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Padé approximation

Definition

The [L/M] Pade approximant for F(A) = ) % is a ratio
j=0

ALMI(1 /)

L/M _
PR = B )

of polynomials AlL/M BIL/M] of formal degree L, M, respectively,
such that BIYM(0) # 0 and

F(\) — FIEMy = o (M) .
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Padé approximation

Definition

The [L/M] Pade approximant for F(A) = ) % is a ratio
j=0

ALMI(1 /)

L/M _
PR = B )

of polynomials AlL/M BIL/M] of formal degree L, M, respectively,
such that BIE/Ml(0) +# 0 and

F(\) — FIEMy = o (M) .

In the case when L = M = n, the [n/n] Padé approximant is
called the nth diagonal Padé approximant.
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Padé approximation

Definition

The [L/M] Pade approximant for F(A) = ) % is a ratio
j=0

ALMI(1 /)

L/M _
PR = B )

of polynomials AlL/M BIL/M] of formal degree L, M, respectively,
such that BIE/Ml(0) +# 0 and

F(\) — FIEMy = o (M) .

In the case when L = M = n, the [n/n] Padé approximant is
called the nth diagonal Padé approximant.

The existence of PA is due to the Padé theorem

Maxim Derevyagin



The definition of PA
Generalized Nevanlinna functions
The Schur algorithm

Let us consider

Padé approximation

1 11
F)=Al(1-1)=1-gitg5— A=oo
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Padé approximation

Example

Let us consider

1 11
F(A)_Aln<1—)\>—1—2)\+3)\2—..., A — 00.

Then . :
[1/0] —1_ - _ _
F (A =1 o) F()\)—I—O()\z),
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Padé approximation

Example

Let us consider

1 1 1
F(A):Aln<1—>:1—+—--., A — 00.

A 2\ ' 3X2
Then
FO/O() =1 — 217 = F(\)+O (;) ,
FOlN = —FM+0 <12> ,
145 ok A
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The Schur algorithm

|
9

Example
Let us consider

1 11
F(A)_Aln<1—)\>—1—2)\+3)\2—..., A — 00.

Then : .
FO/O() =1 — oy =F)+0 <A2>
Fory = 1 _F+o <1> ,
1+ 5 A2
144 1
FO/ ) ‘5/\:F)\ -|-O<>.
(A) = 112 (A) 33
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imation

Theorem (A.Markov, 1895)

Let o be a nonnegative measure on [—1,1],

L (o
F(A):&::/1?_(?,

Then the [n/n] Pade approximants for F exist for every n € N
and converge to F locally uniformly in C\ [-1,1].
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Padé approximation

Theorem (A.Markov, 1895)

Let o be a nonnegative measure on [—1,1],

L (o
F(A):&::/1 A0

Then the [n/n] Pade approximants for F exist for every n € N
and converge to F locally uniformly in C\ [-1,1].

| \

Remark

In the case where suppo = [—1,a] U [, 1], there are examples
which show that there is no uniform convergence in the gap

(o, B) (A. Markov).

Maxim Derevyagin



The definition of PA
Generalized Nevanlinna functions
The Schur algorithm

Padé approximation




The definition of PA
Generalized Nevanlinna functions
The Schur algorithm

Padé approximation




The definition of PA
Generalized Nevanlinna functions
The Schur algorithm

Padé approximation

0 an
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ao bo ap bo 0
J=| b a Jo = | by
0 an

Proof.

FOMO) = (o =N "ee) , = ((U=NTee) , = F()

where €:=¢eg=(100...)".
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The Schur algorithm

Let us consider a rational perturbation of a Markov function

bd
w(t
0 =n0) [ 4D 10y
a
where p is a positive Borel measure, r{ = qy /w1 is a rational
function, nonnegative for A € R (deg gy < degwq), and > is a
proper rational function.
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Padé approximation

Let us consider a rational perturbation of a Markov function

bd
w(t
0 =n0) [ 4D 10y
a
where p is a positive Borel measure, r{ = qy /w1 is a rational
function, nonnegative for A € R (deg gy < degwq), and > is a
proper rational function.

So S1 Sn

QO(A):_T_F_"'_W_ IA| > R.
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Padé approximation

Let us consider a rational perturbation of a Markov function

bd
w(t
0 =n0) [ 4D 10y
a
where p is a positive Borel measure, r{ = qy /w1 is a rational
function, nonnegative for A € R (deg gy < degwq), and > is a
proper rational function.

I\l > R.

Let Sp:= (Sitj)]j—o- It was shown by M.G. Krein and H. Langer
that the number of the negative eigenvalues
v(Sp) = k for all n large enough
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Padé approximation

Let us consider a rational perturbation of a Markov function

bd
w(t
0 =n0) [ 4D 10y
a
where p is a positive Borel measure, r{ = qy /w1 is a rational
function, nonnegative for A € R (deg gy < degwq), and > is a
proper rational function.

sO(A):_i_i_..._An_H—... ‘)\‘>R

Let Sp:= (Sitj)]j—o- It was shown by M.G. Krein and H. Langer
that the number of the negative eigenvalues

v(Sp) = k for all n large enough
(either det S, = 0 for n > N or all det S, n > N are of constant
sign)




pproximation A .
I >vanlinna functions

The Schur algorithm

Let g be a function in question and let n be such that
det S, # 0 (¢o € Ny).
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The Schur algorithm

Let g be a function in question and let n be such that
det S, # 0 (¢o € Ny).

) = =% == s+ 0 (k) (o).
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Padé approximation = A A .
Pr Generalized Nevanlinna functions

The Schur algorithm

Let g be a function in question and let n be such that
det S, # 0 (¢o € Ny).

) = =% == s+ 0 (k) (o).

o Let ny be the smallest natural number j such that

detS;_1 #0.

Maxim Derevy



The definition of PA
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The Schur algorithm

Let g be a function in question and let n be such that
det S, # 0 (¢o € Ny).

po)=-F-F -~ rolak) (o) |

o Let ny be the smallest natural number j such that
detS;_1 #0.

o There exist a monic polynomial py of degree kg = ny and a

function ¢q € NN_V(Sn171) such that
1 2
— = eoPo(A) + b§p1(A), by > 0, gg = £1.
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The Schur algorithm

Let g be a function in question and let n be such that

det S, # 0 (¢o € Ny).

g =-F-F- B rolak) (o) |

o Let ny be the smallest natural number j such that
detS;_1 #0.

o There exist a monic polynomial py of degree kg = ny and a
function ¢q € NN_V(Sn171) such that

v
®o(A)

Moreover, we have

= g0Po(N) + B§p1(N), bo >0, g9 = £1.

(1)
s 8 S2(n—ny) 1

#1 ()\) = _OT T2 T T N2 T ()\2("—"1)+1> ()\—>OO) ’
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The Schur algorithm

Let ny < n> < ... be all the normal indices of the matrix
Sn = (Si+))fj=o that is numbers j € N with the property
detS;_1 # 0 and let x; = I/(Snj+1,1).
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The Schur algorithm

Let ny < n> < ... be all the normal indices of the matrix
Sn = (Si+))fj=o that is numbers j € N with the property
detS;_1 # 0 and let x; = I/(Snj+1,1).

i
pi(AN) + b o1 (M)

pi(A) = —
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The Schur algorithm

Let ny < n> < ... be all the normal indices of the matrix
Sn = (Si+))fj=o that is numbers j € N with the property
detS;_1 # 0 and let x; = I/(Snj+1,1).

E; Ej

#i(A) =~ ’ 0 -5
! pi(N) +gibpi1(N) Wi =1 _, s®)
B ~p;
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The Schur algorithm

Let ny < n> < ... be all the normal indices of the matrix
Sn = (Si+))fj=o that is numbers j € N with the property
detS;_1 # 0 and let x; = I/(Snj+1,1).

E; Ej
#iN) = - ’ ° 3

! pi(N) +gibpi1(N) Wi =1 _, s®)
B ~p;

Yj1 € Nﬁ,y(snj_”, degp; = njy1 —nj, e =£1, ;> 0.
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Padé approximation - A A .
Pr Generalized Nevanlinna functions

The Schur algorithm

Let ny < n> < ... be all the normal indices of the matrix
Sn = (Si+))fj=o that is numbers j € N with the property
detS;_1 # 0 and let x; = I/(Snj+1,1).

gj 0 _&
b.
pi(N) +gibpi1(N) Wi(A) = <€_b_ pj(Aj)>
1%~

pi(A) = —

Yj1 € Nﬁ,y(snj_”, degp; = njy1 —nj, e =£1, ;> 0.

_ €0 80£1bg €N,18Nb,r‘;l_1
po(A) — p1(A) — - = pn(A) -
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Padé approximation - A A .
Pr Generalized Nevanlinna functions

The Schur algorithm

Let ny < n> < ... be all the normal indices of the matrix
Sn = (Si+))fj=o that is numbers j € N with the property
detS;_1 # 0 and let x; = I/(Snj+1,1).

Ej &)
i(A) = — y 0 -5
! Pi(A) + b7 pj1(N) Wi =1 _, pe)
™7 b;
Yj1 € Nﬁ,y(snj_”, degp; = njy1 —nj, e =£1, ;> 0.
_ €0 E0E1 bg €N,18Nb,r‘;l_1
po(A) — pi(A) — - = pn(A) -
degpj=1andegj=1forj>N J
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PA for definitizable functions

Generalized Jacobi matrices

Let p(A) = pxAX + --- 4+ p1 A + po be a monic polynomial of
degree k (i.e. px = 1). The companion matrix Cp for p has the
following form




Generalized Jacobi matrices

Let p(A) = pxAX + --- 4+ p1 A + po be a monic polynomial of
degree k (i.e. px = 1). The companion matrix Cp for p has the
following form

0O ... 0 —Po
1 0 -—p




xJM

. . . >/ g >d Nevanlinna functions
Generalized Jacobi matrices S = . .
A for definitizable functions

Let p(A) = pxAX + --- 4+ p1 A + po be a monic polynomial of
degree k (i.e. px = 1). The companion matrix Cp for p has the
following form

0 0 —po
1 0o -

Cp = P1
0 L

It is well known that det(A — Cp) = p()) and the spectrum
o(Cp) of Cp is simple.
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Generalized Jacobi matrices

Let p; be monic real polynomials of degree k; and let ¢ = &1,
b; > 0 (j € Z4). Denote b; := ejej1b;.
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Generalized Jacobi matrices

Let p; be monic real polynomials of degree k; and let ¢ = &1,
b; > 0 (j € Z4). Denote b; := ejej1b;.
Ay Bo 0
By Ay B
By A

H =




d Nevanlinna functions

Generalized Jacobi matrices . .
> functions

Let p; be monic real polynomials of degree k; and let ¢ = &1,

b; > 0 (j € Z ). Denote Bj = gjej1by).

Ay By 0
By A B
H =
By A
0
where A; = Cpi is the companion matrix for p; J
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Generalized Jacobi matrices

Let p; be monic real polynomials of degree k; and let ¢ = &1,

b; > 0 (j € Z ). Denote Bj = gjej1by).

Ay B 0
By Ay B
H =
By A
0
where A; = CP/‘ is the companion matrix for p; J

0 b; _ 0 b;
Bi={.......... =




Prope

PA for gene 1 Nevanlinna functions

Generalized Jacobi matrices PA for definitizable functions

Definition

Ay B 0
By A

A B 0
Hijooy= B A1 | Hoj=

0 0 B 1 A




d Nevanlinna functions
> functions

Generalized Jacobi matrices

. By A
Hjo) = | Bi At | Hog=|° 7" .
LB
0 0 B: A

Remark. In the context of indefinite moment problems,
generalized Jacobi matrices were considered by M.G. Krein and
H. Langer (1979).
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Generalized Jacobi matrices

$0,00) == 5[20’00) provided with the indefinite inner product

[Xv y] = (Gx’y)£[20,oo)




Propert of GIM

PA for genc zed Nevanlinna functions

Generalized Jacobi matrices iy . .
- N PA for definitizable functions

$0,00) == 5[20’00) provided with the indefinite inner product

.yl = (G g

Hio,) is bounded and self-adjoint in g -




Properties of G

PA for generalized Nevanlinna functions

Generalized Jacobi matrices oG . .
- - PA for definitizable functions

$0,00) == Efo’m) provided with the indefinite inner product

.yl = (G g

Hio,) is bounded and self-adjoint in g - J

Def. Mg »)(A) = [(Hjo,00) — A) '€, €] is called the m-function of
GJIM Hj ); here e := (10. )T

Maxim Derev



Properties of GIM

PA for generalized Nevanlinna functions

Generalized Jacobi matrices oG . .
- - PA for definitizable functions

$0,00) == Efo’m) provided with the indefinite inner product

1 = (Gx. V),

Hio,) is bounded and self-adjoint in g - J

Def. Mg »)(A) = [(Hjo,00) — A) '€, €] is called the m-function of
GJIM Hj ); here e := (10. )T

Proposition (M.D., V.Derkach, 2004)

Let Hjp,«) be a bounded self-adjoint GJM . Then the
m-function Mg () € Ni, where x = v/(G). Moreover, in this

case we have that s; = [H{O o) & e}

Maxim Derevyagin
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Generalized Jacobi matrices PA for definitizable functions

Proposition (M.D., V.Derkach, 2004).
The m-functions of Hjj ) and Hjj 1 ) are related by

Ej
Pi(N) + €ibE M1 00)(A)

Mpio)(N) = )




¢ lized Nevanlinna functions
PA for definitizable functions

Generalized Jacobi matrices

Proposition (M.D., V.Derkach, 2004).
The m-functions of Hjj ) and Hjj 1 ) are related by
_ °j

Pi(A) + b2 M1 o) (A)

Moy (N) = (e Zy).

Theorem (M.D., V.Derkach, 2004)

Let m(-) be an N.-function in question. Then there exists a
GJM Hyg ) with the m-function proportional to m(-).
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Generalized Jacobi matrices PA for definitizable functions

Let ¢ be a function in question.




Properties of (

PA for gener d Nevanlinna functions

Generalized Jacobi matrices e . .
A for definitizable functions

Let ¢ be a function in question.

Proposition

The rational function
fl/m(\) = myp;_4(A) = |(Hpj—11 — \) 'e,e| e:=(10...0)7

is the [n;/n;] Padé approximant for .
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Generalized Jacobi matrices PA for definitizable functions

Let ¢ be a function in question.

Proposition

The rational function
A/m(\) = mpg j_y(A) = [(H[OJ_H ~A) e, e} e:=(10...0)7

is the [n;/n;] Padé approximant for .

o(\) = {(H—)\)*1e, e] e:=(10...)7
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PA for generalized Nevanlinna functions
PA

Generalized Jacobi matrices oG . .
for definitizable functions

Let ¢ be a function in question.

Proposition

The rational function
A/m(\) = mpg j_y(A) = [(H[OJ_H ~A) e, e} e:=(10...0)7

is the [n;/n;] Padé approximant for .

o(\) = {(H—)\)*1e, e] e:=(10...)7

(Hog—N""¢=>(H-X)""¢ as j—oo, ¢el
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Generalized Jacobi matrices e . .
or definitizable functions

Theorem (M.D., V.Derkach, 2007)
Let ¢ have the following form

b
o) =) [ 4 ),

where p is a positive measure, r{ = g /wq is a rational function,
nonnegative for A € R\ P(ry) (deg gy < degwy), and r» is a real
rational proper function. Then the diagonal Padé approximants
for ¢ converge to ¢ locally uniformly in C\ ([a, b] [JP(¥)).
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PA f

Generalized Jacobi matrices e . .
or definitizable functions

Theorem (M.D., V.Derkach, 2007)
Let ¢ have the following form

b
o) =) [ 4 ),

where p is a positive measure, r{ = g /wq is a rational function,
nonnegative for A € R\ P(ry) (deg gy < degwy), and r» is a real
rational proper function. Then the diagonal Padé approximants
for ¢ converge to ¢ locally uniformly in C\ ([a, b] [JP(¥)).

o ry =1, rn = 0: the Markov theorem
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Pro
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PA

perties of GIJM
for generalized Nevanlinna functions
o

Generalized Jacobi matrices f

definitizable functions

Theorem (M.D., V.Derkach, 2007)
Let ¢ have the following form

b
o) =) [ 4 ),

where p is a positive measure, r{ = g /wq is a rational function,
nonnegative for A € R\ P(ry) (deg gy < degwy), and r» is a real
rational proper function. Then the diagonal Padé approximants
for ¢ converge to ¢ locally uniformly in C\ ([a, b] [JP(¥)).

o ry =1, rn = 0: the Markov theorem

e r; =1 and r> does not have poles on [a, b]: the theorem was
proved by E.A. Rakhmanov, 1977.
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PA for deﬁmtlzable functions

Generalized Jacobi matrices

Let us consider the following function

1 12
s(A)=/1‘j'_(?-

where v is a signed measure on [—1,1].
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Generalized Jacobi matrices

Let us consider the following function

1 12
3 = /1 0

where v is a signed measure on [—1,1].

J. Nutall and C.J. Wherry ’78, H. Stahl ’85, A. Magnus ’87,
AL Aptekarev and W. Van Assche 2004.
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PA for definitizable functions

Generalized Jacobi matrices

Let us consider the following function

1 12
3 = /1 0

where v is a signed measure on [—1,1].

J. Nutall and C.J. Wherry ’78, H. Stahl ’85, A. Magnus ’87,
AL Aptekarev and W. Van Assche 2004. The main assumption
is that v is an absolutely continuous signed measure.
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PA for definitizable functions

Generalized Jacobi matrices

Let us consider the following function

1 1%
s = [ 24

where v is a signed measure on [—1,1].

J. Nutall and C.J. Wherry ’78, H. Stahl ’85, A. Magnus ’87,
AL Aptekarev and W. Van Assche 2004. The main assumption
is that v is an absolutely continuous signed measure.

Let a € R be an irrational number and consider the function

% /1 (t + coswa)dt
A R ID\ W

Every point of R is an accumulation point of the set of poles of
the diagonal Padé approximants for §p, H. Stahl ’83.
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Nevanlinna functions
PA for deﬁnltlzable functions

Generalized Jacobi matrices

Let o be a finite nonnegative measure on E = [—-1,a] U [5,1].

s = [ 570

Consider




/ generalized Nevanlinna functions
PA for definitizable functions

Generalized Jacobi matrices

Let o be a finite nonnegative measure on E = [—-1,a] U [5,1].

Consider tdo (1)
o

Lemma (A. Magnus, 1962)

The following relation holds true
Fl=1/n=1 = \FI/n=1(\) 4 5,

where F(\) = /E 70—(2\) and v = /Eda(l‘)
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>roperties of GJM
Generaliond JaoD o o, A for generalized Nevanlinna functions
PA fo

T
r definitizable functions

Let o be a finite nonnegative measure on E = [—-1,a] U [5,1].

Consider tdo (1)
o

Lemma (A. Magnus, 1962)

The following relation holds true
Fl=1/n=1 = \FI/n=1(\) 4 5,

where F()\):/E(;IU()\) andv:/Eda(t)




Properties of GJM
PA for ge uvr:llimwl Nevanlinna functions
definitizable functions

Generalized Jacobi matrices
N - PA fo

Let o be a finite nonnegative measure on E = [—-1,a] U [5,1].

Consider tdo (1)
o

Lemma (A. Magnus, 1962)

The following relation holds true

Fl=1/n=1 = \FI/n=1(\) 4 5,

where F(\) :/ 70— and v = /da

F(A):/Efo;(;) = (=N "e0. ) ,

FIn/n=11 exists if and only if dj_q := det(s,-+j+1)2j‘:11 # 0.

Maxim Derevyagin



t: 1 Nevanlinna functions
PA for definitizable functions

Generalized Jacobi matrices

The operator representation:

. K -
FIm ) = (o =N e ),

where J[(O,,(r)l—1] = J[O,nf1] aF %(, €n_1)€n_1.
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PA for deﬁmtlzable functions

Generalized Jacobi matrices

The operator representation:

. K -
FIm ) = (o =N e ),

where J[(O,,(r)l—1] = J[O,nf1] aF %(, €n_1)€n_1.

Note that 0 € O'(J[((i{g_”).
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PA for deﬁmtlzable functions

Generalized Jacobi matrices

The operator representation:

. K -
FIm ) = (o =N e ),

where J[(O,,(r)l—1] = J[O,nf1] aF %(, €n_1)€n_1.

Note that 0 € O'(J[((i{g_”).

The idea of the operator representation was proposed by
B. Simon, 1998.
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PA for generalized Nevanlinna functions
PA for definitizable functions

Generalized Jacobi matrices

The operator representation:

. K -
FIm ) = (o =N e ),

where J[(O’,(I?l—'l] = J[O,nf1] aF %(, €n_1)€n_1.

Note that 0 € O'(J[((i{g_”).

The idea of the operator representation was proposed by
B. Simon, 1998.

_ 1
I = NS = (N> IOy 1)
A= 80




Properties of GJM
PA for generalized Nevanlinna functions

Generalized Jacobi matrices Sng g
~ sace PA for definitizable functions

Theorem (M.D., V.Derkach, 2008)

Let o be a finite nonnegative measure on E = [—1,a] U [, 1]

(0 € [a, A]), let

5 = /E 2l

Then:

(i) The sequence of [n/n] Padé approximants "7 (d, # 0)
converges to § locally uniformly in C\ ((—o0, o] U [B,0));
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or generalized Nevanlinna functions
r definitizable functions

Generalized Jacobi matrices PA fo

Theorem (M.D., V.Derkach, 2008)

Let o be a finite nonnegative measure on E = [—1,a] U [, 1]

(0 € [a, A]), let o
&(A)z/E tf(k)-

Then:
(i) The sequence of [n/n] Padé approximants "7 (d, # 0)
converges to § locally uniformly in C\ ((—o0, o] U [B,0));
(ii) The sequence of [n/n] Padé approximants converges to §
locally uniformly in C\ ([-1 —&,a] U [3,1 + £] for some

€ > 0 if and only if the sequence Lol is bounded.
dn ) gyz0
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T d Nevanlinna functions
N deﬁnltlzable functions

Generalized Jacobi matrices

Consider the function § of the form

b
50 =r) [T R,

where o is a finite nonnegative measure on [, b] > 0, ; are real
rational functions, such that rj(A) = O(1/A) for X — oo
(J=1,2) and ry(A) is nonnegative for real A.
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. . . PA for generalized Nevanlinna functions
Generalized Jacobi matrices ‘

PA for definitizable functions

Consider the function § of the form

b g
s =y [

+ r2(A),

where o is a finite nonnegative measure on [, b] > 0, ; are real
rational functions, such that rj(A) = O(1/A) for X — oo
(J=1,2) and ry(A) is nonnegative for real A.

Theorem (M.D., V.Derkach, 2008)

(i) The sequence of [n/n] Padé approximants F"™ (d, # 0)
converges to § locally uniformly in C\ (R U P(p)).
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deﬁnitizable functions

Consider the function § of the form

b g
s =y [

where o is a finite nonnegative measure on [, b] > 0, ; are real
rational functions, such that rj(A) = O(1/A) for X — oo
(J=1,2) and ry(A) is nonnegative for real A.

+ r2(A),

Theorem (M.D., V.Derkach, 2008)

(i) The sequence of [n/n] Padé approximants F"™ (d, # 0)
converges to § locally uniformly in C\ (R U P(p)).

d
(ii) If the corresponding sequence { il } is bounded then
n dn#0
the sequence of [n/n] Padé approximants /" (dj, # 0)
converges to § locally uniformly in

C\ ([a—e,b+e]UP(p)) for some € > 0.
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Great thanks for your attention!
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