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Abstract

Motivated by the implementation of time optimal control law for low thrust orbital
transfers of the controlled Keplerian system, we study the possibility to use sta-
bilizing feedbacks to achieve time efficient transfer. We use a family of stabilizing
feedback laws based on Lyapunov functions of first integrals. This idea is not new
but it turns out that with a proper choice of these Lyapunov functions the feedback
can be really simple and efficient. We proposed a method to select a good Lyapunov
function and applied it to a wide range of time optimal transfer cases toward the
geosynchronous orbit. The difference of transfer times between a good interpolating
feedback and the optimal control is outstandingly small.

1 Introduction

Finding a control that minimizes some criterion (here, the transfer time), while
performing an assigned task (here, reaching the target orbit) has always been
a key question in control engineering. A lot of research has been done on the
development of optimization algorithms to overcome the inherent difficulties
of optimal control for this particular problem. The computations become very
sensitive when the thrust tends to zero. But if control theory [1, 2] provides
tools to select among all trajectories the candidates to be optimal, only few
theoretical results are known about time optimal orbital transfers [3][4]. Many
practitioners duly object that, apart from being difficult to compute, optimal
control provides an open-loop control which in practice should be recomputed
often because of its high sensitivity to the model, the initial condition and
the possible perturbations. In particular the time optimal transfers depend
both on the initial and final orbits and on the characteristics of the satellite.
More over we may not apply approximate linearization techniques in order to
track the optimal trajectory because time optimal control are saturated and
the linearized system is uncontrollable along time optimal trajectories.

Instead of using optimal control algorithms, one may design control laws that
perform the desired task (here, reach the target orbit), robustly, and then, if
the criterion is vital, chose, among these particular controls, one that performs
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reasonably good with respect to the criterion. Lyapunov control (or “Jurdjevic-
Quinn control”, or “damping control”, see [5, 6]) has already been used on
this problem, see e.g. [7] (that references the private report [8]) or [9], leading
to very simple, naturally robust asymtptotiques stabilizing feedbacks and to
transfer strategies with reasonable performances. These authors however did
not insist on achieving better performances. There is however a wide choice of
Lyapunov functions provided by the first integrals of the two body problem
that yield to different feedbacks with different performances.

The present paper is devoted to exploring the possible choices of Lyapunov
functions and show, based mainly on numerical experiments, that the min-
imum time may be very closely approached by these feedbacks. In order to
select a good feedback a possibility is to start with a referenced trajectory
computed with an optimazation software such as Mipelec [10], and to sellecte
the feedback which as clsoe as possible to the optimal control along the optimal
trajectory. It is Lyapunov interpolation. Applying this method to some ref-
erenced trajectories [10, 3] computed with optimization programs, it appears
that we obtain final times very close to the optimal ones.

The paper is organized as follows. In Section 2 we present the controlled 2-
body system and the transfer problem. In Section 4 we introduce a simple
function which measure the distance from an elliptic orbit to the equatorial
geosynchronous orbit and use it to built a feedback control law. We apply it
to two Ariane’s GTO to GEO transfer cases referenced in literature for which
an estimate of the optimal time has been computed. It turns out that this
feedback law is really efficient to achieve these time optimal transfers. The
important point is that this distance does not depend on the characteristics
of the satellite but only of the initial and final orbital parameters. Finally in
the Section 5 we present a general method to select a good distance knowing
a time optimal transfer between two elliptic orbits. We illustrate this method
on the planar problem and apply it to a large range of transfers. The results
of these simulations are extremely conclusive.

2 The controlled Keplerian system

A satellite of mass m in rotation around the Earth is classically modeled
as a mass point subject to the Earth gravitation and the thrust. According
to Newton dynamical laws, the position and velocity vectors (r, v) ∈ TIR3

∗
(IR3

∗ = IR3 \ {0}), are solution of the system (1). ṙ = v ,

v̇ = −µ r
|r|3 + u

m
.

(1)
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Fig. 1. The frame QSW. Q is the radial unit vector, S is orthogonal to Q in the
plane of the osculating orbit, and W is orthogonal to this plane.

This control u is physically provided by some engine inboard the satellite,
that produces some thrust of limited magnitude ε. The control must satisfy
the constraint (2).

‖u‖ ≤ ε. (2)

The mass of the satellite decreases as fuel is consumed by the engine, according
to the law

ṁ = − ‖u‖
g0Isp

. (3)

The specific impulse Isp and the thrust modulus ε characterise the satellite
engine, while g0 and µ are the classical physical constants associated to the
Earth’s gravitation. Modern (electric) engines have a higher Isp; this allows to
produce the same thrust while consuming a notably smaller mass of propellant.
The drawback is that the maximum thrust they can produce (ε) is much
smaller than for classical chemical engines, “low thrust” means that ε is a
small paramteter in the equations. The impulsive approximations that enable
Hohmann’s transfer is not valid for “low thrust”, the control laws to achieved
orbital transfers have to be changed.

The uncontrolled Hamiltonian system, with H = v2

2
− 1

‖r‖ , is integrable and

even presents five first integrals in the 3 dimensional case [11]. For example
consider the kinetic momentum

h(r, v) = r × v , (4)
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and the eccentricity vector

A(r, v) =
v × h

µ
− r

|r|
. (5)

The 2 vectors h and A are not independent since A × h = 0, but, it can be
proven that any five components are independent functions of (r, v).

Let {qi}i∈[1..5] be a choice of independent first integrals that characterized
the Keplerian orbit and φ an angle, that fixes the position on the orbit. Let
(ξ, η, ζ) be an orthonormal frame and (uξ, uη, uζ) be the components of the
control vector u in this frame. The controlled Keplerian system (1) may be
express this action-angle coordinates by the equation (6).

d

dt
(q, φ)T = f0(q, φ) + uξfξ(q, φ) + uηfη(q, φ) + uζfζ(q, φ), (6)

where fi are vector fields on IR6. The drift f0 describes the Keplerian motion,
almost all its components are null, f0 = (0, ω(q, φ))T . If you choose to work
with the classical five independent first integrals q = {c, ex, ey, hx, hy} , with
L and to decompose the control u in the frame QSW associated to the satellite
(see figure 1), then ω(q, L) = µ2Z2

c3
and

fS =
(

c2

µZ
, cA

µZ
, cB

µZ
, 0, 0, 0

)T
,

fQ =
(
0, c

µ
sin L,− c

µ
cos L, 0, 0, 0

)T
,

fW =
(
0,− cY

µZ
ey,

cY
µZ

ex,
cX
2µZ

cos L, cX
2µZ

sin L, cY
µZ

)T
,

with



Z = 1 + ex cos L + ey sin L ,

A = ex + (1 + Z) cos L ,

B = ey + (1 + Z) sin L ,

X = 1 + h2
x + h2

y ,

Y = hx sin L− hy cos L .

Note that the mapping (r, v) 7→ (q, φ), from TIR3
∗ to a subset Ω of IR5×S may

present some singularities. But on the elliptic domain,

E = {(r, v) ∈ TIR3
∗, H < 0 and ‖h‖ 6= 0}, (7)

and

Eq = {(c, (ex, ey), (hx, hy)) ∈ IR∗ × D2}, (8)

with D = {x ∈ IR2, ‖x‖ < 1}, it is a classical result that the mapping (r, v) 7→
(c, ex, ey, hx, hy, L) is a diffeomorphism from E to Eq × S.
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As most of dynamical systems, the satellite admits various coordinates repre-
sentation for example the phase space (r, v) or the action-angle (q, φ). Does
there exist a good coordinate chart to represent the dynamic of the controlled
2-body system? The question is open. We will see in Section 3 that the first
integrals can be used to build stabilizing feedback laws.

In general, the osculating orbit can be an ellipse, a parabola or an hyperbola.
The elliptic region is the set of state where the Hamiltonian H is negative,
equivalent to e =

√
e2

x + e2
y < 1. We will not investigate here what happens

outside this region. A transfer is the operation of reaching a target orbit q1 from
an initial orbit q0, with no requirement on the final longitude. The transfer
problem is the one of designing a control law, either feedback or open-loop,
that fulfills this operation. Under the assumption that the mass is constant,
it has been shown that the controlled 2-body problem is controllable, there
exists an admissible path that joins two orbits [12]. Given two elliptic orbits
the existence of a transfer constrained to stay in the elliptic domain is given
in [3] as an application of a theorem on affine system with recurrent drift [2].

The two main issues relevant for space industry in terms of a criterion to opti-
mize, are to characterize the time minimal transfer and the final mass maximal
transfer (maximizing the final mass means minimizing the fuel consumption).
The optimal control theory provides tools to solve some path-planing problem
subject to constrains such as the transfer problem in optimal time. But very
few is known about time optimal transfer [13]. Programs such as Mipelec [10]
or Tfmin [3] have been developed to find numerical solutions.

3 Jurdjevic-Quinn method

For a control system a feedback, a control law function of the state, is clas-
sically used to stabilize a desired state. The Jurdjevic-Quinn method gives
sufficient conditions to strengthen the stability property of an affine system
which admits a first integral, hence stable in the sense of Lyapunov. In [7] J.-
M. Coron noted that the controlled 2-body system, described by the equations
(1) or (6), satisfies to the hypotheses of the Jurdjevic-Quinn method. In this
section we present this method taking in account the constraint (2). It should
be notice that in [14] L. Praly and C. M. Kellett built a feedback, subject to
such a constraint, that stabilizes a solution of the Keplerian motion.

Let q1 be a target ellipse and q the current orbit. Fix ki > 0 and define

Vk(q) =
5∑

i=1

ki(qi − q1
i )

2. (9)
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The function Vk defines a distance from the current orbit q to q1, but depends
of the choice of coordinates. Note that Vk is a first integral of the Keplerian
motion, the Lie derivative of Vk along the drift f0 is null

Lf0Vk(q, φ) = 0. (10)

The function Vk is proper, i.e.

∀β ∈ IR, V β
k = {(q, φ), Vk(q, φ) ≤ β} is compact, (11)

and has no critical points outside the ellipse q1:

dVk(q, φ) = 0 ⇒ q = q1. (12)

These two conditions imply that V reaches its minimum on q1.

We define the distribution F2: the Lie brackets of length 2 from the drift f0

against the controlled vector fields fi by

F2(q, φ) = SpanIR

{
f0(q, φ), (ad f0)

kfj(q, φ), j ∈ {ξ, η, ζ}, 0 ≤ k ≤ 2.
}

.

This distribution is independent of the choice of coordinates, more over

dimF2(q, φ) = 6, for all (q, φ). (13)

The following theorem is classical. Let |LfVk| =
√∑

i∈{ξ,η,ζ} Lfi
V 2

k .

Theorem 1 The conditions (10), (11), (12) and (13) imply that for all δ > 0
the smooth feedback uδ defined by |LfVk| > δ, ui = −ε

Lfi
Vk

|Lf Vk|
,

|LfVk| ≤ δ, ui = −ε
Lfi

Vk

δ
,

(14)

asymptotically stabilizes the elliptic orbit q1.

A sketch of proof goes as follows. The map Vk is a Lyapunov function for the
vector field

h = f0 + uδ
ξfξ + uδ

ηfη + uδ
ζfζ .

indeed

V̇k = LhVk,

= −ε/δ min(δ, 1/|LfVk|)
∑m

i∈{ξ,η,ζ} Lfi
V 2

k ,

≤ 0.
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Applying the LaSalle invariance principle [15]: the trajectories starting in Vα

are converging to the biggest positive h-invariant set I included in

W = {(q, φ) ∈ Eq, LhV (q, φ) = 0}

It turns out that conditions (13), (10), (11) and (12) implies that I is equal
to q1. �

We do not investigate here the whole domain of stability. Nevertheless note
that for β small enough V β

k is a subset of the elliptic domain Eq. Then, for all

initial orbits in V β
k the feedback uδ asymptotically stabilizes q1.

To be more precise this feedback converges exponentially fast toward the tar-
get. Then, even if this continuous feedback converges in infinite time, the mass
converges to a finite limit (see for example the Figure 7). This limit can be
used to define the transfer duration Tf (15) of a feedback udelta.

Tf =
g0Isp

umax

(m0 −mf ). (15)

More over since the linearized system along the target orbit is controllable,
according to fundamental properties of the reachable set [15], any time optimal
ball, the set of point that can join the target orbit in a time less or equal
to a positive constant time, cover a ball centered on the target with radius
proportional to ε.

More over since this feedback is continuous and admits a Lyapunov function,
it present robustness properties to perturbations of the vector field h such
as eclipses, bias on the engine... If you want to achieve a Rendez-vous, i.e.
you want to arrive at a precise longitude on the GEO orbit, you can easily
estimate the final longitude, integrating the feedback law, and then perform
a 1 dimensional shooting method on the final longitude. Remarkably the final
longitude is much more sensitive to small variation of Vk than the ”transfer”
time.

4 GTO to GEO time optimal transfers

In this section we consider two referenced transfers from the geosynchronous
transfer orbits (GTO) of the Ariane rocket to the equatorial geosynchronous
orbit (GEO). It is a classical orbital transfer for the space industry. In the Ta-
ble 1 we give the characteristic of the two transfers. The initial orbits a0, e0, i0
are close to each other they correspond to the range of the Ariane’s GTO
orbits. At the contrary, the characteristics of the two satellites (initial mass
m0, Isp and ε) differ sensitively, in particular the ratios ε/m0, which is the
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Case 1 [10] 2 [3]

a0 (m) 24505900 2.458e7

e0 0.725 0.75

i0 (deg) 5.2 7

m0 (kg) 2000 1500

Isp (s) 2000 1994.75

ε (N) 0.35 0.2
Table 1
Two GTO-GEO transfers

maximal acceleration allowed by the engine, 1.75e−4 for the case 1 and 1.33e−4

for the case 2. In few words, the satellite 2 is less powerful than the satellite 1,
hence the optimal transfer time of 2 is longer than the optimal transfer time
of 1, respectively 177 days versus 137 days.

We consider the function

V (q) = 4(
a

ageo

− 1)2 + 3e2 + i2. (16)

This function defines a distance from a current orbit of semi-major axis a,
eccentricity e and inclinationi to the geosynchronous orbit. We can used only
3 first integrals because the target orbit, the geosynchronous orbit, is circular
and is in the equatorial plane. Remind the following relations between the first
integrals, a = c2

µ
√

1−e2 , e =
√

e2
x + e2

y and (tan i
2
)2 = h2

x + h2
y.

Let δ = 10−5, according to the Theorem 1 the control uδ defined by (14)
is a continuous stabilizing feedback of the equatorial geosynchronous orbit
(a = ageo, e = 0, i = 0). In order to get a transfer in finite time, we apply the
feedback as long as possible and when the satellite is close to the target we
switch to the time optimal trajectory. This time optimal problem can easily
be solved by numerical computation because “close” to the target, the control
is not “small”.

The final results are exposed in the Table 2. We compare the feedback transfer
time with the optimal time, computed with the optimization programs Mipelec
and Tfmin. The conclusion is that the feedback laws based on V (16) is really
efficient to achieve the time optimal transfer from the Ariane’s GTO orbit to
the GEO orbit. Of course if you consider an other function instead of V , you
will generally not get such an efficient transfer. In the next section we will
present a method, called Lyapunov interpolation, to select a good function V .
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Case 1 2

Reference transfer time (day) 137.38 [10] 177.36 [3]

Lyapunov functions V V

Total final transfer time 136.45 177.41

Time spent with feedback 134 175
Table 2
Time Efficient Feedbacks
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Fig. 2. Optimal transfer time computed with Mipelec, Tmip
f

5 Lyapunov interpolations of time optimal transfers

In this section we consider the planar system when the initial orbit is in the
same plan than the target orbit . The initial orbits belong to the set of elliptic
orbits with perigee’s altitude hp included in the interval [10, 000 km 90, 000 km]
and with apogee’s altitude ha less than 90, 000 km. We studied planar transfers
to the equatorial geosynchronous orbit ha = hp = 36, 000km. The satellite is
characterized by an initial mass m0 of 1000 kg, a specific impulse Isp of 1500
s and a maximal thrust, ε of 0.1 N. We used the software Mipelec [10] to get
referenced trajectories and referenced times Tmip

f (see the figure 2).

We consider the small class of distance (17), indexed with an angle θ in the
interval [0, π

2
].

Vθ = cos θ (
a

ageo

− 1)2 + sin θ e2. (17)

Let δ = 10−6, given a function Vθ, we defined the continuous feedback uθ by
(14). According to the Theorem 1, the control uθ is a stabilizing feedback
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Fig. 3. Transfer time with Lyapunov’s interpolation, Tf
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control law for all θ ∈]0, π/2[.

Given an initial orbit (ha, hp), in order to select a good distance Vθ, we look
for the best interpolating feedback of the transfer trajectory γ(t) computed
with Mipelec. Let Γ(t) be the referenced control define on [0, Tmip

f ] associated
to γ(t). We look for θ which minimizes the cost J (18).

J = min
θ

1

Tmip
f

∫ T mip
f

0
‖uθ(γ(t))− Γ(t)‖2dt. (18)

For a study of the notion of Lyapunov’s interpolation the reader is referred to
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Fig. 6. Orbital parameter evolution, transfer ha=60000 hp=20000

the paper [16].

The main result of the present simulations can be set out as follow: the relative
error between the optimal time Tmip

f and the feedback time Tf is less than 1%
far from the target orbit (see figure 4). If we look at the cost of the best
Lyapunov interpolation (see Figure 5) we observed that it is correlated with
the relative error.

A deficiency in our algorithm to find the best Lyapunov interpolation may have
explained why the error is not so smooth. But if we look at the application
which associate to the initial orbit the best Lyapunov interpolation index by
θ (see Figure 8) we observed two lines of discontinuities. One is the circular
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orbit, ha = hp. The other one seems to follow the geosynchronous orbits,
ha+hp

2
= 36, 000km. Hence the explanation of the variation are structural and

not an artifact of the algorithm used to search for the best interpolation.
In a forthcoming paper we will present a characterization of the asymptotic
behavior of the time optimal transfer between two close coplanar circular
orbits.
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6 CONCLUSION

We show that controlled Lyapunov functions can be relevant to perform time
efficient transfers. We think that the distances between orbits, the Lyapunov
functions, are a powerful tool to handle low thrust satellite path-planing. Con-
trary to the optimization programs they give a control at any point having by
nature some robustness properties to perturbations, such as eclipses or engine
bias.

Following the results of the numerical simulation we may ask if the following
proposition holds.

Conjecture 1 For a given initial orbit q0 and a target orbit q1 it exists a
stabilizing feedback generated by a function Vk such that the time Tk spend by
this feedback to enter in a ball around the target orbit converge to the optimal
time as the bound on the control ε tends to zero.
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le transfert orbital à l’aide de moteurs ioniques. report, CNES, 1997.
confidentiel.

[9] Dong Hui Chang, David F. Chichka, and Jerrold E. Marsden. Lyapunov-
based transfer between elliptic keplerian orbits. Discrete and continous
dynamical systems-series B, 2002.

[10] J. Fourcade, S.Geffroy, and R. Epenoy. An averaging optimal control
tool for low-thrust minimum-time transfers. In CNES, editor, Low thurst
trajectory optimization, March 2000.
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