On the convergence of Padé approximants to rational perturbations of Markov functions

Maxim Derevyagin

TU Berlin

Sophia Antipolis, June 4, 2010

The
$$[L/M]$$
 Pade approximant for $F(\lambda) = \sum_{j=0}^{\infty} \frac{s_j}{\lambda^{j+1}}$ is a ratio

$$\mathcal{F}^{[L/M]}(\lambda) = rac{\mathcal{A}^{[L/M]}(1/\lambda)}{\mathcal{B}^{[L/M]}(1/\lambda)}$$

of polynomials $A^{[L/M]},\,B^{[L/M]}$ of formal degree $L,\,M,$ respectively, such that $B^{[L/M]}(0)\neq 0$ and

$${m F}(\lambda)-{m F}^{[L/M]}(\lambda)=O\left(rac{1}{\lambda^{L+M+1}}
ight)$$
 ,

In the case when L = M = n, the [n/n] Padé approximant is called the *n*th diagonal Padé approximant.

The existence of PA is due to the Padé theorem

The
$$[L/M]$$
 Pade approximant for $F(\lambda) = \sum_{j=0}^{\infty} \frac{s_j}{\lambda^{j+1}}$ is a ratio

$${\cal F}^{[L/M]}(\lambda)=rac{{\cal A}^{[L/M]}(1/\lambda)}{{\cal B}^{[L/M]}(1/\lambda)}$$

of polynomials $A^{[L/M]},\,B^{[L/M]}$ of formal degree $L,\,M,$ respectively, such that $B^{[L/M]}(0)\neq 0$ and

$${m F}(\lambda)-{m F}^{[L/M]}(\lambda)=O\left(rac{1}{\lambda^{L+M+1}}
ight).$$

In the case when L = M = n, the [n/n] Padé approximant is called the *n*th diagonal Padé approximant.

The existence of PA is due to the Padé theorem

The
$$[L/M]$$
 Pade approximant for $F(\lambda) = \sum_{j=0}^{\infty} \frac{s_j}{\lambda^{j+1}}$ is a ratio

$${\cal F}^{[L/M]}(\lambda)={A^{[L/M]}(1/\lambda)\over B^{[L/M]}(1/\lambda)}$$

of polynomials $A^{[L/M]},\,B^{[L/M]}$ of formal degree $L,\,M,$ respectively, such that $B^{[L/M]}(0)\neq 0$ and

$${m F}(\lambda)-{m F}^{[L/M]}(\lambda)=O\left(rac{1}{\lambda^{L+M+1}}
ight).$$

In the case when L = M = n, the [n/n] Padé approximant is called the *n*th diagonal Padé approximant.

The existence of PA is due to the Padé theorem

Maxim Derevyagin

500

臣

Example

Let us consider

$$F(\lambda) = \lambda \ln \left(1 - rac{1}{\lambda}
ight) = 1 - rac{1}{2\lambda} + rac{1}{3\lambda^2} - \dots, \quad \lambda o \infty.$$

$$F^{[1/0]}(\lambda) = 1 - \frac{1}{2\lambda} = F(\lambda) + O\left(\frac{1}{\lambda^2}\right),$$

$$F^{[0/1]}(\lambda) = \frac{1}{1 + \frac{1}{2\lambda}} = F(\lambda) + O\left(\frac{1}{\lambda^2}\right),$$

$$F^{[1/1]}(\lambda) = \frac{1 + \frac{1}{6\lambda}}{1 + \frac{2}{3\lambda}} = F(\lambda) + O\left(\frac{1}{\lambda^3}\right).$$

æ

Example

Let us consider

$$F(\lambda) = \lambda \ln\left(1 - \frac{1}{\lambda}\right) = 1 - \frac{1}{2\lambda} + \frac{1}{3\lambda^2} - \dots, \quad \lambda \to \infty.$$

$$F^{[1/0]}(\lambda) = 1 - rac{1}{2\lambda} = F(\lambda) + O\left(rac{1}{\lambda^2}
ight),$$

$$F^{[0/1]}(\lambda) = \frac{1}{1 + \frac{1}{2\lambda}} = F(\lambda) + O\left(\frac{1}{\lambda^2}\right),$$
$$F^{[1/1]}(\lambda) = \frac{1 + \frac{1}{6\lambda}}{1 + \frac{2}{3\lambda}} = F(\lambda) + O\left(\frac{1}{\lambda^3}\right).$$

æ

Example

Let us consider

$$F(\lambda) = \lambda \ln\left(1 - \frac{1}{\lambda}\right) = 1 - \frac{1}{2\lambda} + \frac{1}{3\lambda^2} - \dots, \quad \lambda \to \infty.$$

$$F^{[1/0]}(\lambda) = 1 - \frac{1}{2\lambda} = F(\lambda) + O\left(\frac{1}{\lambda^2}\right),$$

$$F^{[0/1]}(\lambda) = \frac{1}{1 + \frac{1}{2\lambda}} = F(\lambda) + O\left(\frac{1}{\lambda^2}\right),$$

$$F^{[1/1]}(\lambda) = \frac{1 + \frac{1}{6\lambda}}{1 + \frac{2}{3\lambda}} = F(\lambda) + O\left(\frac{1}{\lambda^3}\right).$$

æ

Example

Let us consider

$$F(\lambda) = \lambda \ln\left(1 - \frac{1}{\lambda}\right) = 1 - \frac{1}{2\lambda} + \frac{1}{3\lambda^2} - \dots, \quad \lambda \to \infty.$$

$$F^{[1/0]}(\lambda) = 1 - \frac{1}{2\lambda} = F(\lambda) + O\left(\frac{1}{\lambda^2}\right),$$

$$F^{[0/1]}(\lambda) = \frac{1}{1 + \frac{1}{2\lambda}} = F(\lambda) + O\left(\frac{1}{\lambda^2}\right),$$

$$F^{[1/1]}(\lambda) = \frac{1 + \frac{1}{6\lambda}}{1 + \frac{2}{3\lambda}} = F(\lambda) + O\left(\frac{1}{\lambda^3}\right).$$

《口》 《卽》 《臣》 《臣》

Theorem (A.Markov, 1895)

Let σ be a nonnegative measure on [-1, 1],

$$F(\lambda) = \widehat{\sigma} := \int_{-1}^{1} \frac{d\sigma(t)}{t-\lambda}.$$

Then the [n/n] Pade approximants for F exist for every $n \in \mathbb{N}$ and converge to F locally uniformly in $\mathbb{C} \setminus [-1, 1]$.

Remark

In the case where supp $\sigma = [-1, \alpha] \cup [\beta, 1]$, there are examples which show that there is no uniform convergence in the gap (α, β) (A. Markov).

《曰》 《聞》 《臣》 《臣》

Theorem (A.Markov, 1895)

Let σ be a nonnegative measure on [-1, 1],

$$F(\lambda) = \widehat{\sigma} := \int_{-1}^{1} \frac{d\sigma(t)}{t-\lambda}.$$

Then the [n/n] Pade approximants for F exist for every $n \in \mathbb{N}$ and converge to F locally uniformly in $\mathbb{C} \setminus [-1, 1]$.

Remark

In the case where $\operatorname{supp} \sigma = [-1, \alpha] \cup [\beta, 1]$, there are examples which show that there is no uniform convergence in the gap (α, β) (A. Markov).

The definition of PA Generalized Nevanlinna functions The Schur algorithm

.

æ

$$F(\lambda) = -\frac{1}{\lambda - a_0} - \frac{b_0^2}{\lambda - a_1} - \frac{b_1^2}{\lambda - a_2} - \cdots$$

Proof.

$$F^{[n/n]}(\lambda) = \left((J_{[0,n-1]} - \lambda)^{-1} e, e \right)_{\ell^2} \to \left((J - \lambda)^{-1} e, e \right)_{\ell^2} = F(\lambda)$$
where $e := e_0 = (100 \dots)^{\top}$.

The definition of PA Generalized Nevanlinna functions The Schur algorithm

.

$$F(\lambda) = -\frac{1}{\lambda - a_0} - \frac{b_0^2}{\lambda - a_1} - \frac{b_1^2}{\lambda - a_2} - \cdots$$

Proof.

$$F^{[n/n]}(\lambda) = \left((J_{[0,n-1]} - \lambda)^{-1} e, e \right)_{\ell^2} \to \left((J - \lambda)^{-1} e, e \right)_{\ell^2} = F(\lambda)$$

where $e := e_0 = (100...)^+$.

The definition of PA Generalized Nevanlinna functions The Schur algorithm

.

< □ > < @ > < 注 > < 注 > ... 注

$$F(\lambda) = -\frac{1}{\lambda - a_0} - \frac{b_0^2}{\lambda - a_1} - \frac{b_1^2}{\lambda - a_2} - \cdots$$

Proof.

$$F^{[n/n]}(\lambda) = \left((J_{[0,n-1]} - \lambda)^{-1} e, e \right)_{\ell^2} \to \left((J - \lambda)^{-1} e, e \right)_{\ell^2} = F(\lambda)$$

where $e := e_0 = (100...)^+$.

The definition of PA Generalized Nevanlinna functions The Schur algorithm

.

(日) (四) (日) (日) (日)

E

$$F(\lambda) = -\frac{1}{\lambda - a_0} - \frac{b_0^2}{\lambda - a_1} - \frac{b_1^2}{\lambda - a_2} - \cdots$$

Proof.

$$F^{[n/n]}(\lambda) = \left((J_{[0,n-1]} - \lambda)^{-1} \boldsymbol{e}, \boldsymbol{e} \right)_{\ell^2} \to \left((J - \lambda)^{-1} \boldsymbol{e}, \boldsymbol{e} \right)_{\ell^2} = F(\lambda)$$

where $e := e_0 = (100...)^{\top}$.

Let us consider a rational perturbation of a Markov function

$$\varphi(\lambda) = r_1(\lambda) \int_a^b \frac{d\mu(t)}{t-\lambda} + r_2(\lambda)$$

where μ is a positive Borel measure, $r_1 = q_1/\omega_1$ is a rational function, nonnegative for $\lambda \in \mathbb{R}$ (deg $q_1 \leq \deg \omega_1$), and r_2 is a proper rational function.

$$\varphi(\lambda) = -\frac{s_0}{\lambda} - \frac{s_1}{\lambda^2} - \dots - \frac{s_n}{\lambda^{n+1}} - \dots \quad |\lambda| > R.$$

Let $S_n := (s_{i+j})_{i,j=0}^n$. It was shown by M.G. Krein and H. Langer that the number of the negative eigenvalues $\nu(S_n) = \kappa$ for all n large enough (either det $S_n = 0$ for $n \ge N$ or all det S_n , $n \ge N$ are of constant sign)

Let us consider a rational perturbation of a Markov function

$$\varphi(\lambda) = r_1(\lambda) \int_a^b \frac{d\mu(t)}{t-\lambda} + r_2(\lambda)$$

where μ is a positive Borel measure, $r_1 = q_1/\omega_1$ is a rational function, nonnegative for $\lambda \in \mathbb{R}$ (deg $q_1 \leq \deg \omega_1$), and r_2 is a proper rational function.

$$\varphi(\lambda) = -\frac{s_0}{\lambda} - \frac{s_1}{\lambda^2} - \cdots - \frac{s_n}{\lambda^{n+1}} - \ldots \quad |\lambda| > R.$$

Let $S_n := (s_{i+j})_{i,j=0}^n$. It was shown by M.G. Krein and H. Langer that the number of the negative eigenvalues $\nu(S_n) = \kappa$ for all n large enough (either det $S_n = 0$ for $n \ge N$ or all det S_n , $n \ge N$ are of constant sign)

Let us consider a rational perturbation of a Markov function

$$\varphi(\lambda) = r_1(\lambda) \int_a^b \frac{d\mu(t)}{t-\lambda} + r_2(\lambda)$$

where μ is a positive Borel measure, $r_1 = q_1/\omega_1$ is a rational function, nonnegative for $\lambda \in \mathbb{R}$ (deg $q_1 \leq \deg \omega_1$), and r_2 is a proper rational function.

$$\varphi(\lambda) = -\frac{s_0}{\lambda} - \frac{s_1}{\lambda^2} - \cdots - \frac{s_n}{\lambda^{n+1}} - \ldots \quad |\lambda| > R.$$

Let $S_n := (s_{i+j})_{i,j=0}^n$. It was shown by M.G. Krein and H. Langer that the number of the negative eigenvalues $\nu(S_n) = \kappa$ for all *n* large enough (either det $S_n = 0$ for $n \ge N$ or all det S_n , $n \ge N$ are of constant sign)

Let us consider a rational perturbation of a Markov function

$$\varphi(\lambda) = r_1(\lambda) \int_a^b \frac{d\mu(t)}{t-\lambda} + r_2(\lambda)$$

where μ is a positive Borel measure, $r_1 = q_1/\omega_1$ is a rational function, nonnegative for $\lambda \in \mathbb{R}$ (deg $q_1 \leq \deg \omega_1$), and r_2 is a proper rational function.

$$\varphi(\lambda) = -\frac{s_0}{\lambda} - \frac{s_1}{\lambda^2} - \cdots - \frac{s_n}{\lambda^{n+1}} - \ldots \quad |\lambda| > R.$$

Let $S_n := (s_{i+j})_{i,j=0}^n$. It was shown by M.G. Krein and H. Langer that the number of the negative eigenvalues $\nu(S_n) = \kappa$ for all *n* large enough

(either det $S_n = 0$ for $n \ge N$ or all det S_n , $n \ge N$ are of constant sign)

Let φ_0 be a function in question and let n be such that det $S_n \neq 0$ ($\varphi_0 \in \mathbf{N}_{\kappa}$).

$\varphi_{0}(\lambda) = -\frac{s_{0}}{\lambda} - \frac{s_{1}}{\lambda^{2}} - \dots - \frac{s_{2n}}{\lambda^{2n+1}} + O\left(\frac{1}{\lambda^{2n+1}}\right) \quad (\lambda \rightarrow \infty).$

- Let n_1 be the smallest natural number j such that $\det S_{j-1} \neq 0$.
- There exist a monic polynomial p_0 of degree $k_0 = n_1$ and a function $\varphi_1 \in \mathbb{N}_{\kappa-\nu(S_{n_1-1})}$ such that

$$-rac{1}{arphi_0(\lambda)}=arepsilon_0p_0(\lambda)+b_0^2arphi_1(\lambda),\quad b_0>0,\ arepsilon_0=\pm1.$$

Moreover, we have

$$\varphi_{1}(\lambda) = -\frac{s_{0}^{(1)}}{\lambda} - \frac{s_{1}^{(1)}}{\lambda^{2}} - \dots - \frac{s_{2(n-n_{1})}^{(1)}}{\lambda^{2(n-n_{1})+1}} + O\left(\frac{1}{\lambda^{2(n-n_{1})+1}}\right) \quad (\lambda \to \infty)$$

Let φ_0 be a function in question and let n be such that det $S_n \neq 0$ ($\varphi_0 \in \mathbf{N}_{\kappa}$).

$$arphi_0(\lambda) = -rac{s_0}{\lambda} - rac{s_1}{\lambda^2} - \cdots - rac{s_{2n}}{\lambda^{2n+1}} + o\left(rac{1}{\lambda^{2n+1}}
ight) \quad (\lambda {
ightarrow} \infty).$$

- Let n_1 be the smallest natural number j such that det $S_{j-1} \neq 0$.
- There exist a monic polynomial p_0 of degree $k_0 = n_1$ and a function $\varphi_1 \in \mathbb{N}_{\kappa-\nu(S_{n_1-1})}$ such that

$$-rac{1}{arphi_0(\lambda)}=arepsilon_0p_0(\lambda)+b_0^2arphi_1(\lambda),\quad b_0>0,\ arepsilon_0=\pm1.$$

Moreover, we have

$$\varphi_1(\lambda) = -\frac{s_0^{(1)}}{\lambda} - \frac{s_1^{(1)}}{\lambda^2} - \dots - \frac{s_{2(n-n_1)}^{(1)}}{\lambda^{2(n-n_1)+1}} + O\left(\frac{1}{\lambda^{2(n-n_1)+1}}\right) \quad (\lambda \to \infty)$$

Let φ_0 be a function in question and let n be such that det $S_n \neq 0$ ($\varphi_0 \in \mathbf{N}_{\kappa}$).

$$\varphi_0(\lambda) = -\frac{s_0}{\lambda} - \frac{s_1}{\lambda^2} - \cdots - \frac{s_{2n}}{\lambda^{2n+1}} + o\left(\frac{1}{\lambda^{2n+1}}\right) \quad (\lambda \rightarrow \infty).$$

- Let n_1 be the smallest natural number j such that det $S_{j-1} \neq 0$.
- There exist a monic polynomial p_0 of degree $k_0 = n_1$ and a function $\varphi_1 \in \mathbb{N}_{\kappa-\nu(S_{n_1-1})}$ such that

$$-rac{1}{arphi_0(\lambda)}=arepsilon_0p_0(\lambda)+b_0^2arphi_1(\lambda),\quad b_0>0,\ arepsilon_0=\pm1.$$

Moreover, we have

$$\varphi_1(\lambda) = -\frac{s_0^{(1)}}{\lambda} - \frac{s_1^{(1)}}{\lambda^2} - \dots - \frac{s_{2(n-n_1)}^{(1)}}{\lambda^{2(n-n_1)+1}} + O\left(\frac{1}{\lambda^{2(n-n_1)+1}}\right) \quad (\lambda \to \infty)$$

Padé approximation Generalized Jacobi matrices The Schur algorithm

Let φ_0 be a function in question and let n be such that det $S_n \neq 0$ ($\varphi_0 \in \mathbf{N}_{\kappa}$).

$$\varphi_0(\lambda) = -\frac{s_0}{\lambda} - \frac{s_1}{\lambda^2} - \cdots - \frac{s_{2n}}{\lambda^{2n+1}} + o\left(\frac{1}{\lambda^{2n+1}}\right) \quad (\lambda \rightarrow \infty).$$

- Let n_1 be the smallest natural number j such that det $S_{j-1} \neq 0$.
- There exist a monic polynomial p_0 of degree $k_0 = n_1$ and a function $\varphi_1 \in \mathbf{N}_{\kappa-\nu(S_{n_1-1})}$ such that

$$-rac{1}{arphi_0(\lambda)}=arepsilon_0p_0(\lambda)+b_0^2arphi_1(\lambda),\quad b_0>0,\ arepsilon_0=\pm1.$$

Moreover, we have

$$\varphi_1(\lambda) = -\frac{s_0^{(1)}}{\lambda} - \frac{s_1^{(1)}}{\lambda^2} - \dots - \frac{s_{2(n-n_1)}^{(1)}}{\lambda^{2(n-n_1)+1}} + O\left(\frac{1}{\lambda^{2(n-n_1)+1}}\right) \quad (\lambda \to \infty)$$

Padé approximation Generalized Jacobi matrices The Schur algorithm

Let φ_0 be a function in question and let n be such that det $S_n \neq 0$ ($\varphi_0 \in \mathbf{N}_{\kappa}$).

$$\varphi_0(\lambda) = -\frac{s_0}{\lambda} - \frac{s_1}{\lambda^2} - \cdots - \frac{s_{2n}}{\lambda^{2n+1}} + o\left(\frac{1}{\lambda^{2n+1}}\right) \quad (\lambda \rightarrow \infty).$$

- Let n_1 be the smallest natural number j such that det $S_{j-1} \neq 0$.
- There exist a monic polynomial p_0 of degree $k_0 = n_1$ and a function $\varphi_1 \in \mathbf{N}_{\kappa-\nu(S_{n_1-1})}$ such that

$$-rac{1}{arphi_0(\lambda)}=arepsilon_0 p_0(\lambda)+b_0^2arphi_1(\lambda), \quad b_0>0, \ arepsilon_0=\pm 1.$$

Moreover, we have

$$\varphi_{1}(\lambda) = -\frac{s_{0}^{(1)}}{\lambda} - \frac{s_{1}^{(1)}}{\lambda^{2}} - \dots - \frac{s_{2(n-n_{1})}^{(1)}}{\lambda^{2(n-n_{1})+1}} + o\left(\frac{1}{\lambda^{2(n-n_{1})+1}}\right) \quad (\lambda \to \infty)$$

$$-\frac{\varepsilon_0}{p_0(\lambda)} - \frac{\varepsilon_0 \varepsilon_1 b_0^2}{p_1(\lambda)} - \cdots - \frac{\varepsilon_{N-1} \varepsilon_N b_{N-1}^2}{p_N(\lambda)} - \cdots$$

deg
$$p_j = 1$$
 and $\varepsilon_j = 1$ for $j \ge N$

$$-\frac{\varepsilon_0}{p_0(\lambda)} - \frac{\varepsilon_0\varepsilon_1b_0^2}{p_1(\lambda)} - \cdots - \frac{\varepsilon_{N-1}\varepsilon_Nb_{N-1}^2}{p_N(\lambda)} - \cdots$$

deg
$$p_j = 1$$
 and $\varepsilon_j = 1$ for $j \ge N$

$$\begin{split} \varphi_{j}(\lambda) &= -\frac{\varepsilon_{j}}{p_{j}(\lambda) + \varepsilon_{j}b_{j}^{2}\varphi_{j+1}(\lambda)} \\ \varphi_{j+1} &\in \mathbf{N}_{\kappa-\nu(S_{n_{j}-1})}, \, \deg p_{j} = n_{j+1} - n_{j}, \, \varepsilon_{j} = \pm 1, \, b_{j} > 0. \end{split}$$

$$-\frac{\varepsilon_0}{p_0(\lambda)} - \frac{\varepsilon_0 \varepsilon_1 b_0^2}{p_1(\lambda)} - \cdots - \frac{\varepsilon_{N-1} \varepsilon_N b_{N-1}^2}{p_N(\lambda)} - \cdots$$

deg
$$p_j = 1$$
 and $\varepsilon_j = 1$ for $j \ge N$

$$-\frac{\varepsilon_0}{p_0(\lambda)} - \frac{\varepsilon_0\varepsilon_1b_0^2}{p_1(\lambda)} - \cdots - \frac{\varepsilon_{N-1}\varepsilon_Nb_{N-1}^2}{p_N(\lambda)} - \cdots$$

deg
$$p_j = 1$$
 and $\varepsilon_j = 1$ for $j \ge N$

$$-\frac{\varepsilon_0}{p_0(\lambda)} - \frac{\varepsilon_0 \varepsilon_1 b_0^2}{p_1(\lambda)} - \cdots - \frac{\varepsilon_{N-1} \varepsilon_N b_{N-1}^2}{p_N(\lambda)} - \cdots$$

$$\operatorname{\mathsf{deg}} p_j = 1 \text{ and } \varepsilon_j = 1 \text{ for } j \ge N$$

E

$$-\frac{\varepsilon_0}{p_0(\lambda)} - \frac{\varepsilon_0 \varepsilon_1 b_0^2}{p_1(\lambda)} - \cdots - \frac{\varepsilon_{N-1} \varepsilon_N b_{N-1}^2}{p_N(\lambda)} - \cdots$$

deg
$$p_j = 1$$
 and $\varepsilon_j = 1$ for $j \ge N$

Let $p(\lambda) = p_k \lambda^k + \cdots + p_1 \lambda + p_0$ be a monic polynomial of degree k (i.e. $p_k = 1$). The companion matrix C_p for p has the following form

$$C_{p} = \begin{pmatrix} 0 & \dots & 0 & -p_{0} \\ 1 & & \mathbf{0} & -p_{1} \\ & \ddots & & \vdots \\ \mathbf{0} & & 1 & -p_{k-1} \end{pmatrix}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

It is well known that $det(\lambda - C_p) = p(\lambda)$ and the spectrum $\sigma(C_p)$ of C_p is simple.

Let $p(\lambda) = p_k \lambda^k + \cdots + p_1 \lambda + p_0$ be a monic polynomial of degree k (i.e. $p_k = 1$). The companion matrix C_p for p has the following form

$$C_{p} = egin{pmatrix} 0 & \dots & 0 & -p_{0} \ 1 & & \mathbf{0} & -p_{1} \ & \ddots & & \vdots \ \mathbf{0} & & 1 & -p_{k-1} \end{pmatrix}$$

It is well known that $det(\lambda - C_p) = p(\lambda)$ and the spectrum $\sigma(C_p)$ of C_p is simple.

《曰》 《聞》 《臣》 《臣》 三臣

Let $p(\lambda) = p_k \lambda^k + \cdots + p_1 \lambda + p_0$ be a monic polynomial of degree k (i.e. $p_k = 1$). The companion matrix C_p for p has the following form

$$C_{p} = \begin{pmatrix} 0 & \dots & 0 & -p_{0} \\ 1 & & \mathbf{0} & -p_{1} \\ & \ddots & & \vdots \\ \mathbf{0} & & 1 & -p_{k-1} \end{pmatrix}$$

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

It is well known that $det(\lambda - C_p) = p(\lambda)$ and the spectrum $\sigma(C_p)$ of C_p is simple.

Properties of GJM PA for generalized Nevanlinna functions PA for definitizable functions

Let p_j be monic real polynomials of degree k_j and let $\varepsilon_j = \pm 1$, $b_j > 0$ $(j \in \mathbb{Z}_+)$. Denote $\tilde{b}_j := \varepsilon_j \varepsilon_{j+1} b_j$.

Definition

$$H = \begin{pmatrix} A_0 & \widetilde{B}_0 & \mathbf{0} \\ B_0 & A_1 & \widetilde{B}_1 \\ & B_1 & A_2 & \ddots \\ \mathbf{0} & & \ddots & \ddots \end{pmatrix}$$

where $A_j = C_{\rho_i}$ is the companion matrix for ρ_j

$$B_j = \begin{pmatrix} 0 & \dots & b_j \\ \dots & \dots & 0 \end{pmatrix} \qquad \qquad \widetilde{B}_j = \begin{pmatrix} 0 & \dots & \widetilde{b}_j \\ \dots & \dots & 0 \end{pmatrix}$$

Properties of GJM PA for generalized Nevanlinna functions PA for definitizable functions

Let p_j be monic real polynomials of degree k_j and let $\varepsilon_j = \pm 1$, $b_j > 0$ $(j \in \mathbb{Z}_+)$. Denote $\tilde{b}_j := \varepsilon_j \varepsilon_{j+1} b_j$.

Definition

$$\mathcal{H}=egin{pmatrix} \mathcal{A}_0&\widetilde{\mathcal{B}}_0&\mathbf{0}\ \mathcal{B}_0&\mathcal{A}_1&\widetilde{\mathcal{B}}_1&\ &\mathcal{B}_1&\mathcal{A}_2&\ddots\ &\mathbf{0}&\ddots&\ddots\end{pmatrix}$$

where $A_j = C_{p_i}$ is the companion matrix for p_j

$$B_j = \begin{pmatrix} 0 & \dots & b_j \\ \dots & \dots \\ 0 & \dots & 0 \end{pmatrix} \qquad \qquad \qquad \widetilde{B}_j = \begin{pmatrix} 0 & \dots & \widetilde{b}_j \\ \dots & \dots \\ 0 & \dots & 0 \end{pmatrix}$$

Properties of GJM PA for generalized Nevanlinna functions PA for definitizable functions

Let p_j be monic real polynomials of degree k_j and let $\varepsilon_j = \pm 1$, $b_j > 0$ $(j \in \mathbb{Z}_+)$. Denote $\tilde{b}_j := \varepsilon_j \varepsilon_{j+1} b_j$.

Definition

$$\mathcal{H}=egin{pmatrix} \mathcal{A}_0&\widetilde{\mathcal{B}}_0&\mathbf{0}\ \mathcal{B}_0&\mathcal{A}_1&\widetilde{\mathcal{B}}_1&\ &\mathcal{B}_1&\mathcal{A}_2&\ddots\ &\mathbf{0}&\ddots&\ddots\end{pmatrix}$$

where $A_j = C_{p_j}$ is the companion matrix for p_j

$$B_j = \begin{pmatrix} 0 & \dots & b_j \\ \dots & \dots \\ 0 & \dots & 0 \end{pmatrix} \qquad \qquad \widetilde{B}_j = \begin{pmatrix} 0 & \dots & \widetilde{b}_j \\ \dots & \dots \\ 0 & \dots & 0 \end{pmatrix}$$

Properties of GJM PA for generalized Nevanlinna functions PA for definitizable functions

Let p_j be monic real polynomials of degree k_j and let $\varepsilon_j = \pm 1$, $b_j > 0$ $(j \in \mathbb{Z}_+)$. Denote $\tilde{b}_j := \varepsilon_j \varepsilon_{j+1} b_j$.

Definition

$$\mathcal{H}=egin{pmatrix} \mathcal{A}_0&\widetilde{\mathcal{B}}_0&\mathbf{0}\ \mathcal{B}_0&\mathcal{A}_1&\widetilde{\mathcal{B}}_1&\ &\mathcal{B}_1&\mathcal{A}_2&\ddots\ &\mathbf{0}&\ddots&\ddots\end{pmatrix}$$

where $A_j = C_{p_i}$ is the companion matrix for p_j

$$B_{j} = \begin{pmatrix} 0 & \dots & b_{j} \\ \dots & \dots & 0 \end{pmatrix}$$

$$\widetilde{B}_{j} = \begin{pmatrix} 0 & \dots & \widetilde{b}_{j} \\ \dots & \dots & 0 \end{pmatrix}$$
Maxim Derevvatin

Padé approvimation	
Generalized Jacobi matrices	PA for generalized Nevanlinna functions PA for definitizable functions

$$H_{[j,\infty)} = \begin{pmatrix} A_j & \widetilde{B}_j & \mathbf{0} \\ B_j & A_{j+1} & \ddots \\ \mathbf{0} & \ddots & \ddots \end{pmatrix}, H_{[0,j]} := \begin{pmatrix} A_0 & \widetilde{B}_0 & \mathbf{0} \\ B_0 & A_1 & \ddots & \\ & \ddots & \ddots & \widetilde{B}_{j-1} \\ \mathbf{0} & & B_{j-1} & A_j \end{pmatrix}$$

Remark. In the context of indefinite moment problems, generalized Jacobi matrices were considered by M.G. Krein and H. Langer (1979).

Padé approvimation	
Generalized Jacobi matrices	PA for generalized Nevanlinna functions PA for definitizable functions

$$H_{[j,\infty)} = \begin{pmatrix} A_j & \widetilde{B}_j & \mathbf{0} \\ B_j & A_{j+1} & \ddots \\ \mathbf{0} & \ddots & \ddots \end{pmatrix}, H_{[0,j]} := \begin{pmatrix} A_0 & \widetilde{B}_0 & \mathbf{0} \\ B_0 & A_1 & \ddots & \\ & \ddots & \ddots & \widetilde{B}_{j-1} \\ \mathbf{0} & & B_{j-1} & A_j \end{pmatrix}$$

Remark. In the context of indefinite moment problems, generalized Jacobi matrices were considered by M.G. Krein and H. Langer (1979).

Properties of GJM PA for generalized Nevanlinna functions PA for definitizable functions

・ロト ・雪ト ・ヨト

 $\mathfrak{H}_{[0,\infty)}:=\ell^2_{[0,\infty)}$ provided with the indefinite inner product

$$[x,y] = (Gx,y)_{\ell^2_{[0,\infty)}}$$

 $H_{[0,\infty)}$ is bounded and self-adjoint in $\mathfrak{H}_{[0,\infty)}$.

<u>Def.</u> $m_{[0,\infty)}(\lambda) = [(H_{[0,\infty)} - \lambda)^{-1} \boldsymbol{e}, \boldsymbol{e}]$ is called the *m*-function of GJM $H_{[0,\infty)}$; here $\boldsymbol{e} := (10...)^{\top}$.

Proposition (M.D., V.Derkach, 2004)

Let $H_{[0,\infty)}$ be a bounded self-adjoint GJM. Then the m-function $m_{[0,\infty)}(\cdot) \in \mathbb{N}_{\kappa}$, where $\kappa = \nu(G)$. Moreover, in this case we have that $s_j = \left[H_{[0,\infty)}^j e, e\right]$.

Properties of GJM PA for generalized Nevanlinna functions PA for definitizable functions

・ロト ・日下 ・日下

 $\mathfrak{H}_{[0,\infty)}:=\ell^2_{[0,\infty)}$ provided with the indefinite inner product

$$[x,y] = (Gx,y)_{\ell^2_{[0,\infty)}}$$

 $H_{[0,\infty)}$ is bounded and self-adjoint in $\mathfrak{H}_{[0,\infty)}$.

<u>Def.</u> $m_{[0,\infty)}(\lambda) = [(H_{[0,\infty)} - \lambda)^{-1} \boldsymbol{e}, \boldsymbol{e}]$ is called the *m*-function of GJM $H_{[0,\infty)}$; here $\boldsymbol{e} := (10 \dots)^{\top}$.

Proposition (M.D., V.Derkach, 2004)

Let $H_{[0,\infty)}$ be a bounded self-adjoint GJM. Then the m-function $m_{[0,\infty)}(\cdot) \in \mathbb{N}_{\kappa}$, where $\kappa = \nu(G)$. Moreover, in this case we have that $s_j = \left[H_{[0,\infty)}^j e, e\right]$.

Properties of GJM PA for generalized Nevanlinna functions PA for definitizable functions

 $\mathfrak{H}_{[0,\infty)} := \ell^2_{[0,\infty)}$ provided with the indefinite inner product

$$[x,y] = (Gx,y)_{\ell^2_{[0,\infty)}}$$

 $H_{[0,\infty)}$ is bounded and self-adjoint in $\mathfrak{H}_{[0,\infty)}$.

<u>Def.</u> $m_{[0,\infty)}(\lambda) = [(H_{[0,\infty)} - \lambda)^{-1} \boldsymbol{e}, \boldsymbol{e}]$ is called the *m*-function of GJM $H_{[0,\infty)}$; here $\boldsymbol{e} := (10...)^{\top}$.

Proposition (M.D., V.Derkach, 2004)

Let $H_{[0,\infty)}$ be a bounded self-adjoint GJM. Then the *m*-function $m_{[0,\infty)}(\cdot) \in \mathbb{N}_{\kappa}$, where $\kappa = \nu(G)$. Moreover, in this case we have that $s_j = \left[H_{[0,\infty)}^j e, e\right]$.

Properties of GJM PA for generalized Nevanlinna functions PA for definitizable functions

 $\mathfrak{H}_{[0,\infty)} := \ell^2_{[0,\infty)}$ provided with the indefinite inner product

$$[x,y] = (Gx,y)_{\ell^2_{[0,\infty)}}$$

 $H_{[0,\infty)}$ is bounded and self-adjoint in $\mathfrak{H}_{[0,\infty)}$.

<u>Def.</u> $m_{[0,\infty)}(\lambda) = [(H_{[0,\infty)} - \lambda)^{-1} \boldsymbol{e}, \boldsymbol{e}]$ is called the *m*-function of GJM $H_{[0,\infty)}$; here $\boldsymbol{e} := (10...)^{\top}$.

Proposition (M.D., V.Derkach, 2004)

Let $H_{[0,\infty)}$ be a bounded self-adjoint GJM. Then the m-function $m_{[0,\infty)}(\cdot) \in \mathbf{N}_{\kappa}$, where $\kappa = \nu(G)$. Moreover, in this case we have that $s_j = \left[H_{[0,\infty)}^j e, e\right]$.

Proposition (M.D., V.Derkach, 2004).

The *m*-functions of $H_{[j,\infty)}$ and $H_{[j+1,\infty)}$ are related by

$$m_{[j,\infty)}(\lambda) = -rac{arepsilon_j}{p_j(\lambda) + arepsilon_j b_j^2} m_{[j+1,\infty)}(\lambda) \quad (j \in \mathbb{Z}_+).$$

Theorem (M.D., V.Derkach, 2004)

Let $m(\cdot)$ be an \mathbb{N}_{κ} -function in question. Then there exists a GJM $H_{[0,\infty)}$ with the *m*-function proportional to $m(\cdot)$.

《口》 《卽》 《臣》 《臣》

Proposition (M.D., V.Derkach, 2004).

The *m*-functions of $H_{[j,\infty)}$ and $H_{[j+1,\infty)}$ are related by

$$m_{[j,\infty)}(\lambda) = -rac{arepsilon_j}{p_j(\lambda) + arepsilon_j b_j^2} m_{[j+1,\infty)}(\lambda) \quad (j \in \mathbb{Z}_+).$$

Theorem (M.D., V.Derkach, 2004)

Let $m(\cdot)$ be an \mathbf{N}_{κ} -function in question. Then there exists a GJM $H_{[0,\infty)}$ with the *m*-function proportional to $m(\cdot)$.

- 4 聞 🕨 - 4 直 🕨 - 4 直 🕨

Image: A math a math

Let φ be a function in question.

Proposition

The rational function

$$f^{[n_j/n_j]}(\lambda) = m_{[0,j-1]}(\lambda) = \left[(H_{[0,j-1]} - \lambda)^{-1} e, e \right] \quad e := (10 \dots 0)^{\top}$$

$$\varphi(\lambda) = \left[(H - \lambda)^{-1} e, e \right] \quad e := (10 \dots)^{\top}$$

$$(H_{[0,j]} - \lambda)^{-1} \phi \to (H - \lambda)^{-1} \phi \quad \text{as} \quad j \to \infty, \quad \phi \in \ell^2.$$

.

Let φ be a function in question.

Proposition

The rational function

$$f^{[n_j/n_j]}(\lambda) = m_{[0,j-1]}(\lambda) = \left[(H_{[0,j-1]} - \lambda)^{-1} e, e \right] \quad e := (10 \dots 0)^{\top}$$

$$\varphi(\lambda) = \left[(H - \lambda)^{-1} e, e \right] \quad e := (10 \dots)^{\top}$$

$$(H_{[0,j]} - \lambda)^{-1} \phi \to (H - \lambda)^{-1} \phi \quad \text{as} \quad j \to \infty, \quad \phi \in \ell^2.$$

A D > A B > A B > A

Let φ be a function in question.

Proposition

The rational function

$$f^{[n_j/n_j]}(\lambda) = m_{[0,j-1]}(\lambda) = \left[(H_{[0,j-1]} - \lambda)^{-1} e, e \right] \quad e := (10 \dots 0)^{\top}$$

$$\varphi(\lambda) = \left[(H - \lambda)^{-1} e, e \right] \quad e := (10 \dots)^{\top}$$

$$(H_{[0,j]} - \lambda)^{-1} \phi \to (H - \lambda)^{-1} \phi \quad \text{as} \quad j \to \infty, \quad \phi \in \ell^2.$$

.

Let φ be a function in question.

Proposition

The rational function

$$f^{[n_j/n_j]}(\lambda) = m_{[0,j-1]}(\lambda) = \left[(H_{[0,j-1]} - \lambda)^{-1} e, e \right] \quad e := (10 \dots 0)^{\top}$$

$$\varphi(\lambda) = \left[(H - \lambda)^{-1} e, e \right] \quad e := (10 \dots)^{\top}$$

$$(H_{[0,j]}-\lambda)^{-1}\phi
ightarrow (H-\lambda)^{-1}\phi \quad {\rm as} \quad j
ightarrow \infty, \quad \phi\in \ell^2.$$

《曰》 《聞》 《臣》 《臣》 三臣

Theorem (M.D., V.Derkach, 2007)

Let φ have the following form

$$\varphi(\lambda) = r_1(\lambda) \int_a^b \frac{d\mu(t)}{t-\lambda} + r_2(\lambda),$$

where μ is a positive measure, $\mathbf{r}_1 = \mathbf{q}_1/\omega_1$ is a rational function, nonnegative for $\lambda \in \mathbb{R} \setminus \mathcal{P}(\mathbf{r}_1)$ (deg $\mathbf{q}_1 \leq \deg \omega_1$), and \mathbf{r}_2 is a real rational proper function. Then the diagonal Padé approximants for φ converge to φ locally uniformly in $\mathbb{C} \setminus ([\mathbf{a}, \mathbf{b}] \cup \mathcal{P}(\varphi))$.

- $r_1 \equiv 1, r_2 \equiv 0$: the Markov theorem
- $r_1 \equiv 1$ and r_2 does not have poles on [a, b]: the theorem was proved by E.A. Rakhmanov, 1977.

《曰》 《聞》 《臣》 《臣》 三臣

Theorem (M.D., V.Derkach, 2007)

Let φ have the following form

$$\varphi(\lambda) = r_1(\lambda) \int_a^b \frac{d\mu(t)}{t-\lambda} + r_2(\lambda),$$

where μ is a positive measure, $\mathbf{r}_1 = \mathbf{q}_1/\omega_1$ is a rational function, nonnegative for $\lambda \in \mathbb{R} \setminus \mathcal{P}(\mathbf{r}_1)$ (deg $\mathbf{q}_1 \leq \deg \omega_1$), and \mathbf{r}_2 is a real rational proper function. Then the diagonal Padé approximants for φ converge to φ locally uniformly in $\mathbb{C} \setminus ([\mathbf{a}, \mathbf{b}] \cup \mathcal{P}(\varphi))$.

• $r_1 \equiv 1, r_2 \equiv 0$: the Markov theorem

• $r_1 \equiv 1$ and r_2 does not have poles on [a, b]: the theorem was proved by E.A. Rakhmanov, 1977.

《曰》 《聞》 《臣》 《臣》

Theorem (M.D., V.Derkach, 2007)

Let φ have the following form

$$\varphi(\lambda) = r_1(\lambda) \int_a^b \frac{d\mu(t)}{t-\lambda} + r_2(\lambda),$$

where μ is a positive measure, $\mathbf{r}_1 = \mathbf{q}_1/\omega_1$ is a rational function, nonnegative for $\lambda \in \mathbb{R} \setminus \mathcal{P}(\mathbf{r}_1)$ (deg $\mathbf{q}_1 \leq \deg \omega_1$), and \mathbf{r}_2 is a real rational proper function. Then the diagonal Padé approximants for φ converge to φ locally uniformly in $\mathbb{C} \setminus ([\mathbf{a}, \mathbf{b}] \cup \mathcal{P}(\varphi))$.

- $r_1 \equiv 1, r_2 \equiv 0$: the Markov theorem
- $r_1 \equiv 1$ and r_2 does not have poles on [a, b]: the theorem was proved by E.A. Rakhmanov, 1977.

Padé approximation Generalized Jacobi matrices PA for definitizable functions

Let us consider the following function

$$\mathfrak{F}(\lambda) = \int_{-1}^{1} \frac{d\nu(t)}{t-\lambda}.$$

where ν is a signed measure on [-1, 1].

J. Nutall and C.J. Wherry '78, H. Stahl '85, A. Magnus '87, A.I. Aptekarev and W. Van Assche 2004. The main assumption is that ν is an absolutely continuous signed measure. Let $\alpha \in \mathbb{R}$ be an irrational number and consider the function

$$\mathfrak{F}_0 = \int_{-1}^1 \frac{(t + \cos \pi \alpha) dt}{(t - \lambda)\sqrt{1 - t^2}}$$

Every point of \mathbb{R} is an accumulation point of the set of poles of the diagonal Padé approximants for \mathfrak{F}_0 , H. Stahl '83.

(비) (라) (코) (코) (코)

Padé approximation Generalized Jacobi matrices PA for generalized Nevanlinna functions PA for definitizable functions

Let us consider the following function

$$\mathfrak{F}(\lambda) = \int_{-1}^{1} \frac{d\nu(t)}{t-\lambda}.$$

where ν is a signed measure on [-1, 1].

J. Nutall and C.J. Wherry '78, H. Stahl '85, A. Magnus '87, A.I. Aptekarev and W. Van Assche 2004. The main assumption is that ν is an absolutely continuous signed measure. Let $\alpha \in \mathbb{R}$ be an irrational number and consider the function

$$\mathfrak{F}_0 = \int_{-1}^1 \frac{(t + \cos \pi \alpha) dt}{(t - \lambda)\sqrt{1 - t^2}}$$

Every point of \mathbb{R} is an accumulation point of the set of poles of the diagonal Padé approximants for \mathfrak{F}_0 , H. Stahl '83.

Padé approximation Generalized Jacobi matrices PA for generalized Nevanlinna functions PA for definitizable functions

Let us consider the following function

$$\mathfrak{F}(\lambda) = \int_{-1}^{1} \frac{d\nu(t)}{t-\lambda}.$$

where ν is a signed measure on [-1, 1].

J. Nutall and C.J. Wherry '78, H. Stahl '85, A. Magnus '87, A.I. Aptekarev and W. Van Assche 2004. The main assumption is that ν is an absolutely continuous signed measure.

$$\mathfrak{F}_0 = \int_{-1}^1 \frac{(t + \cos \pi \alpha) dt}{(t - \lambda)\sqrt{1 - t^2}}$$

Every point of \mathbb{R} is an accumulation point of the set of poles of the diagonal Padé approximants for \mathfrak{F}_0 , H. Stahl '83.

白 돈 () 副 돈 () 물 돈 () () 문 돈 ()

크

Padé approximation Generalized Jacobi matrices PA for generalized Nevanlinna function PA for definitizable functions

Let us consider the following function

$$\mathfrak{F}(\lambda) = \int_{-1}^{1} \frac{d
u(t)}{t-\lambda}.$$

where ν is a signed measure on [-1, 1].

J. Nutall and C.J. Wherry '78, H. Stahl '85, A. Magnus '87, A.I. Aptekarev and W. Van Assche 2004. The main assumption is that ν is an absolutely continuous signed measure. Let $\alpha \in \mathbb{R}$ be an irrational number and consider the function

$$\mathfrak{F}_0 = \int_{-1}^1 \frac{(t + \cos \pi \alpha) dt}{(t - \lambda)\sqrt{1 - t^2}}$$

Every point of \mathbb{R} is an accumulation point of the set of poles of the diagonal Padé approximants for \mathfrak{F}_0 , H. Stahl '83.

・ロト ・四ト ・ヨト ・

Properties of GJM PA for generalized Nevanlinna functions PA for definitizable functions

Let σ be a finite nonnegative measure on $\boldsymbol{E} = [-1, \alpha] \cup [\beta, 1]$. Consider

$$\mathfrak{F}(\lambda) = \int_{E} \frac{t d\sigma(t)}{t-\lambda}.$$

Lemma (A. Magnus, 1962)

The following relation holds true

$$\mathfrak{F}^{[n-1/n-1]} = \lambda F^{[n/n-1]}(\lambda) + \gamma,$$

where $F(\lambda) = \int_{E} \frac{d\sigma(t)}{t-\lambda}$ and $\gamma = \int_{E} d\sigma(t)$

$$F(\lambda) = \int_E \frac{d\sigma(t)}{t-\lambda} = \left((J-\lambda)^{-1} e_0, e_0 \right)_{\ell^2}$$

 $F^{[n/n-1]}$ exists if and only if $d_{n-1} := \det(s_{i+j+1})_{i,j=1}^{n-1} \neq 0$.

Properties of GJM PA for generalized Nevanlinna functions PA for definitizable functions

Let σ be a finite nonnegative measure on $\boldsymbol{E} = [-1, \alpha] \cup [\beta, 1]$. Consider

$$\mathfrak{F}(\lambda) = \int_{E} \frac{t d\sigma(t)}{t - \lambda}$$

Lemma (A. Magnus, 1962)

The following relation holds true

$$\mathfrak{F}^{[n-1/n-1]} = \lambda \mathcal{F}^{[n/n-1]}(\lambda) + \gamma$$

where $\mathcal{F}(\lambda) = \int_{\mathcal{E}} \frac{d\sigma(t)}{t-\lambda}$ and $\gamma = \int_{\mathcal{E}} d\sigma(t)$

$$F(\lambda) = \int_{E} \frac{d\sigma(t)}{t-\lambda} = \left((J-\lambda)^{-1} e_0, e_0 \right)_{\ell^2}$$

 $F^{[n/n-1]}$ exists if and only if $d_{n-1} := \det(s_{i+j+1})_{i=1}^{n-1} \neq 0$.

Properties of GJM PA for generalized Nevanlinna functions PA for definitizable functions

Let σ be a finite nonnegative measure on $\boldsymbol{E} = [-1, \alpha] \cup [\beta, 1]$. Consider

$$\mathfrak{F}(\lambda) = \int_{\mathsf{E}} \frac{t \mathsf{d} \sigma(t)}{t - \lambda}.$$

Lemma (A. Magnus, 1962)

The following relation holds true

$$\mathfrak{F}^{[n-1/n-1]} = \lambda F^{[n/n-1]}(\lambda) + \gamma$$

where $F(\lambda) = \int_{E} \frac{d\sigma(t)}{t-\lambda}$ and $\gamma = \int_{E} d\sigma(t)$

$$F(\lambda) = \int_{E} \frac{d\sigma(t)}{t-\lambda} = \left((J-\lambda)^{-1} e_0, e_0 \right)_{\ell^2}$$

 $\mathcal{F}^{[n/n-1]}$ exists if and only if $d_{n-1} := \mathsf{det}(s_{i+i+1})_{i=1}^{n-1} \neq 0$.

Properties of GJM PA for generalized Nevanlinna functions PA for definitizable functions

Let σ be a finite nonnegative measure on $\boldsymbol{E} = [-1, \alpha] \cup [\beta, 1]$. Consider

$$\mathfrak{F}(\lambda) = \int_{\mathsf{E}} \frac{t \mathsf{d} \sigma(t)}{t - \lambda}.$$

Lemma (A. Magnus, 1962)

W

The following relation holds true

$$\mathfrak{F}^{[n-1/n-1]} = \lambda F^{[n/n-1]}(\lambda) + \gamma$$

where $F(\lambda) = \int_{E} \frac{d\sigma(t)}{t-\lambda}$ and $\gamma = \int_{E} d\sigma(t)$

$$F(\lambda) = \int_{E} \frac{d\sigma(t)}{t-\lambda} = \left((J-\lambda)^{-1} \boldsymbol{e}_{0}, \boldsymbol{e}_{0} \right)_{\ell^{2}}$$

 $F^{[n/n-1]}$ exists if and only if $d_{n-1} := \det(s_{i+j+1})_{i,j=1}^{n-1} \neq 0$.

$$F^{[n/n-1]}(\lambda) = \left((J^{(K)}_{[0,n-1]} - \lambda)^{-1} e_0, e_0 \right)_{\ell^2}$$

where
$$J_{[0,n-1]}^{(K)} = J_{[0,n-1]} + \frac{d_n}{d_{n-1}}(\cdot, e_{n-1})e_{n-1}$$
.

Note that
$$\mathbf{0} \in \sigma(J_{[0,n-1]}^{(K)})$$
.

$$\|(J_{[0,n-1]}^{(K)}-\lambda)^{-1}\| \le rac{1}{|\lambda|-\|J_{[0,n-1]}^{(K)}\|} \quad (|\lambda|>\|J_{[0,n-1]}^{(K)}\|)$$

$$F^{[n/n-1]}(\lambda) = \left((J^{(K)}_{[0,n-1]} - \lambda)^{-1} e_0, e_0 \right)_{\ell^2}$$

where
$$J_{[0,n-1]}^{(K)} = J_{[0,n-1]} + \frac{d_n}{d_{n-1}}(\cdot, e_{n-1})e_{n-1}$$
.

Note that
$$\mathbf{0} \in \sigma(J_{[0,n-1]}^{(K)})$$
.

$$\|(J_{[0,n-1]}^{(K)} - \lambda)^{-1}\| \le \frac{1}{|\lambda| - \|J_{[0,n-1]}^{(K)}\|} \quad (|\lambda| > \|J_{[0,n-1]}^{(K)}\|)$$

$$F^{[n/n-1]}(\lambda) = \left((J^{(K)}_{[0,n-1]} - \lambda)^{-1} e_0, e_0 \right)_{\ell^2}$$

where
$$J_{[0,n-1]}^{(K)} = J_{[0,n-1]} + \frac{d_n}{d_{n-1}}(\cdot, e_{n-1})e_{n-1}$$
.

Note that
$$\mathbf{0} \in \sigma(J_{[0,n-1]}^{(K)})$$
.

$$\|(J_{[0,n-1]}^{(K)}-\lambda)^{-1}\| \le rac{1}{|\lambda|-\|J_{[0,n-1]}^{(K)}\|} \quad (|\lambda|>\|J_{[0,n-1]}^{(K)}\|)$$

$$F^{[n/n-1]}(\lambda) = \left((J^{(K)}_{[0,n-1]} - \lambda)^{-1} e_0, e_0 \right)_{\ell^2}$$

where
$$J_{[0,n-1]}^{(K)} = J_{[0,n-1]} + \frac{d_n}{d_{n-1}}(\cdot, e_{n-1})e_{n-1}$$
.

Note that
$$\mathbf{0} \in \sigma(J_{[0,n-1]}^{(K)})$$
.

$$\|(J_{[0,n-1]}^{(\mathcal{K})} - \lambda)^{-1}\| \le \frac{1}{|\lambda| - \|J_{[0,n-1]}^{(\mathcal{K})}\|} \quad (|\lambda| > \|J_{[0,n-1]}^{(\mathcal{K})}\|)$$

Properties of GJM PA for generalized Nevanlinna functions **PA for definitizable functions**

Theorem (M.D., V.Derkach, 2008)

Let σ be a finite nonnegative measure on $E = [-1, \alpha] \cup [\beta, 1]$ $(0 \in [\alpha, \beta])$, let

$$\mathfrak{F}(\lambda) = \int_E \frac{t d\sigma(t)}{t-\lambda}.$$

Then:

- (i) The sequence of [n/n] Padé approximants $\mathfrak{F}^{[n/n]}$ $(d_n \neq 0)$ converges to \mathfrak{F} locally uniformly in $\mathbb{C} \setminus ((-\infty, \alpha] \cup [\beta, \infty));$
- (ii) The sequence of [n/n] Padé approximants converges to \mathfrak{F} locally uniformly in $\mathbb{C} \setminus ([-1 \varepsilon, \alpha] \cup [\beta, 1 + \varepsilon] \text{ for some} \\ \varepsilon > 0 \text{ if and only if the sequence } \left\{ \frac{d_{n+1}}{d_n} \right\}_{d_n \neq 0}$ is bounded.

Theorem (M.D., V.Derkach, 2008)

Let σ be a finite nonnegative measure on $\boldsymbol{E} = [-1, \alpha] \cup [\beta, 1]$ $(\mathbf{0} \in [\alpha, \beta])$, let

$$\mathfrak{F}(\lambda) = \int_E \frac{t d\sigma(t)}{t-\lambda}.$$

Then:

- (i) The sequence of [n/n] Padé approximants $\mathfrak{F}^{[n/n]}$ $(d_n \neq 0)$ converges to \mathfrak{F} locally uniformly in $\mathbb{C} \setminus ((-\infty, \alpha] \cup [\beta, \infty));$
- (ii) The sequence of [n/n] Padé approximants converges to \mathfrak{F} locally uniformly in $\mathbb{C} \setminus ([-1 \varepsilon, \alpha] \cup [\beta, 1 + \varepsilon] \text{ for some} \\ \varepsilon > 0 \text{ if and only if the sequence } \left\{ \frac{d_{n+1}}{d_n} \right\}_{d_n \neq 0}$ is bounded.

Padé approximation Generalized Jacobi matrices PA for definitizable functions

Consider the function \mathfrak{F} of the form

$$\mathfrak{F}(\lambda) = r_1(\lambda) \int_a^b \frac{t d\sigma(t)}{t-\lambda} + r_2(\lambda),$$

where σ is a finite nonnegative measure on $[a, b] \ni 0$, r_j are real rational functions, such that $r_j(\lambda) = O(1/\lambda)$ for $\lambda \to \infty$ (j = 1, 2) and $r_1(\lambda)$ is nonnegative for real λ .

Theorem (M.D., V.Derkach, 2008)

(i) The sequence of [n/n] Padé approximants $\mathfrak{F}^{[n/n]}$ $(d_n \neq 0)$ converges to \mathfrak{F} locally uniformly in $\mathbb{C} \setminus (\mathbb{R} \cup \mathcal{P}(\varphi))$.

(ii) If the corresponding sequence $\left\{\frac{d_{n+1}}{d_n}\right\}_{d_n\neq o}$ is bounded then the sequence of [n/n] Padé approximants $\mathfrak{F}^{[n/n]}$ $(d_n\neq 0)$ converges to \mathfrak{F} locally uniformly in $\mathbb{C} \setminus ([a-\varepsilon, b+\varepsilon] \cup \mathcal{P}(\varphi))$ for some $\varepsilon > 0$. Padé approximation Generalized Jacobi matrices PA for generalized Nevanlinna fun PA for definitizable functions

Consider the function \mathfrak{F} of the form

$$\mathfrak{F}(\lambda) = r_1(\lambda) \int_a^b \frac{t d\sigma(t)}{t-\lambda} + r_2(\lambda),$$

where σ is a finite nonnegative measure on $[a, b] \ni 0$, r_j are real rational functions, such that $r_j(\lambda) = O(1/\lambda)$ for $\lambda \to \infty$ (j = 1, 2) and $r_1(\lambda)$ is nonnegative for real λ .

Theorem (M.D., V.Derkach, 2008)

(i) The sequence of [n/n] Padé approximants $\mathfrak{F}^{[n/n]}$ $(d_n \neq 0)$ converges to \mathfrak{F} locally uniformly in $\mathbb{C} \setminus (\mathbb{R} \cup \mathcal{P}(\varphi))$.

(ii) If the corresponding sequence $\left\{\frac{a_{n+1}}{d_n}\right\}_{d_n\neq o}$ is bounded then the sequence of [n/n] Padé approximants $\mathfrak{F}^{[n/n]}$ $(d_n\neq 0)$ converges to \mathfrak{F} locally uniformly in $\mathbb{C} \setminus ([a-\varepsilon, b+\varepsilon] \cup \mathcal{P}(\varphi))$ for some $\varepsilon > 0$. Padé approximation Generalized Jacobi matrices PA for generalized Nevanlinna function PA for definitizable functions

Consider the function \mathfrak{F} of the form

$$\mathfrak{F}(\lambda) = r_1(\lambda) \int_a^b \frac{t d\sigma(t)}{t-\lambda} + r_2(\lambda),$$

where σ is a finite nonnegative measure on $[a, b] \ni 0$, r_j are real rational functions, such that $r_j(\lambda) = O(1/\lambda)$ for $\lambda \to \infty$ (j = 1, 2) and $r_1(\lambda)$ is nonnegative for real λ .

Theorem (M.D., V.Derkach, 2008)

(i) The sequence of [n/n] Padé approximants $\mathfrak{F}^{[n/n]}$ $(d_n \neq 0)$ converges to \mathfrak{F} locally uniformly in $\mathbb{C} \setminus (\mathbb{R} \cup \mathcal{P}(\varphi))$.

(ii) If the corresponding sequence $\left\{\frac{d_{n+1}}{d_n}\right\}_{d_n\neq o}$ is bounded then the sequence of [n/n] Padé approximants $\mathfrak{F}^{[n/n]}$ $(d_n\neq 0)$ converges to \mathfrak{F} locally uniformly in $\mathbb{C} \setminus ([\mathbf{a} - \varepsilon, \mathbf{b} + \varepsilon] \cup \mathcal{P}(\varphi))$ for some $\varepsilon > 0$.

Great thanks for your attention!

(日) (종) (종) (종)

æ