
Machine-efficient polynomial approximations

N. Brisebarre, S. Chevillard, G. Hanrot, J.-M. Muller, A. Tisserand
and S. Torres

Arénaire, LIP, É.N.S. Lyon

APICS Seminar
INRIA Sophia Antipolis

1/29/2010

Evaluation of elementary functions

exp, ln, cos, sin, arctan,
√

, . . .

First step. Argument reduction (Payne & Hanek, Ng, Daumas et al):
evaluation of a function ϕ over R or a subset of R is reduced to the evaluation
of a function f over [a, b].

Second step. Polynomial approximation of f :

• least square approximation;

• minimax approximation.

Machine-efficient polynomial approximations 2

Minimax Approximation

Reminder. Let g : [a, b]→ R, ||g||[a,b] = supa≤x≤b |g(x)|.

We denote Rn[X] = {p ∈ R[X]; deg p ≤ n}.

Minimax approximation: let f : [a, b]→ R, n ∈ N, we search for p ∈ Rn[X]
s.t.

||p− f ||[a,b] = inf
q∈Rn[X]

||q − f ||[a,b].

An algorithm by Remez gives p (minimax function in Maple, also available
in Sollya http://sollya.gforge.inria.fr/).

Problem: we can’t directly use minimax approx. in a computer since the
coefficients of p can’t be represented on a finite number of bits.

Machine-efficient polynomial approximations 3

http://sollya.gforge.inria.fr/

Truncated Polynomials

Our context: the coefficients of the polynomials must be written on a finite
(imposed) number of bits.

Let m = (mi)0≤i≤n a finite sequence of rational integers. Let

Pmn = {q = q0 + q1x+ · · · + qnx
n ∈ Rn[X]; qi integer multiple of 2−mi,∀i}.

First idea. Remez → p(x) = p0 + p1x+ · · · + pnx
n. Every pi rounded to

âi/2mi, the nearest integer multiple of 2−mi→ p̂(x) =
â0

2m0
+

â1

2m1
x+ · · · +

ân
2mn

xn.

Problem: p̂ not necessarily a minimax approx. of f among the polynomials
of Pmn .

Machine-efficient polynomial approximations 4

Approximation of the function cos over [0, π/4] by a degree-3
polynomial

Maple or Sollya tell us that the polynomial

p = 0.9998864206 + 0.00469021603x− 0.5303088665x2 + 0.06304636099x3

is∼ the best approximant to cos. We have ε = || cos−p||[0,π/4] = 0.0001135879....

We look for a0, a1, a2, a3 ∈ Z such that

max
0≤x≤π/4

∣∣∣cosx−
(a0

212
+
a1

210
x+

a2

26
x2 +

a3

24
x3
)∣∣∣

is minimal.

Machine-efficient polynomial approximations 5

Approximation of the function cos over [0, π/4] by a degree-3
polynomial

Maple or Sollya tell us that the polynomial

p = 0.9998864206 + 0.00469021603x− 0.5303088665x2 + 0.06304636099x3

is∼ the best approximant to cos. We have ε = || cos−p||[0,π/4] = 0.0001135879....

We look for a0, a1, a2, a3 ∈ Z such that

max
0≤x≤π/4

∣∣∣cosx−
(a0

212
+
a1

210
x+

a2

26
x2 +

a3

24
x3
)∣∣∣

is minimal.

The naive approach gives the polynomial p̂ =
212

212
+

5
210

x− 34
26
x2 +

1
24
x3.We

have ε̂ = || cos−p̂||[0,π/4] = 0.00069397....

Machine-efficient polynomial approximations 6

Applications

Two targets:

• specific hardware implementations in low precision (∼ 15 bits). Reduce the
cost (time and silicon area) keeping a correct accuracy;

• single or double IEEE precision software implementations. Get very high
accuracy keeping an acceptable cost (time and memory).

Machine-efficient polynomial approximations 7

Statement of the problem

Let f : [a, b]→ R, n ∈ N, m = (mi)0≤i≤n a finite sequence of rational
integers, p(x) = p0 + p1x+ · · · + pnx

n the minimax approx. of f over [a, b]
(Remez). Let

Pmn =
{
q(x) =

a0

2m0
+

a1

2m1
x+ · · · +

an
2mn

xn; ai ∈ Z,∀i
}
.

Every pi rounded to âi/2mi, the nearest integer multiple of 2−mi →
p̂(x) =

â0

2m0
+

â1

2m1
x+ · · · +

ân
2mn

xn.

Machine-efficient polynomial approximations 8

Statement of the problem

Let f : [a, b]→ R, n ∈ N, m = (mi)0≤i≤n a finite sequence of rational
integers, p(x) = p0 + p1x+ · · · + pnx

n the minimax approx. of f over [a, b]
(Remez). Let

Pmn =
{
q(x) =

a0

2m0
+

a1

2m1
x+ · · · +

an
2mn

xn; ai ∈ Z,∀i
}
.

Every pi rounded to âi/2mi, the nearest integer multiple of 2−mi →
p̂(x) =

â0

2m0
+

â1

2m1
x+ · · · +

ân
2mn

xn.

Let
ε = ||f − p||[a,b] and ε̂ = ||f − p̂||[a,b].

We compare ε to ε̂.

Machine-efficient polynomial approximations 9

Let
ε = ||f − p||[a,b] and ε̂ = ||f − p̂||[a,b].

We compare ε to ε̂.

Given K ∈ [ε, ε̂]. We search for a truncated polynomial
p? ∈ Pmn s.t.

||f − p?||[a,b] = min
q∈Pmn

||f − q||[a,b]

and
||f − p?||[a,b] ≤ K.

Machine-efficient polynomial approximations 10

A first approach

We put p?(x) =
a?0
2m0

+
a?1
2m1

x+ · · · +
a?n
2mn

xn (a?0, . . . , a?n ∈ Z are the unknowns).

1. We find relations satisfied by the a?i ⇒ finite number of candidate
polynomials.

2. If this number is small enough, we perform an exhaustive search:
computation of the norms ||f − q||[a,b], q running among the candidate
polynomials.

Machine-efficient polynomial approximations 11

A tool for realizing this approach: polytopes

Definitions . Let k ∈ N.

A polyhedron is a subset P of Rk s.t. there exists a matrix A ∈Mm,k(R)
and a vector b ∈ Rm (with m ≥ 0) s.t.

P = {x ∈ Rk|Ax ≤ b}.

A polytope is a bounded polyhedron.

A polyhedron (resp. polytope) P is rational if it is defined by a matrix and a
vector with rational coefficients.

Machine-efficient polynomial approximations 12

An example of polyhedron:{(x, y) ∈ R2 : x+ 3y ≤ 2} (half-plane in R2).

Machine-efficient polynomial approximations 13

An example of polyhedron: {(x, y) ∈ R2 : 2x− 3y ≤ 10, x+ 3y ≥ 1} (cone in
R2).

Machine-efficient polynomial approximations 14

An example of polytope.

Machine-efficient polynomial approximations 15

Reminder of the problem

We put
ε = ||f − p||[a,b] and ε̂ = ||f − p̂||[a,b].

We compare ε to ε̂.

Given K ∈ [ε, ε̂]. We search for a truncated polynomial
p? ∈ Pmn s.t.

||f − p?||[a,b] = min
q∈Pmn

||f − q||[a,b]

and
||f − p?||[a,b] ≤ K.

Machine-efficient polynomial approximations 16

For all x ∈ [a, b], we must have

f (x)−K ≤
n∑
i=0

a?i
2mi

xi ≤ f (x) +K, (1)

(a?0, . . . , a?n ∈ Z are the unknowns).

Idea: plug a certain number of points of [a, b] into (1) in order to construct
a polytope P which the points (a?0, . . . , a

?
n) belong to. Then scan the points of

P ∩ Zn+1.

If we want to use algorithmic tools, all the input data should belong to Q.

Machine-efficient polynomial approximations 17

For all x ∈ [a, b], we must have

f (x)−K ≤
n∑
i=0

a?i
2mi

xi ≤ f (x) +K, (2)

(a?0, . . . , a?n ∈ Z are the unknowns).

Let x = r/s with r ∈ Z, s ∈ N. We have

f
(r
s

)
−K ≤

n∑
i=0

a?i
2mi

(r
s

)i
≤ f

(r
s

)
+K.

We choosem(rs) andM(rs) ∈ Q such thatm(rs) ≤ f
(
r
s

)
−K and f

(
r
s

)
+K ≤M(rs),

m(rs) “close” to f
(
r
s

)
−K and M(rs) “close” to f

(
r
s

)
+K.

We plug into (2) d rational numbers from [a, b] (choice is important).

Machine-efficient polynomial approximations 18

We plug into (2) d rational numbers from [a, b] (choice is important).

If d ≥ n+ 1 ⇒ we have a rational polytope whose the integers a?i are
elements.

Perform exhaustive research by scanning the points with integer coordinates
of the polytope.

We can use C libraries (s.t. PIP) designed for efficiently scanning the integer
points of polytopes.

Remark . Gives only candidates (but forgets none of them).

Machine-efficient polynomial approximations 19

Method works over any [a, b].

We must have

f(x)−K ≤
n∑
i=0

a?i
2mi

xi ≤ f(x) +K (3)

for all x ∈ [a, b].

1. Let x1, . . . , xd a finite sequence of Q ∩ [a, b].

2. We plug the xk into (3). We compute rational approx. of the f(xk)−K and
f(xk) +K.

d ≥ n+ 1⇒ we have a rational polytope which the integers a?i belong to.

3. Perform exhaustive search by scanning the points with integer coord. of the
polytope. To do so, we use C libraries (such as PIP) designed for efficiently
scanning the integer points of polytopes.

Machine-efficient polynomial approximations 20

Approximation of the function cos over [0, π/4] by a degree-3
polynomial

Maple or Sollya tell us that the polynomial

p = 0.9998864206 + 0.00469021603x− 0.5303088665x2 + 0.06304636099x3

is∼ the best approximant to cos. We have ε = || cos−p||[0,π/4] = 0.0001135879....

We look for a0, a1, a2, a3 ∈ Z such that

max
0≤x≤π/4

∣∣∣cosx−
(a0

212
+
a1

210
x+

a2

26
x2 +

a3

24
x3
)∣∣∣

is minimal.

The naive approach gives the polynomial p̂ =
212

212
+

5
210

x− 34
26
x2 +

1
24
x3.We

have ε̂ = || cos−p̂||[0,π/4] = 0.00069397....

Machine-efficient polynomial approximations 21

Best approximant:

p? =
4095
212

+
6

210
x− 34

26
x2 +

1
24
x3

which gives a distance to cos, || cos−p?||[0,π/4], equal to 0.0002441406250.

In this example, we gain − log2(0.35) ≈ 1.5 bits of accuracy.

Machine-efficient polynomial approximations 22

The polytope method is flexible!
We can add some constraints (fix values of some coef. for instance) or use

“weighted” infinite norms.

Examples .

• We can restrict our search to odd truncated polynomials
n∑
i=0

a?i
2mi

x2i+1.

• We can restrict our search to truncated polynomials whose constant term is

1, we consider 1 +
n∑
i=1

a?i
2mi

xik.

• We can search for a best truncated polynomial for the relative error
|| · ||rel,[a,b] defined by

||f − p||rel,[a,b] = sup
a≤x≤b

∣∣∣∣p(x)f(x)
− 1
∣∣∣∣ .

Machine-efficient polynomial approximations 23

This method gives a best polynomial for a given sequence of mi.

It should make it possible to tackle with degree-8 or 10 polynomials: this
is nice for hardware-oriented applications but not satisfying for all software-
oriented applications.

Another drawback: we need to have a good insight of the error K.

• if K is underestimated, there won’t be any solution found,

• if K is overestimated, there might be far too many candidates: it becomes
untractable.

We designed a tool for getting a relevant estimate of K.

This tool proved to give more than expected.

Machine-efficient polynomial approximations 24

A second approach through lattice basis reduction

Machine-efficient polynomial approximations 25

A reminder on lattice basis reduction

Definition . Let L be a nonempty subset of Rd, L is a lattice iff there exists a
set of vectors b1, . . . , bk R-linearly independent such that

L = Z.b1 ⊕ · · · ⊕ Z.bk.

(b1, . . . , bk) is a basis of the lattice L.

Examples. Zd, every subgroup of Zd.

Remark . We say that a lattice L is integer (resp. rational) when L ∈ Zd (resp.
Qd).

Machine-efficient polynomial approximations 26

(0, 0) (2, 0)

(1, 2)

The lattice Z(2, 0)⊕ Z(1, 2).

Machine-efficient polynomial approximations 27

Closest vector problem

Problem . (CVP) Given a basis of a rational lattice L and x ∈ Rd, find y ∈ L
s.t. ||x− y|| = dist(x, L).

Associated approximation problem: find y ∈ L \ {0} s.t. ||x− y|| ≤ γ dist(x, L)
where γ ∈ R is fixed.

Emde Boas (1981) : CVP is NP-hard

Machine-efficient polynomial approximations 28

Lenstra-Lenstra-Lovász algorithm

Factoring Polynomials with Rational Coefficients, A. K. LENSTRA, H. W.
LENSTRA AND L. LOVÁSZ, Math. Annalen 261, 515-534, 1982.

Theorem . Let L a lattice of rank k.

LLL provides a basis (b1, . . . , bk) made of “pretty” short vectors. We have
||b1|| ≤ 2(k−1)/2λ1(L) where λ1(L) denotes the norm of a shortest nonzero
vector of L.

LLL terminates in at most O(k6 ln3B) operations with B ≥ ||bi||2 for all i.

Remark . In practice, the returned basis is of better quality and given faster
than expected.

We use an algorithm due to Babai, based on LLL.

Machine-efficient polynomial approximations 29

Absolute error problem

We search for (one of the) best(s) polynomial of the form

p? =
a?0
2m0

+
a?1
2m1

X + · · ·+ a?n
2mn

Xn

(where a?i ∈ Z and mi ∈ Z) that minimizes ‖f − p‖[a, b].

Discretize the continuous problem: we choose x1, · · · , xd points in [a, b]
such that a?0

2m0 + a?1
2m1xi + · · ·+

a?n
2mnx

n
i as close as possible to f(xi) for all

i = 1, . . . , d.

Machine-efficient polynomial approximations 30

That is to say we want the vectors
a?0

2m0 + a?1
2m1x1 + · · ·+ a?n

2mnx
n
1

a?0
2m0 + a?1

2m1x2 + · · ·+ a?n
2mnx

n
2...

a?0
2m0 + a?1

2m1xd + · · ·+ a?n
2mnx

n
d

 and


f(x1)
f(x2)

...
f(xd)


to be as close as possible, which can be rewritten as: we want the vectors

a?0


1

2m0
1

2m0...
1

2m0


︸ ︷︷ ︸

−→v0

+a?1


x1

2m1
x2

2m1...
xd

2m1


︸ ︷︷ ︸

−→v1

+ · · ·+ a?n


xn1

2mn
xn2

2mn...
xnd

2mn


︸ ︷︷ ︸

−→vn

and


f(x1)
f(x2)

...
f(xd)


︸ ︷︷ ︸

−→y

to be as close as possible.

We have to minimize ‖a?0−→v0 + · · ·+ a?n
−→vn −−→y ‖.

Machine-efficient polynomial approximations 31

We have to minimize ‖a?0−→v0 + · · ·+ a?n
−→vn −−→y ‖.

This is a closest vector problem in a lattice !

It is NP-hard : LLL algorithm gives an approximate solution.

Machine-efficient polynomial approximations 32

Focus on the method

We search for (one of the) best(s) polynomial of the form

p? =
a?0
2m0

+
a?1
2m1

X + · · ·+ a?n
2mn

Xn

(where a?i ∈ Z and mi ∈ Z) that minimizes ‖f − p‖[a, b].

Choose d points in [a, b] : x1, · · · , xd.

Our problem is to have a?0
2m0 + a?1

2m1xi + · · ·+
a?n

2mnx
n
i as close as possible to

f(xi) for all i = 1, . . . , d.

Here again, the choice of the points is critical (it relies on some preliminary
computations: linear programming and best polynomial approximation
computation).

Machine-efficient polynomial approximations 33

Floating Point (FP) Arithmetic

Given 
a radix β ≥ 2,
a precision n ≥ 1,
a set of exponents Emin · · ·Emax.

A finite FP number x is represented by 2 integers:

• integer mantissa : M , βn−1 ≤ |M | ≤ βn − 1;

• exponent E, Emin ≤ e ≤ Emax

such that
x =

M

βn−1
× βe.

We call real mantissa, or mantissa of x the number m = M × β1−n, such
that x = m× βe.

We assume binary FP arithmetic (that is to say β = 2.)

Machine-efficient polynomial approximations 34

IEEE precisions

http://babbage.cs.qc.edu/courses/cs341/IEEE-754references.
html

precision minimal exponent maximal exponent
single 24 −126 127
double 53 −1022 1023
extended double 64 −16382 16383
quadruple 113 −16382 16383

Machine-efficient polynomial approximations 35

http://babbage.cs.qc.edu/courses/cs341/IEEE-754references.html
http://babbage.cs.qc.edu/courses/cs341/IEEE-754references.html

Applying our method to Intel’s erf code

erf is defined by erf(x) =
2√
π

∫ x

0

e−t
2
dt for all x ∈ R.

• We looked at Intel’s erf code on the interval [1; 2] : it uses an argument
reduction and the final problem is to approximate erf(x+ 1) on [0; 1] with a
polynomial to obtain an accuracy of 64 bits.

• Intel uses a polynomial of degree 19 with 20 extended-double coefficients.

Machine-efficient polynomial approximations 36

How we can improve it

• We can’t use a smaller degree because even the minimax polynomial of
degree 18 doesn’t provide a sufficient accuracy. But we can reduce the size
of the coefficients.

• We search for polynomials using the most possible number of double
coefficients.

Machine-efficient polynomial approximations 37

Result

We get, almost instantaneously, a polynomial approximant

• with only two extended-double coefficients,

• that provides the same accuracy as the one with 20 extended-double
coefficients, currently used in Intel’s code.

• This leads to smaller tables, faster cache loading time.

Machine-efficient polynomial approximations 38

Summary

• We’ve just seen that our method is able to give us a smaller (in term
of degree and/or size of the coefficients) polynomial providing the same
accuracy.

• But we can also use it to find a much better polynomial (in term of accuracy)
with same precision for the coefficients than the rounded minimax.

• Let’s look at an example from CRLibm.

Machine-efficient polynomial approximations 39

An example from CRlibm

• CRlibm is a library designed to compute correctly rounded functions in an
efficient way (target : IEEE double precision).

http://lipforge.ens-lyon.fr/www/crlibm/

• It uses specific formats such as double-double or triple-double.

• Here is an example we worked on with C. Lauter, and which is used to
compute arcsin(x) on [0.79; 1].

Machine-efficient polynomial approximations 40

http://lipforge.ens-lyon.fr/www/crlibm/

Arcsine function

• After argument reduction we have the problem to approximate

g(z) =
arcsin(1− (z +m))− π

2√
2 · (z +m)

where 0xBFBC28F800009107 ≤ z ≤ 0x3FBC28F7FFFF6EF1 (i.e. approximately
−0.110 ≤ z ≤ 0.110) and m = 0x3FBC28F80000910F ' 0.110.

Machine-efficient polynomial approximations 41

Data

Target accuracy to achieve correct rounding : 2−119.

The minimax of degree 21 is sufficient (error = 2−119.83).

Each approximant is of the form

p0︸︷︷︸
t.d.

+ p1︸︷︷︸
t.d.

x+ p2︸︷︷︸
d.d.

x2 + · · ·︸︷︷︸
···

+ p9︸︷︷︸
d.d.

x9 + p10︸︷︷︸
d.

x10 + · · ·︸︷︷︸
···

+ p21︸︷︷︸
d.

x21

where the pi are either double precision numbers (d.), a sum of two double
precision numbers (d.d.), a sum of two double precision numbers (t.d.).

Figure 1: binary logarithm of the absolute error of several approximants
Target -119
Minimax -119.83
Rounded minimax -103.31
Our polynomial -119.77

Machine-efficient polynomial approximations 42

Exact minimax, rounded minimax, our polynomial

We save 16 bits with our method.

-1e-36
-8e-37
-6e-37
-4e-37
-2e-37

0
2e-37
4e-37
6e-37
8e-37
1e-36

-0.1 -0.05 0 0.05 0.1

A
bs

ol
ut

e
er

ro
r

x

g - Remez’ polynomial

-8e-32

-7e-32

-6e-32

-5e-32

-4e-32

-3e-32

-2e-32

-1e-32

0

1e-32

-0.1 -0.05 0 0.05 0.1

A
bs

ol
ut

e
er

ro
r

x

g - rounded Remez’ polynomial

Machine-efficient polynomial approximations 43

Exact minimax, rounded minimax, our polynomial

We save 16 bits with our method.

-1e-36
-8e-37
-6e-37
-4e-37
-2e-37

0
2e-37
4e-37
6e-37
8e-37
1e-36

-0.1 -0.05 0 0.05 0.1

A
bs

ol
ut

e
er

ro
r

x

g - Remez’ polynomial

-1e-36
-8e-37
-6e-37
-4e-37
-2e-37

0
2e-37
4e-37
6e-37
8e-37
1e-36

-0.1 -0.05 0 0.05 0.1

A
bs

ol
ut

e
er

ro
r

x

g - our polynomial

Machine-efficient polynomial approximations 44

Conclusion

• Two methods which improve the results provided by existing Remez’ based
method.

The first method, based on linear programming, gives a best polynomial
possible (for a given sequence of mi).

The second method, based on lattice basis reduction, much faster and more
efficient than the first one, gives a very good approximant. We use linear
programming to show that the error provided by this approach is tight.

All these tools are or shall be part of the free software Sollya http:
//sollya.gforge.inria.fr/. Sollya is a tool environment for safe
floating-point code development.

• Can be adapted to several kind of coefficients (fixed-point format, multi-
double, classical floating point arithmetic with several precision formats).

Machine-efficient polynomial approximations 45

http://sollya.gforge.inria.fr/
http://sollya.gforge.inria.fr/

Evaluation of elementary functions

exp, ln, cos, sin, arctan,
√

, . . .

Goal: evaluation of ϕ to a given accuracy η.

Step 1. Argument reduction (Payne & Hanek, Ng, Daumas et al): evaluation
of a function ϕ over R or a subset of R is reduced to the evaluation of a function
f over [a, b].

Step 2. Computation of p?, a polynomial “truncated” approximation of f .

Step 3. Computation of a rigorous approximation error ||f − p?||: Sollya (S.
Chevillard, M. Joldes, C. Lauter).

Step 4. Computation of a certified evalutation error of p?: GAPPA (G.
Melquiond).

Machine-efficient polynomial approximations 46

Correctly rounded evaluation of elementary functions

exp, ln, cos, sin, arctan,
√

, . . .

Step 0. Computation of hardest-to-round cases: V. Lefèvre and J.-M. Muller.

Step 1. Argument reduction (Payne & Hanek, Ng, Daumas et al): evaluation
of a function ϕ over R or a subset of R is reduced to the evaluation of a function
f over [a, b].

Step 2. Computation of p?, a polynomial “truncated” approximation of f .

Step 3. Computation of a rigorous approximation error ||f − p?||: Sollya (S.
Chevillard, M. Joldes, C. Lauter).

Step 4. Computation of a certified evalutation error of p?: GAPPA (G.
Melquiond).

Machine-efficient polynomial approximations 47

Future Works

• Multivariate case

• Other bases (filters)

Machine-efficient polynomial approximations 48

	[Title] Machine-efficient polynomial approximations (1)
	 Evaluation of elementary functions (2)
	 Minimax Approximation (3)
	 Truncated Polynomials (4)
	 Approximation of the function cos over [0,/4] by a degree-3 polynomial (5)
	 Approximation of the function cos over [0,/4] by a degree-3 polynomial (6)
	 Applications (7)
	 Statement of the problem (8)
	 Statement of the problem (9)
	 (10)
	 A first approach (11)
	 A tool for realizing this approach: polytopes (12)
	 (13)
	 (14)
	 (15)
	 Reminder of the problem (16)
	 (17)
	 (18)
	 (19)
	 (20)
	 Approximation of the function cos over [0,/4] by a degree-3 polynomial (21)
	 (22)
	 The polytope method is flexible! (23)
	 (24)
	 A second approach through lattice basis reduction (25)
	 A reminder on lattice basis reduction (26)
	 (27)
	 Closest vector problem (28)
	 Lenstra-Lenstra-Lovász algorithm (29)
	 Absolute error problem (30)
	 (31)
	 (32)
	 Focus on the method (33)
	 Floating Point (FP) Arithmetic (34)
	 IEEE precisions (35)
	 Applying our method to Intel's erf code (36)
	 How we can improve it (37)
	 Result (38)
	 Summary (39)
	 An example from CRlibm (40)
	 Arcsine function (41)
	 Data (42)
	 Exact minimax, rounded minimax, our polynomial (43)
	 Exact minimax, rounded minimax, our polynomial (44)
	 Conclusion (45)
	 Evaluation of elementary functions (46)
	 Correctly rounded evaluation of elementary functions (47)
	 Future Works (48)
	 Demo (49)
	 Polytope approach - choice of the points (50)
	 Lattice approach - choice of the points (51)
	 Chebyshev's theorem (52)

