M.Jaoua, J.Leblond (1999, 2003) - Logarithmic
stability in 2D and directional Lipschitz stability for the Robin
coefficient.

@ G.Alessandrini, L.Del Piero, L.Rondi (2003) - Logarithmic stability
result in 2D for the Robin coefficient.

@ E.S.(2007) - Lipschitz stability for a piecewise constant Robin
coefficient.
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The Robin problem

The simplified mathematical model which describes the electrochemical
phenomenon of surface corrosion in metals is the following

Au=0 inQ, )

@ =g onl,, r
: ® |
Y —y(x)u onTy,

u=0 onTp. b

where ()=electrostatic conductor, u=electrostatic potential, g=prescribed
current density, y=Robin coefficient due to the corrosion damage, [,=accessible
portion, I'y=inaccessible portion, I'p=grounded portion.
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An inverse problem for a piece-wise constant Robin

coefficient

To determine the Robin coefficient v from the knowledge of the electrostatic
potential u|r, and from the current density %|r2 provided the following a priori
hypothesis hold,

i) some bounds on the current density :
gl coa(r) <G, lgllLoe(ry) = m:

ii) a priori assumption on the Robin term :

N
’Y(X):Z’VJXrJl(X)a O<7J<Jv J:1a7N
j=1

where, forany j =1,..., N, 4/ are real unknown numbers and
I, are known and disjoint portions of '; such that

N o=
szll'Jl =T;.

Eva Sincich (RICAM) INRIA - February 8th, 2008 6 /30



The stability result

Theorem (E.S. - Inverse problem, 2007)

Let v;, i = 1,2 be two piecewise constant Robin coefficients of the form
N .
~i(x) = Z%Xr{(x) , x€ly, i=1,2.
j=1

Let u; € HY(Q), i = 1,2 be the two weak solutions to the problem (R) with
v = y; respectively.
Then there exists a constant C > 0 depending on the a-priori data only such that

71 = Y2l (ry) < Cllur — w2|le2ry) -
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The exponential behavior of the Lipschitz constant

CoroIIary (E.S. - Inverse problems, 2007)
There exists Ny € N such that for any N > Ny we have that

Cn > k1 eXp(kzNﬁ)

where ki, ko positive constants depending on the a priori data only and C = Cy
is the Lipschitz constant in the previous Lipschitz stability estimate.
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The nonlinear profile problem

The more accurate mathematical model which describes the electrochemical
phenomenon of surface corrosion in metals is the following

Au=0 in Q, )

Ou g onl

7Y . r
gu (€) I '
9 f(uy onTl

By 1,

u=20 onlp. b

where ()=electrostatic conductor, u=electrostatic potential, g=prescribed cur-
rent density, f=nonlinear term due to the corrosion damage, [,=accessible
portion, I'y=inaccessible portion, I'p=grounded portion.

The boundary value problem (C) might not be well posed, indeed this the case

when g = 0 and f(u) = pu, where p > 0 is an eigenvalue of a Steklov type
eigenvalue problem.

Eva Sincich (RICAM) INRIA - February 8th, 2008

9 /30



Some results on the nonlinear model

@ K. Bryan, O. Kavian, M.Vogelius, J.M.Xu (1998-2002) - Existence and
uniqueness of solutions to the direct problem.

@ G. Alessandrini, E.S. (2005-2006) - Logarithmic stability and
reconstruction for the nonlinear corrosion profile.

@ D. Fasino, G. Inglese (2005) - Logarithmic stability in 2D and numerical
approximation of the nonlinear corrosion profile.

@ S. Chaabane, M. El Guénichi, J. Leblond, M. Zghal (2006) -
Identification, stability and BEP algorithm for the nonlinear term in 2D.

@ H. Cao, V. Pereverzev, E.S. (2007) - Regularized reconstruction
algorithm for the identification of the nonlinear term.

@ P. Kiigler, E.S. (2008) - Tikhonov regularization and convergence rates
for the determination of the nonlinear term.
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The inverse problem

To determine the nonlinear coefficient f by the knowledge of the voltage

otential ulr, and the current density 2%|r, provided the following a priori
p 2 Y ol P gap
assumptions hold,

i) an energy bound :
fQ |Vul?> < E?;
ii) some bounds on the current density :
gllcoa(r) <G, gl (rz) = m;
iii) a priori assumptions on the nonlinear term :
f:R—-R, f(0)=0,
|f(u) — f(v)] < Llu—v]|, forevery u,v € R.
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The stability result for f

Theorem (G. Alessandrini, E.S. - Applicable Analysis, 2006)

Let u; € HY(Q) be weak solutions to the problem (C), with f = f; and g = g;

respectively and let ¢¥; = uj|r,, i =1,2. If
1 — 2lleoqr,) <€
lgr — g2llizry) < €

then I = fllu=(vy < Cllog(e)| " ,

)

where

V = (o, 8) C [-CE, CE] ,

is such that
exp[—(m/c) 7]

8—a> >

with0 <6 <1,C,c>0,v>1.
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The reconstruction result for f - 1st approach

By the approximate electrostatic measurements {¢., g-} of {ulr,, %|r2} we
want to recover an approximate profile .. We reformulate the Cauchy problem
associated to the (C) in terms of the regularized inversion of the following
compact operator T ou Ou

: — —
ovlir, ovlr,

(G. Alessandrini, E.S. - J. Comput. Appl. Math., 2007)
& [

- lg — &l <e,

%
00 )

Hg (I
then

lue — ullciryy = 0 ase —0

where u.€H'(Q) is a weak solution to a mixed boundary value problem defined
by means of a regularization strategy R® for the compact operator T.
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The reconstruction result for f - 1st approach

Theorem (G. Alessandrini, E.S. - J. Comput. Appl. Math., 2007)

Let u € HY(Q) be a weak solution to the problem (C), with ¢ = ulr,. If, given
1 1
e >0, we have that 1. € Hjy(I2) and g- € Hg(T5)*

19— wall

lg — &l

O m\»—A

<
% )\53
00

then there exist an interval V' such for a.e. t € V

f-(t) — f(t) as e — 0,

1 0

£(t) = / e
/ o R
{x€M:uc=¢}
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The reconstruction result for f - 2nd approach

( H. Cao, S. Pereverzev, E.S. - Ricam Report, submitted )

We split the original nonlinear problem in two linear pro-
blems.

a) We reduce the resolution of the Cauchy
problem into the resolution of a linear
operator equation which is regularized by
discretization

b) Once we know by the step a) the Dirichlet
and the Neumann traces of u on [; we can
define the linear operator

B:f— f(u(x))

du(x)
ov

and we solve the equation Bf =
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The reconstruction result for f - 2nd approach

( H. Cao, S. Pereverzev, E.S. - Ricam Report, submitted )

i) The linear case

Q =1[0,7] x [0,1]
ry = [0.7] x [0]
r=[0,n7 x[1],
p ={0} x[0,1],{w} x [0,1] .
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The reconstruction result for f - 2nd approach

( H. Cao, S. Pereverzev, E.S. - Ricam Report, submitted )

ii) The nonlinear case

S5y +4
(4y +5)2 7
L4t + 1) (-3t+2)ift< 2
f(t):{ i(lt—ii)f(t>i) P
3 36 = 12

- y+2
o=
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The reconstruction result for f - 3rd approach

( P.Kiigler, E.S. - in preparation)

We consider the set of admissible profiles f
K:{feHl(l) : f(O):O,—L<f’<O}

where L > 0 is a constant and the interval | = [Umin, Umax] is such
that umin < Uf < Umax holds for ur solution to the direct problem (C)
forany f € K.

We denote with zs the noisy data

1z = 25l 12(r,) < 0.
We assume that the exact data z is attaiﬂnable from T € K.
Problem: For 3 > 0, find a parameter f[;? € K that minimizes

Jo(f) = g up = 2°2 + BIIf — £
2

over K for a suitable choice of § and f*.
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The reconstruction result for f - 3rd approach

( P.Kiigler, E.S. - in preparation)

We proved the
@ Existence: a minimizer fg exists for any z° € L2(T,);

@ Stability: for a fixed regularization parameter 3, the minimizers
of Js depend continuously on the data z%;

@ Convergence: the regularized solutions fﬁ‘s converge toward the
true parameter T as both the noise level § and the
regularization parameter 3 (chosen by an a priori rule) tend to
zero;

We found the following convergence rates when 3 ~ ¢

o llugs — 2 Iaqr,y = O(6) ;
o 1] = F112p = O(1og(d) ) :

where 0 < 6 < 1.
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The reconstruction result for f - 3rd approach

(P.Kiigler, E.S. - in preparation )

ii) The numerical test

sssss

S5y +4
(4y +5)2 7
L4t + 1) (-3t+2)ift< 2
f(t):{ i(lt—ii)f(t>i) P
3 36 = 12

- y+2
o=
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Impedance scattering problem - Formulation

The scattering of an acoustic time-harmonic plane wave by an obstacle partially
coated by a material with surface impedance X\ is modeled by the following
mixed boundary value problem for the Helmholtz equation

(Au+ K2u=0 in R3\ D,

u = on rD,

ou . Sc
$+/)\(x)u:0 on Iy, (Se)
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Impedance scattering problem - Formulation
\us Us/’

r Mo

S
%ikx-w \“

where D=obstacle, u = e*** + yS=acoustic field, e’**“=incident wave,
u*=scattered wave, k=wave number, w=incident direction, A=surface im-

pedance, I j=coated portion, I p=remaining portion. Moreover I} is C!
smooth.

Remark:The direct problem is well-posed.
F. Cakoni. - D. Colton. - P. Monk, Inverse Problems 2001, N =2, A\ = const. > 0
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Impedance scattering problem - The inverse

problem

The scattered field u® has the following asymptotic behavior

u(x) = Pk {um(&) o (i) } ,

r

as r tends to oo, uniformly with respect to X = H;—”

To determine the surface impedance )\ by the knowledge of the far field
pattern u., provided the following a priori assumptions hold,

i) bound on the Lipschitz continuity of the impedance :
[Allcorry <A

ii) uniform lower bound :
A(x) = Ao > 0.
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Impedance scattering problem - The stability

theorem

By stability we mean the quantitative evaluation of the continuous de-
pendence of the unknown impedance A upon the far field measurement

Uso.

Theorem (E.S. - SIAM J. Math. Anal., 2006)
Let u; € H}OC(R3\D) be the weak solutions to the problem (Sc) with

A= and Uy = Uj o, | = 1,2 respectively. If, for ¢ sufficiently small we

have

1,00 = 2,00l 2(0B1(0)) < &

then
A1 — )‘2||L°°(f,) < const.|log(e)| 77 .
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Sound soft problem - Formulation

The scattering of an acoustic time-harmonic plane wave, at a given number
k > 0 and at a given direction w € S? by a sound soft obstacle D € R3 is
modeled by the following Dirichlet problem for the Helmholtz equation

Au+k?u=0 in R3\ D,
u=20 on 0D,

: o .

rIer;or<ar —/ku> =0, r=]|x|.

where u = ew 4 s,
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Sound soft problem -

The inverse problem : vy, — D

About the literature ...
Uniqueness

A classical result due to Schiffer (1966): the knowledge of us.(w,X) for all
w,% € S? and at a fixed k > 0 uniquely determines the scattering obstacle.

Conjecture: Formally the obstacle D should be determined from its scattering
amplitude at a fixed energy k > 0 and at a fixed incident direction w € S2.

@ The conjecture is still unproven for general domains D.

@ On the contrary there are several uniqueness results when D has a
geometrical constraint imposed, for example ...
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Sound soft problem - Uniqueness under

geometrical constraints

Smallness condition : If D is constrained to lie in a disk with a sufficiently
small radius which depends on the wave number k.

@ D. Colton, B.D. Sleeman, IMA J. Appl. Math. 1983.
Closeness condition : If D is sufficiently close to an obstacle of a known
shape.
@ R. Kress, W. Rundell, Inverse Problems 1994.
@ P. Stefanov, G. Uhlmann, Proc. Amer. Math. Soc. 2003.

Polyhedral condition : If D is a polyhedral scatterer.

@ C. Liu, A. Nachman, 1994.
@ J. Cheng, M. Yamamoto, Inverse Problems 2003.
@ G. Alessandrini, L. Rondi, Proc. Amer. Math. Soc. 2005.

Eva Sincich (RICAM) INRIA - February 8th, 2008 27 / 30



SSP - The inverse problem with the closeness

condition

To determine locally the sound soft obstacle D by the knowledge of the far
field pattern u., at a fixed incident direction w and at a fixed energy k > 0
provided

i) there exist two obstacles D, and D_ such that

4rt

k—3
3 ’

Vol(Dy \ D_) <
i) D-cDcD;.
Remark: Let k3 be a Dirichlet eigenvalue of —A in a bounded domain G then

by the Faber-Krahn inequality

47t

3>
ko = 3Vol(G)
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Sound soft problem - Uniqueness and stability

The uniqueness holds under the closeness condition.

Theorem (Stefanov—UhImann, Proc.Amer.Math.Soc. 2004)

If Dy and D, are two obstacles satisfying the above assumptions and such that
Ul,co = U2 00 then D1 = Ds.

The stability holds under the closeness condition.

Theorem (E.S., M. Sini - Ricam Report, submitted)

If Dy and D, are two obstacles satisfying the above assumptions and such that
Ul oo = U
1,00 2,00 lu1,00 — u2700|‘L2(331(0)) Le€

e du(D1, Ds) < const.| log(e)| ™ .

Eva Sincich (RICAM) INRIA - February 8th, 2008 29 / 30



Merci!

Eva Sincich (RICAM) INRIA - February 8th



	Two inverse corrosion problems
	The linear model
	The nonlinear model 

	Two inverse scattering problems
	The impedance scattering problem 
	The sound soft obstacle problem


