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Definition

The [L/M] Pade approximant for F (λ) =
∞∑

j=0

sj
λj+1 is a ratio

F [L/M](λ) =
A[L/M](1/λ)
B[L/M](1/λ)

of polynomials A[L/M], B[L/M] of formal degree L, M, respectively,
such that B[L/M](0) 6= 0 and

F (λ)− F [L/M](λ) = O
(

1
λL+M+1

)
.

In the case when L = M = n, the [n/n] Padé approximant is
called the nth diagonal Padé approximant.

The existence of PA is due to the Padé theorem
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Example
Let us consider

F (λ) = λ ln
(

1− 1
λ

)
= 1− 1

2λ
+

1
3λ2 − . . . , λ→∞.

Then
F [1/0](λ) = 1− 1

2λ
= F (λ) + O

(
1
λ2

)
,

F [0/1](λ) =
1

1 + 1
2λ

= F (λ) + O
(

1
λ2

)
,

F [1/1](λ) =
1 + 1

6λ

1 + 2
3λ

= F (λ) + O
(

1
λ3

)
.
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Theorem (A.Markov, 1895)

Let σ be a nonnegative measure on [−1,1],

F (λ) = σ̂ :=

∫ 1

−1

dσ(t)
t − λ

.

Then the [n/n] Pade approximants for F exist for every n ∈ N
and converge to F locally uniformly in C \ [−1,1].

Remark
In the case where suppσ = [−1, α] ∪ [β,1], there are examples
which show that there is no uniform convergence in the gap
(α, β) (A. Markov).
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F (λ) = − 1
λ− a0 −

b2
0

λ− a1 −
b2

1
λ− a2 − · · ·

.

J =


a0 b0

b0 a1
. . .

. . . . . .

 J[0,n] =

 a0 b0 0

b0
. . .

0 an


Proof.

F [n/n](λ) =
(
(J[0,n−1] − λ)−1e,e

)
`2
→
(
(J − λ)−1e,e

)
`2
= F (λ)

where e := e0 = (100 . . . )>.
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Padé approximation
Generalized Jacobi matrices

The definition of PA
Generalized Nevanlinna functions
The Schur algorithm

Let us consider a rational perturbation of a Markov function

ϕ(λ) = r1(λ)

∫ b

a

dµ(t)
t − λ

+ r2(λ)

where µ is a positive Borel measure, r1 = q1/ω1 is a rational
function, nonnegative for λ ∈ R (deg q1 ≤ degω1), and r2 is a
proper rational function.

ϕ(λ) = −s0

λ
− s1

λ2 − · · · −
sn

λn+1 − . . . |λ| > R.

Let Sn := (si+j)
n
i,j=0. It was shown by M.G. Krein and H. Langer

that the number of the negative eigenvalues
ν(Sn) = κ for all n large enough

(either det Sn = 0 for n ≥ N or all det Sn, n ≥ N are of constant
sign)
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Let ϕ0 be a function in question and let n be such that
det Sn 6= 0 (ϕ0 ∈ Nκ).

ϕ0(λ) = −s0
λ −

s1
λ2 − · · · − s2n

λ2n+1 + o
( 1
λ2n+1

)
(λ→∞).

Let n1 be the smallest natural number j such that
det Sj−1 6= 0.
There exist a monic polynomial p0 of degree k0 = n1 and a
function ϕ1 ∈ Nκ−ν(Sn1−1) such that

− 1
ϕ0(λ)

= ε0p0(λ) + b2
0ϕ1(λ), b0 > 0, ε0 = ±1.

Moreover, we have

ϕ1(λ) = −
s(1)0
λ −

s(1)1
λ2 − · · · −

s(1)2(n−n1)

λ2(n−n1)+1 + o
(

1
λ2(n−n1)+1

)
(λ→∞)
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Let n1 < n2 < . . . be all the normal indices of the matrix
Sn = (si+j)

∞
i,j=0 that is numbers j ∈ N with the property

det Sj−1 6= 0 and let κj = ν(Snj+1−1).

ϕj(λ) = −
εj

pj(λ) + εjb2
j ϕj+1(λ) Wj(λ) :=

(
0 − εj

bj

εjbj
pj (λ)

bj

)
ϕj+1 ∈ Nκ−ν(Snj−1), deg pj = nj+1 − nj , εj = ±1, bj > 0.

− ε0

p0(λ) −
ε0ε1b2

0
p1(λ) − · · · −

εN−1εNb2
N−1

pN(λ) − . . . .

deg pj = 1 and εj = 1 for j ≥ N
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PA for generalized Nevanlinna functions
PA for definitizable functions

Let p(λ) = pkλ
k + · · ·+ p1λ+ p0 be a monic polynomial of

degree k (i.e. pk = 1). The companion matrix Cp for p has the
following form

Cp =


0 . . . 0 −p0
1 0 −p1

. . .
...

0 1 −pk−1

 .

It is well known that det(λ− Cp) = p(λ) and the spectrum
σ(Cp) of Cp is simple.
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Definition

H[j,∞) =


Aj B̃j 0

Bj Aj+1
. . .

0
. . . . . .

 ,H[0,j] :=


A0 B̃0 0

B0 A1
. . .

. . . . . . B̃j−1
0 Bj−1 Aj


Remark. In the context of indefinite moment problems,
generalized Jacobi matrices were considered by M.G. Krein and
H. Langer (1979).
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Padé approximation
Generalized Jacobi matrices

Properties of GJM
PA for generalized Nevanlinna functions
PA for definitizable functions

Definition

H[j,∞) =


Aj B̃j 0

Bj Aj+1
. . .

0
. . . . . .

 ,H[0,j] :=


A0 B̃0 0

B0 A1
. . .

. . . . . . B̃j−1
0 Bj−1 Aj


Remark. In the context of indefinite moment problems,
generalized Jacobi matrices were considered by M.G. Krein and
H. Langer (1979).

Maxim Derevyagin
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H[0,∞) := `2[0,∞) provided with the indefinite inner product

[x , y ] = (Gx , y)`2
[0,∞)

H[0,∞) is bounded and self-adjoint in H[0,∞).

Def. m[0,∞)(λ) =
[
(H[0,∞) − λ)−1e,e

]
is called the m-function of

GJM H[0,∞); here e := (10 . . . )>.

Proposition (M.D., V.Derkach, 2004)
Let H[0,∞) be a bounded self-adjoint GJM . Then the
m-function m[0,∞)(·) ∈ Nκ, where κ = ν(G). Moreover, in this

case we have that sj =
[
H j
[0,∞)e,e

]
.
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Proposition (M.D., V.Derkach, 2004).
The m-functions of H[j,∞) and H[j+1,∞) are related by

m[j,∞)(λ) = −
εj

pj(λ) + εjb2
j m[j+1,∞)(λ)

(j ∈ Z+).

Theorem (M.D., V.Derkach, 2004)

Let m(·) be an Nκ-function in question. Then there exists a
GJM H[0,∞) with the m-function proportional to m(·).
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Let ϕ be a function in question.

Proposition
The rational function

f [nj/nj ](λ) = m[0,j−1](λ) =
[
(H[0,j−1] − λ)−1e,e

]
e := (10 . . . 0)>

is the [nj/nj ] Padé approximant for ϕ.

ϕ(λ) =
[
(H − λ)−1e,e

]
e := (10 . . . )>

(H[0,j] − λ)−1φ→ (H − λ)−1φ as j →∞, φ ∈ `2.
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Theorem (M.D., V.Derkach, 2007)
Let ϕ have the following form

ϕ(λ) = r1(λ)

∫ b

a

dµ(t)
t − λ

+ r2(λ),

where µ is a positive measure, r1 = q1/ω1 is a rational function,
nonnegative for λ ∈ R \ P(r1) (deg q1 ≤ degω1), and r2 is a real
rational proper function. Then the diagonal Padé approximants
for ϕ converge to ϕ locally uniformly in C \ ([a,b]

⋃
P(ϕ)).

r1 ≡ 1, r2 ≡ 0: the Markov theorem
r1 ≡ 1 and r2 does not have poles on [a,b]: the theorem was
proved by E.A. Rakhmanov, 1977.
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Let us consider the following function

F(λ) =

∫ 1

−1

dν(t)
t − λ

.

where ν is a signed measure on [−1,1].

J. Nutall and C.J. Wherry ’78, H. Stahl ’85, A. Magnus ’87,
A.I. Aptekarev and W. Van Assche 2004. The main assumption
is that ν is an absolutely continuous signed measure.
Let α ∈ R be an irrational number and consider the function

F0 =

∫ 1

−1

(t + cosπα)dt
(t − λ)

√
1− t2

.

Every point of R is an accumulation point of the set of poles of
the diagonal Padé approximants for F0, H. Stahl ’83.
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Padé approximation
Generalized Jacobi matrices

Properties of GJM
PA for generalized Nevanlinna functions
PA for definitizable functions

Let us consider the following function

F(λ) =

∫ 1

−1

dν(t)
t − λ

.

where ν is a signed measure on [−1,1].

J. Nutall and C.J. Wherry ’78, H. Stahl ’85, A. Magnus ’87,
A.I. Aptekarev and W. Van Assche 2004. The main assumption
is that ν is an absolutely continuous signed measure.
Let α ∈ R be an irrational number and consider the function

F0 =

∫ 1

−1

(t + cosπα)dt
(t − λ)

√
1− t2

.

Every point of R is an accumulation point of the set of poles of
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Let σ be a finite nonnegative measure on E = [−1, α] ∪ [β,1].
Consider

F(λ) =

∫
E

tdσ(t)
t − λ

.

Lemma (A. Magnus, 1962)
The following relation holds true

F[n−1/n−1] = λF [n/n−1](λ) + γ,

where F (λ) =

∫
E

dσ(t)
t − λ

and γ =

∫
E

dσ(t)

F (λ) =

∫
E

dσ(t)
t − λ

=
(
(J − λ)−1e0,e0

)
`2

F [n/n−1] exists if and only if dn−1 := det(si+j+1)
n−1
i,j=1 6= 0.
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The operator representation:

F [n/n−1](λ) =
(
(J(K )

[0,n−1] − λ)
−1e0,e0

)
`2

where J(K )
[0,n−1] = J[0,n−1] +

dn
dn−1

(·,en−1)en−1.

Note that 0 ∈ σ(J(K )
[0,n−1]).

The idea of the operator representation was proposed by
B. Simon, 1998.

‖(J(K )
[0,n−1] − λ)

−1‖ ≤ 1

|λ| − ‖J(K )
[0,n−1]‖

(|λ| > ‖J(K )
[0,n−1]‖)
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Theorem (M.D., V.Derkach, 2008)

Let σ be a finite nonnegative measure on E = [−1, α] ∪ [β,1]
(0 ∈ [α, β]), let

F(λ) =

∫
E

tdσ(t)
t − λ

.

Then:
(i) The sequence of [n/n] Padé approximants F[n/n] (dn 6= 0)

converges to F locally uniformly in C \ ((−∞, α] ∪ [β,∞));
(ii) The sequence of [n/n] Padé approximants converges to F

locally uniformly in C \ ([−1− ε, α] ∪ [β,1 + ε] for some

ε > 0 if and only if the sequence
{

dn+1

dn

}
dn 6=0

is bounded.
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Theorem (M.D., V.Derkach, 2008)

Let σ be a finite nonnegative measure on E = [−1, α] ∪ [β,1]
(0 ∈ [α, β]), let

F(λ) =

∫
E

tdσ(t)
t − λ

.

Then:
(i) The sequence of [n/n] Padé approximants F[n/n] (dn 6= 0)

converges to F locally uniformly in C \ ((−∞, α] ∪ [β,∞));
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Consider the function F of the form

F(λ) = r1(λ)

∫ b

a

tdσ(t)
t − λ

+ r2(λ),

where σ is a finite nonnegative measure on [a,b] 3 0, rj are real
rational functions, such that rj(λ) = O(1/λ) for λ→∞
(j = 1,2) and r1(λ) is nonnegative for real λ.

Theorem (M.D., V.Derkach, 2008)

(i) The sequence of [n/n] Padé approximants F[n/n] (dn 6= 0)
converges to F locally uniformly in C \ (R ∪ P(ϕ)).

(ii) If the corresponding sequence
{

dn+1

dn

}
dn 6=o

is bounded then

the sequence of [n/n] Padé approximants F[n/n] (dn 6= 0)
converges to F locally uniformly in
C \ ([a− ε,b + ε] ∪ P(ϕ)) for some ε > 0.
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the sequence of [n/n] Padé approximants F[n/n] (dn 6= 0)
converges to F locally uniformly in
C \ ([a− ε,b + ε] ∪ P(ϕ)) for some ε > 0.

Maxim Derevyagin
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Great thanks for your attention!
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