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H. Padé C. Hermite

(1863-1953) (1822-1901)
Student of Hermite Used Padé
His thesis won

approximants
to prove that e
IS trancendental

French Academy of
Sciences Prize

But origins of subject go back to Cauchy, Jacobi,
Frobenius.

Historical Reference: C. Brezinski, History of
Continued Fractions and Pade Approximants,
Springer-Verlag, (Berlin, 1991)



Why Padeé?
1) Convergence Acceleration [e.g. e-algorithm]

2) Numerical Solutions to Partial Differential
Equations [exp(At) ~ Q(At)"1P(A)]

3) Analytic Continuation of Power Series
[regions of convergence beyond a disk]

4) Includes Study of Orthogonal Polys on
Interval [Padé denominators for Markov
functions are orthogonal]j

5) Finding Zeros/Roots, Poles/Singularities
[use zeros and poles of Padé approximants to
predict-e.g. QD algorithm]



Padé Approximants (PA) generalize
Taylor Polynomials

@)
Given f(z) = > ckzk
k=0

m
Taylor poly Pn(z) = ) ¢z~
k=0

T hen

0@

[(2)=Pu(z)= > 2

k=m-+1

f(2) — Pn(2) = O (zm+1)
Equivalently,

F(0)
f'(0)

P (0)
P, (0)

P @) = fim(o).



Idea of PA: Given m, n

Rational function R = P/Q

degP <m, deg@Q <n
Choose P, () so that

(f = R)(z) =0 (),

[ as large as possible.

How large can we expect [ to be?

P has m-+ 1 parameters

Q has n+1 parameters

P/Q has —1 parameter

So total of m-+n-+1 parameters

Expect: (f — g) (z) =0 (zm+”+1).



NOT ALWAYS POSSIBLE

EX: m=n=1, f(z)=1—|—z2—|—z4—|—---.

__ P(z)  az+b
h(z) = Q(z) cz+d
Want
(1) R(z) = 1—|—z2—|—(9<z3) :

But R is either identically constant or
one-to-one.

From (1), neither is possible [R'(0) = 0].

Idea: Linearize by requiring
Qf — P =0zt

P, = all polynomials of degree < k.



oo
DEF Let f(z) =Y ¢,2z" be a formal power

0
series, and m,n nonnegative integers. A Padé

form (PF) of type (m,n) is a pair (P, Q) such
m n

that P= Y ppzF € Pm, Q= Y qu2" € Py,

Q # 0 and

(2) Qf—PZC’)(zm_I_n"'l) as z — 0.

Proposition Padé forms of type (m,n) always
exist.

Proof. (2) is a system of m4+n-+1 homogeneous
equations in m + n + 2 unknowns:

n
3) > c-jgi—pr=0, 0<k<m
=0

(4) ch_jqu , k=m4+1,.... m+n.

Cm,n = <Cm—|—i—j)- 1 Toeplitz matrix



THM Every PF of type (m,n) for f(z) yields
the same rational function.

~

Proof. (P,() and (P,Q are PF’'s,

Qf - P = O (zm+”+1)
Qf —P = o(zmtrt)
SO
—QP+PQ=0 (2"t eP, 1,
Thus PQ=QP= P/Q=P/Q. [ ]

DEF The uniquely determined rational P/Q is
called the Padé Approximant (PA) of type
(m,n) for f(z), and is denoted by

[m/n](2) of rmn(f;2).



Remark In reduced form

[m/n](2) = pmn(2)/amn(2),
where we (often) normalize so that

qm,n(O) =1, pm,n(o) = Cp,
Pm,n and gmn relatively prime.

Padé Table for f

0/0] [0/1] [0/2]

1/0]1 [1/1] [1/2]

Taylor

polys | 12/° _2{1_ _2{2_

Equal entries occur in ‘square” blocks.



1
Ex: f(z) =1+224+2%+20+... <= 1_22>

Block structure

0/0] = [0/1] [0/2] =
/0] = 1/1] [1/2] =
2/0] = 121 [ ] =
300 = 131 [ ] =
40] = /1 [ ] =

THM Let p/q be a reduced PA for f(z), with
co = 0. Suppose

exact deg of p
exact deg of ¢

m

n

and

qf —p=0O <zm+n+k+1) exactly .



Then
(a) k>0

(b) [n/vlf =np/q iff

m<u<<m-+k, n<v<n—4k.

See: W. B. Gragg, The Pade Table and its
Relation to Certain Algorithms of Numerical
Analysis, SIAM Review (1972), 1-62.

DEF A Padé approximant is said to be normal
if it appears exactly once in table. We say
“fis normal’ if every entry in its Padé table is
normal.

Ex: f(z) = e® is normal.



Determinant Representations and Frobenius
Identities.

fm(z) zfm—1(2) - - - 2"fm—n(2)
Cm+1 Cm R Cm—n+1
ump(z) == | ‘M2 OmAl Cim—n+2
m+n Sm+n-—-1 = ° Cm
Cm—+41 Cm " Cm—n+1
vmn(z) = C’m.‘"2 C’m.‘l‘l C’m—.n"‘Q
m+n Sm4+n—-1 - ° - Cm

THM f(z)vmn(z) —umn(z) =0 <zm+n+1).




DEF For arbitrary, but fixed polys g, h, let

wmn(2) = g(2)umn(z) + h(z)vmn(z)

n

cm,n = det (Cm‘|‘i_j)z',j=1

THM Between any 3 entries in the table of
wm,n functions, there is a homogeneous linear
relation with poly coefficients which can be
computed from the coefficients ¢, of f.

Cmn+1Wm+1n"Cm+1nWmn+1l — Cm+1,n+12Wmn
Cm+1,nWm—1n + Cmn+1Wmn—1 — Cm,nWm,n
CmnCm~+1,nWmmn+1 — Smn+1m+1,n+12Wmn—1

— (Cfm—l—l,ncm,n—l—l - Cm,ncm—l—l,n—l—lz)wﬂ%n

Proof. Use Sylvester’s identity on determinant
representation for Padé denominator vy, n.

detAdet A; ;.1 = detA;., detA;. —detA;, detA,,



Padé Approximants for the Exponential

oozk

f(z)ze'z: E

k=0
Want to find pm.n € Pm, gm.n € Pn such that

(5)  amn(2)e” —pmn(z) = O (2" HH)
Let D :=d/dz. Then
D [qe?] = qe* + ¢'e* = e* (I + D) ¢
Apply D™T1 to (5)
e* (I + D))" gn+0=0(")

= (I + D)m—l_l dm,n — km,nzn
= dm,n — km,n([ + D)—(m-I—l)Zn.

Recall

(1 + o)~ (m+1) = i (—1)9( m;rj )
7=0



So

Qm,n(z) — k‘m,n zn: (_1)J<m + ])Djzn

j=0 m
_ & PRY m —+ 7 n! n—j
km,njgo( D < m )(n—j)!z '

& (mtn—k)n! (—2)F
Imyn(2) = ,;O (m+n)l(n—k)! k!

m—|—n—|—1) 7
m—l—n—l—l) .

qmne” — pmn =0 (z
gm,n — Pmne - =0 <z

SO pmn(—2) = gn,m(2),
M (m4n—k)m! 2F

pm,n(2) = go (m—+n)(m — k) kL

Also from

Dm+1[Qm,n€Z - pm,n] — km,nznez 3

and integration by-parts we get



Qm,n(2>ez - pm,n(Z)

= (=1)" m+n+1 Lo m sz
“(mtn) /OS (1 —s)"eds.

Remark For |z| < p,

> 3
|Qm,n(z)|§1+p+%+%+...:€p_

SO gm, form a normal family in C. Further,

if m 4+ n — oo, m/n—>)\,

(—1)*

coeff of zF — .
) (14 M)kk!

Hence. ..



THM (Padé) Let mj, n; € ZT satisfy
m; +n; — oo, mj/n;— A asj— oo.
Then

im gm;n;(2) = e~ 2/ (1+A)

j—oo

im pm;n;(2) = et?/ (1+A) :
J—00

and
im [m;/n;](z) = €*,
j—00

locally uniformly in C. More precisely
(m =m;, n = n;)

[[m/n](2) — €|

mln! |Z|m—|—n—|—1€29‘ie(z)/(1—|—)\)
 (m+n)(m+n+ 1)

(1+0(1)).

COR All zeros and poles of PA's to e go to
infinity as m +n — oo.

But where are they located?



Zeros of p,, o(z) =S 2K /kl, m=1,2,...,40
3 k=0

—30.00 —10.00 0.00 10.00 20.00

THM (S+Varga) For every m, n > 0, the
normalized Padé numerator pmn((n 4 1)z) for
e” is zero-free in the parabolic region

Py’ <4(z+1), z>-1.
Result is sharp!




THM (S+4Varga) Consider any ray sequence
[m;/n;](z) where n;/m; — o (0 <o < 00).

Se :={z 1 Jargz| > cos ! [(1 - 0)/(1 + o)]}
Cy 2 e9(?)
1+ 2+ g(T[1 — 2 + ()] T+

where g(z) = \/1 + 22— 22 (%_T_g) Then

we(z) =

(i) Zisalim. pt. of zeros of [m;/n;] ((m; + n;)z)
iff 2€ Dy :={2€ 5 |lwe(2)| =1, |2| < 1}.

(i) zisalim. pt. of poles of [m;/n;] ((m; + n;)z)
ifr 2765 l?g'::: {}Z EE«: \ Eﬂj :|1UOWQZ>| — ]., |21 f; ].}.

Lwg(a2®), o=/

o pe les
X 1ZeYvyos




More recent variations:

Multi-point Padé Approx.

Let B(m+n) — { xlgm+n)}m+n -
k=0
Rmn = me,n/Qm,n, deg Ppn = m, deg Qmn = n,

interpolates e# in B(m+n),

THM (Baratchart+S+Wielonsky) If BUn+n)
[—p,pl, m=my, n=n, (m+n — o), then

Rm,n(Z) — ez Yz c C.

Moreover, the zeros and poles of Ry, n lie within
p of the zeros and poles, respectively, of the
Padé approximants [m/n](z) to e*.

COR Conclusion holds for best uniform rational
approx. to e' on any compact subinterval of
R.

Analogous results for best Lo-rational approx-
imants to e* on unit circle.



Introduction to Convergence Theory

f(z) = Zzozo Ckzk

[m /0] s(2) = VL, ci.z" converges in largest open
disk centered at z = 0 in which f is analytic:
1/m

1
z| < R, where — =Ilimsup|cml
R M— 00

Next simplest case: [m/1]¢.

1 z
Cm+1 ©m

Assume c¢;,41 7= 0. Then vy, 1 has zero at

vm,1(2) = det ( ) = Cm — ZCp41 -

Cm/Cm_|_1.
. C 1 _ C
liminf m+1’ < = < limsup m+1’ .
TN—00 Cm R M—00 Cm

It's possible for ratios to have many limit points
different from 1/R.



ALLIS NOT ROSES- There can be “spurious”
poles.

Perron’s Example: 3 f entire (R = oo) such
that every point in C is a limit point of poles
of some subsequence of [m/1].

THM (de Montessus de Ballore, 1902) Let f
be meromorphic with precisely v poles (counting
multiplicity) in the disk A : |z] < p, with no
poles at z = 0. Then
im [m/1]5(2) = f(2)

uniformly on compact subsets of A\{r poles of f}.
Furthermore, as m — oo, the poles of [m/l/]f
tend, respectively, to the v poles of f in A.

Ex: f(z) =z2l(z2) haspolesatz=-1,-2,....

The n-th column of Padé table will converge
to zlN(z) in {|z| <n4+1}\{-1,...,—n}.



Proof of de Montessus de Ballore Theorem:

Hermite’s Formula Suppose g is analytic
inside and on ', a simple closed contour. Let
21,22,...,2u D€ points interior to I', regarded

with multiplicities ni,no,...,ny,. Set
N =n1+ny+---+nyu.
Then 3 a unique poly p € Py_1 such that

9 (z) = gV (2), 2,1,---,nk—1,

J:
k=1,...,u.
Moreover,

_ 1 w9 —w() .
P =5 [ B 9O €€,

g(z) —p(z) = 2im - wcgé)z()g(—c)z) d¢ zinside I,

where

1L
w(z) = ]] (z—2)".
j=1



Idea of Proof of de M. de Ballore Thm
f meromorphic with v poles in |z| < p.

'U/mﬂ/, 'Um,]/ PF Of type (m,l/) fOI’ f .

(6) fomy —umy = O (zm+’/+1> :

Let Qv € P, have zeros at poles of f with same
multiplicity.

Qufvmy — Quumy = O <Zm-|-u—|-1)

_ 1 / vl (Qufumy) (C)d

2 (=)

2
I¢|=p—c¢

for |z| < p —e.

For vm, suitably normalized, integral — O for
2] < p—e.

Method extends to multi-point Pade.



What about other sequences from Padé Table,
such as rows, diagonals, ray sequences?

THM (Wallin) There exists f entire such that
the diagonal sequence [n/n]¢(2), n =0,1,2,...,
is unbounded at every point in C except z = 0.

Baker-Gammel-Wills Conjecture: If f is
analytic in |z| < 1 except for m poles (# 0),
then there exists a subsequence of diagonal
PAs [n/n]¢(z) that converges to f locally
uniformly in {|z] < 1} \ {m poles of f}.

Conjecture is FALSE!

D. S. Lubinsky, “Rogers-Ramanujan and ...",
Annals of Math, 157 (2003), 847-8809.



Next step: Consider a weaker form of con-
vergence, such as convergence in measure or
convergence in capacity.

Nuttall-Pommerenke
Near-diagonal PAs will be inaccurate approx-
imations to f only on sets of small capacity
(transfinite diameter).

THM f analytic at co and in a domain D C C
with cap(C\ D) = 0. Let Ry,n(z) denote the
PA to f at co. Fix r > 1, X > 1. Then for
e, n > 0 there exists an mg such that

|Rmn(z) — f(2)] <€

for all m > mgq, 1/A <m/n < A, and for all z in
2| <r, 2 & Emmn, Cap(Emmn) < n.



THM (Stahl) Let f(z) be analytic at infinity.
T here exists a unique compact set g C C such
that

(i) Do := C\ Kp is a domain in which f(z) has
a single-valued analytic continuation,

(ii) cap(Kp) = i%fcap(IC), where the infimum
is over all compact sets K C C satisfying (i),

(iii) Ko C K for all compact sets £ Cc C
satisfying (i) and (ii).

The set Kg is called minimal set (for single-
valued analytical continuation of f(z)) and the
domain Dg C C is called extremal domain.



THM (Stahl) Let the function f(z) be defined
by

o0 .
f(z)= > fiz™’

=0
and have all its singularities in a compact set
E C C of capacity zero. Then any close to
diagonal sequence of Padé approximants [m/n](z)
to the function f(z) converges in capacity to
f(z) in the extremal domain Dg.



