
1. Buckley inequality

The average of a summable positive function (a weight) w over an interval I will
be denoted by the symbol 〈w〉

I
:

〈w〉
I

def
=

1

|I|

∫
I

w(t) dt ,

where |I| stands for the Lebesgue measure of I. For an interval J , the symbol A∞(J, δ)
denotes the δ-ball in the Muckenhoupt class A∞:

(1.1) A∞(J, δ)
def
=
{
w : w ∈ L1(J), w ≥ 0, 〈w〉

I
≤ δe〈logw〉

I ∀I ⊂ J
}
.

We denote by DJ the set of all dyadic subintervals of J and by Ad∞(J, δ) the dyadic
analogue of (1.1), i.e. in the definition of Ad∞(J, δ) we consider only I ∈ DJ .

Theorem (Buckley [1]). There exists a constant c = c(δ) such that∑
I∈DJ

|I|
(〈w〉

I+
− 〈w〉

I−

〈w〉
I

)2

≤ c(δ)|J |

for any weight w from Ad∞(J, δ).

In the statement of the theorem we use notation I± to mean the right and left
halves of I, respectively. By DnJ we denote the n-th generation of the dyadic intervals
nested in J , i.e. D0

J = {J}, D1
J = {J±}, etc.

Now, we are ready to introduce the main object of our consideration, the so-called
Bellman function of the problem.

B(x) = B(x1, x2; δ)

def
= sup
w∈Ad∞(J,δ)

{
1

|J |
∑
I∈DJ

|I|
(〈w〉

I+
− 〈w〉

I−

〈w〉
I

)2

: 〈w〉
J

= x1, 〈logw〉
J

= x2

}
.

This function is defined on the domain

Ωδ
def
=
{
x = (x1, x2) : log

x1

δ
≤ x2 ≤ log x1

}
.

Indeed, the right bound is simply Jensen’s inequality and the left one means that
our weight w is from A∞(J, δ). The parameter δ is fixed throughout. Let us note
that we did not assign the index J to B, despite the fact that all test functions w in
its definition are considered on J . This omission is not due to our desire to simplify
notation, but rather an indication of the very important fact that the function B does
not depend on J .

A bit more notation. For a given weight w ∈ A∞(J, δ) and any subinterval I ⊂ J ,
there corresponds the following point of Ωδ: x

I = (〈w〉
I
, 〈logw〉

I
).

(Homework assignment: Check that the function B defined on the whole domain

Ωδ, i.e. for every point x, x ∈ Ωδ, there exists a function w ∈ A∞(J, δ) such that x = xJ .)

Let us now consider some properties of B that are clear from its definition; these
properties will help us find B explicitly.

1
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Lemma 1.1 (Main inequality). For every pair of points x± from Ωδ such that their
mean x = (x+ + x−)/2 is also in Ωδ, the following inequality holds

(1.2) B(x) ≥ B(x+) + B(x−)

2
+
(x+

1 − x−1
x1

)2

.

Proof. Let us split the sum in the definition of B into three parts: the sum over DJ+ ,
the sum over DJ− , and an additional term, corresponding to J itself:

1

|J |
∑
I∈DJ

|I|
(〈w〉

I+
− 〈w〉

I−

〈w〉
I

)2

=
1

2|J+|
∑
I∈DJ+

|I|
(〈w〉

I+
− 〈w〉

I−

〈w〉
I

)2

+
1

2|J−|
∑
I∈DJ−

|I|
(〈w〉

I+
− 〈w〉

I−

〈w〉
I

)2

+
(〈w〉

J+
− 〈w〉

J−

〈w〉
J

)2

.

Now we choose the weights w± on the intervals J± that almost give us the supremum
in the definition of B(x±), i.e.

1

|J±|
∑
I∈DJ±

|I|
(〈w±〉

I+
− 〈w±〉

I−

〈w±〉
I

)2

≥ B(x±)− η,

for an arbitrary fixed small η > 0. Then for the weight w on J, defined as w+ on J+

and w− on J−, we obtain the inequality

(1.3)
1

|J |
∑
I∈DJ

|I|
(〈w〉

I+
− 〈w〉

I−

〈w〉
I

)2

≥ B(x+) + B(x−)

2
− η +

(x+
1 − x−1
x1

)2

.

Observe that the compound weight w is an admissible weight, corresponding to the
point x. Indeed, x± = xJ± and by construction w± ∈ Ad∞(J±, δ); therefore, the weight
w satisfies the inequality 〈w〉

I
≤ δe〈logw〉

I for all I ∈ DJ+ , since w+ does, and for all

I ∈ DJ− , since w− does. Lastly, 〈w〉
J
≤ δe〈logw〉

J , because, by assumption, x ∈ Ωδ.
We can now take supremum in (1.3) over all admissible weights w, which yields

B(x) ≥ B(x+) + B(x−)

2
− ε+

(x+
1 − x−1
x1

)2

,

which proves the main inequality because η is arbitrarily small. �

Lemma 1.2 (Boundary condition).

B(x1, log x1) = 0 .

Proof. Let us take a boundary point x of our domain Ωδ, that is a point with x2 =
log x1. Since the equality in Jensen’s inequality e〈w〉 ≤ 〈ew〉 occurs only for constant
functions w, the only test function corresponding to x is the constant weight w = x1.
So, on this boundary we have B(x) = 0. �
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Lemma 1.3 (Homogeneity). There is a function g on [1, δ] satisfying g(1) = 0 and
such that

B(x) = B(x1e
−x2 , 0) = g(x1e

−x2) .

Proof. For a weight w on an interval J and a positive number τ consider a new
weight, w̃ = τw. If x is a point from Ωδ corresponding to w and J, i.e. x1 = 〈w〉

J
,

x2 = 〈logw〉
J
, then the point x̃ = (x̃1, x̃2), x̃1 = τx1, x̃2 = x2+log τ, corresponds to w̃.

Note that the expression in the definition of B is homogeneous of order 0 with respect
to w, i.e. it does not depend on τ. Since the weights w and w̃ run over the whole set
Ad∞(J, δ) simultaneously, we get B(x) = B(x̃). Choosing τ = e−x2 , we obtain

B(x) = B(x1e
−x2 , 0) .

To complete the proof, it suffices to take g(s) = B(s, 0). The boundary condition
g(1) = 0 holds due to Lemma 1.2. �

We are now ready to demonstrate how the Bellman function method works.

Lemma 1.4 (Bellman induction). Let g be a nonnegative function on [1, δ] such

that the function B(x)
def
= g(x1e

x2) satisfies inequality (1.2) in Ωδ. Then Buckley’s
inequality holds with the constant c(δ) = ‖g‖L∞([1,δ]).

Proof. Fix an interval J and a weight w ∈ Ad∞(J, δ). Let us repeatedly use the main
inequality in the form

|I|B(xI) ≥ |I+|B(xI+) + |I−|B(xI−) + |I|
(xI+1 − x

I−
1

xI1

)2

,

applying it first to J , then to the intervals of the first generation (that is J±), and so
on until DnJ :

|J |B(xJ) ≥ |J+|B(xJ+) + |J−|B(xJ−) + |J |
(xJ+

1 − x
J−
1

xJ1

)2

≥
∑
I∈DnJ

|I|B(xI) +
n−1∑
k=0

∑
I∈DkJ

|I|
(xI+1 − x

I−
1

xI1

)2

.

Therefore,
n−1∑
k=0

∑
I∈DkJ

|I|
(xI+1 − x

I−
1

xI1

)2

≤ |J |B(xJ) ,

and, passing to the limit as n→∞, we get∑
I∈DJ

|I|
(xI+1 − x

I−
1

xI1

)2

≤ |J |B(xJ) = |J | g(x1e
−x2) ≤ |J | sup

s∈[1,δ]

g(s) .

�

A natural question arises: how to find such a function g? To answer it, we first
replace our main inequality, which is an inequality in finite differences, by a differential
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inequality. Let us denote the difference between x+ and x− by 2∆, then x± = x±∆
and the Taylor expansion around the point x gives

B(x±) = B(x)± ∂B

∂x1

∆1 ±
∂B

∂x2

∆2 +
1

2

∂2B

∂x2
1

∆2
1 +

∂2B

∂x1∂x2

∆1∆2 +
1

2

∂2B

∂x2
2

∆2
2 + o(|∆|2) ,

and, therefore,

B(x+) +B(x−)

2
+
(x+

1 − x−1
x1

)2

−B(x)

=
1

2

∂2B

∂x2
1

∆2
1 +

∂2B

∂x1∂x2

∆1∆2 +
1

2

∂2B

∂x2
2

∆2
2 + 4

(∆1

x1

)2

+ o(|∆|2) .

Thus, under the assumption that our candidate B is sufficiently smooth, the main
inequality (1.2) implies the following matrix differential inequality

(1.4)


∂2B

∂x2
1

+
8

x2
1

∂2B

∂x1∂x2

∂2B

∂x1∂x2

∂2B

∂x2
2

 ≤ 0 .

By the preceding two lemmata, we can restrict our search to functions B of the
form B(x1, x2) = g(x1e

−x2), where g is a function on the interval [1, δ]. In terms of g,
our condition (1.4) can be rewritten as follows:e−2x2

(
g′′ +

8

s2

)
−e−x2(sg′)′

−e−x2(sg′)′ s(sg′)′

 ≤ 0 ,

where g = g(s) and s = x1e
−x2 . This matrix inequality is equivalent to three scalar

inequalities:

g′′ +
8

s2
≤ 0,(1.5)

(sg′)′ ≤ 0,(1.6)

and the condition that the determinant of the matrix must be nonnegative. However,
we replace the last requirement by a stronger one — we require the determinant
to be identically zero. This requirement comes from our desire to find the best
possible estimate: if we take an extremal weight w, i.e. a weight on which the
supremum in the definition of the Bellman function is attained, then we must have
equalities on each step of the Bellman induction; therefore, on each step the main
inequality (1.2) becomes equality. Thus, for each dyadic subinterval I of J there
exists a direction through the point xI in Ωδ along which the quadratic form given
by (1.4) is identically zero. Hence, the matrix (1.4) has a non-trivial kernel and so
must have a zero determinant.

Calculating the determinant, we get the equation(
g′ − 8

s

)
(sg′)′ = 0 .
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The general solution of this equation is g(s) = c log s + c1. Due to the boundary
condition g(1) = 0, we have to take c1 = 0.

Now we need to chose another constant, c. To this end, we return to the necessary
conditions (1.5)–(1.6). The second inequality is fulfilled for all c, because the expres-
sion is identically zero, while the first one gives c ≥ 8. Since we would like to have g
as small as possible (as it gives the upper bound in Buckley’s inequality), it is natural
to take c = 8. Finally, we get

g(s) = 8 log s and B(x1, x2) = 8(log x1 − x2) .

Lemma 1.5. The function

B(x1, x2) = 8(log x1 − x2)

satisfies the main inequality (1.2).

Proof. Put, as before, ∆ = 1
2
(x+ − x−), so x± = x±∆. Then

B(x)− B(x+) +B(x−)

2
−
(x+

1 − x−1
x1

)2

= 8 log x1 − 8x2 − 4 log(x+
1 x
−
1 ) + 4( x+

2 + x−2 )−
(x+

1 − x−1
x1

)2

= 4 log
x2

1

(x1 + ∆1)(x1 −∆1)
− 4
(∆1

x1

)2

= −4

[
log
(

1−
(∆1

x1

)2)
+
(∆1

x1

)2
]
≥ 0 .

�

Now we can apply Lemma 1.4 to g(s) = 8 log s, which yields the following

Theorem. The estimate∑
I∈DJ

|I|
(〈w〉

I+
− 〈w〉

I−

〈w〉
I

)2

≤ 8 log δ |J |

holds for any weight w ∈ Ad∞(J, δ).

Concluding this section, I would like to emphasize that we still have not found the
Bellman function B. The theorem just proved guarantees only the estimate

B(x) ≤ 8(log x1 − x2).

2. Homework assignment: A simple two-weight inequality

As an exercise, verify every step, outlined below, of the proof of this theorem:

Theorem. If two weights u, v ∈ L1(J) satisfy the condition

sup
I∈DJ
〈u〉I 〈v〉I ≤M

2 ,

then
1
|J |

∑
I∈DJ

|I| |〈u〉I+ − 〈u〉I− | |〈v〉I+ − 〈v〉I− | ≤ 16M
√
〈u〉J 〈v〉J .
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2.1. Remark on the Haar functions. If we introduce the normalized Haar system

hI (t) =
1√
|I|

{
−1 if t ∈ I−,

1 if t ∈ I+,

then
√
|I|( 〈w〉I+ − 〈w〉I− ) = 2(w, hI ). Thus the statement of the Theorem above can be

rewritten in the form

1
|J |

∑
I∈DJ

|(u, hI )| |(v, hI )| ≤ 4M
√
〈u〉J 〈v〉J

and that of Buckley’s inequality, in the form∑
I∈DJ

(
(w, hI )
〈w〉I

)2

≤ 2 log δ |J | .

2.2. The Bellman function of the problem.

B(x;m,M) def= sup
u,v

{ 1
|J |

∑
I∈DJ

|(u, hI )| |(v, hI )|
}
,

where the supremum is taken over the set of all admissible pairs of weights, i.e. such pairs
u, v that 〈u〉J = x1, 〈v〉J = x2, and m2 ≤ 〈u〉I 〈v〉I ≤ M2, ∀I ∈ DJ . To prove the theorem
means to prove the inequality

B(x; 0,M) ≤ 4M
√
x1x2 .

The domain of B is

Ω =
{
x = (x1, x2) : m2 ≤ x1x2 ≤M2

}
.

2.3. Properties.
• The function B does not depend on J .

• Homogeneity: B(x1, x2) = B(x1x2, 1) def= g(x1x2).

• Boundary condition: B|x1x2=m2 = g(m2) = 0.

2.4. Main inequality.
For every pair x± ∈ Ω such that x = 1

2x
+ + 1

2x
− ∈ Ω, we have

B(x) ≥ B(x+) + B(x−)
2

+
|x+

1 − x
−
1 | |x

+
2 − x

−
2 |

4
.

In the differential form, 
∂2B

∂x2
1

∂2B

∂x1∂x2
± 1

∂2B

∂x1∂x2
± 1

∂2B

∂x2
2

 ≤ 0 ,

or, in terms of g,  x2
2g
′′ g′ + x1x2g

′′ + σ

g′ + x1x2g
′′ + σ x2

1g
′′

 ≤ 0 ,

where σ = ±1.
The condition that this matrix be degenerate gives us a differential equation, whose

general solution is g(s) = 2c
√
s− s+ c1 (this is quite a bit of work). The constant c1 can be
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found from the boundary condition: c1 = m2 − 2cm, and the constant c has to be chosen
as small as possible to obtain the best estimate: c = 2M. Thus, the answer is

B(x;m,M) ≤ 4M
√
x1x2 − x1x2 +m2 − 4mM .

All details of the proof that, in fact, we have found the true Bellman function, i.e.

B(x;m,M) = 4M
√
x1x2 − x1x2 +m2 − 4mM ,

can be found in [11].

3. John–Nirenberg inequality, Part I

A function ϕ ∈ L1(J) is said to belong to the space BMO(J) if

sup
I
〈|ϕ(s)− 〈ϕ〉

I
|〉
I
<∞

for all subintervals I ⊂ J. If this condition holds only for the dyadic subintervals
I ∈ DJ , we will write ϕ ∈ BMOd(J). In fact, the following is true

ϕ ∈ BMO(J) ⇐⇒
(∫

I

|ϕ(s)− 〈ϕ〉
I
|p ds

) 1
p
<∞, ∀p ∈ (0,∞), I ⊂ J .

If we factor over the constants, we get a normed space, where the expression on the
right-hand side can be taken as one of the equivalent norms for any p ∈ [1,∞). In
what follows, we will use the L2-based norm:

‖ϕ‖2
BMO(J) = sup

I⊂J

1

|I|

∫
I

|ϕ(s)− 〈ϕ〉
I
|2 ds = sup

I⊂J

(
〈ϕ2〉

I
− 〈ϕ〉2

I

)
.

The BMO ball of radius ε centered at 0 will be denoted by BMOε. Using the Haar
decomposition

ϕ(s) = 〈ϕ〉
J

+
∑
I∈DJ

(ϕ, h
I
)h

I
(s) ,

we can write down the expression for the norm in the following way

‖ϕ‖2
BMO(J) = sup

I⊂J

1

|I|
∑
L∈DI

|(ϕ, h
L
)|2 =

1

4
sup
I⊂J

1

|I|
∑
L∈DI

|L|
(
〈ϕ〉

L+ − 〈ϕ〉L−
)2
.

Theorem (John–Nirenberg [2]). There exist absolute constants c1 and c2 such that

|{s ∈ J : |ϕ(s)− 〈ϕ〉
J
| ≥ λ}| ≤ c1e

−c2 λ
‖ϕ‖ |J |

for all ϕ ∈ BMOε(J).

An equivalent, integral form of the same assertion is the following

Theorem. There exists an absolute constant ε0 such that for any ϕ ∈ BMOε(J) with
ε < ε0 the inequality

〈eϕ〉
J
≤ c e〈ϕ〉J

holds with a constant c = c(ε) not depending on ϕ.
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We shall prove the theorem in this integral form and find the sharp constant c(ε).
Our Bellman function,

B(x; ε)
def
= sup

ϕ∈BMOε(J)

{
〈eϕ〉

J
: 〈ϕ〉

J
= x1, 〈ϕ2〉

J
= x2

}
,

is well-defined on the domain

Ωε
def
=
{
x = (x1, x2) : x2

1 ≤ x2 ≤ x2
1 + ε2

}
.

First, we will consider the dyadic problem and deduce the main inequality for the
dyadic Bellman function.

Lemma 3.1 (Main inequality). For every pair of points x± from Ωε such that their
mean x = (x+ + x−)/2 is also in Ωε, the following inequality holds

(3.1) B(x) ≥ B(x+) + B(x−)

2
.

Proof. The proof repeats almost verbatim the proof of the main inequality for the
Buckley Bellman function. We split the integral in the definition of B into two parts,
the integral over J+ and the one over J− :∫

J

eϕ(s) ds =

∫
J+

eϕ(s) ds+

∫
J−

eϕ(s) ds .

Now we choose such functions ϕ± on the intervals J± that they almost give us the
supremum in the definition of B(x±), i.e.

1

|J±|

∫
J±

eϕ(s) ds ≥ B(x±)− η,

for a fixed small η > 0. Then for the function ϕ on J, defined as ϕ+ on J+ and ϕ−

on J−, we obtain the inequality

(3.2)
1

|J |

∫
J

eϕ(s) ds ≥ B(x+) + B(x−)

2
− η .

Observe that the compound function ϕ is an admissible test function corresponding
to the point x. Indeed, x± = xJ± and by construction ϕ± ∈ BMOd

ε(J±); therefore,
the function ϕ satisfies the inequality 〈ϕ2〉

I
− 〈ϕ〉2

I
≤ ε2 for all I ∈ DJ+ , since ϕ+

does, and for all I ∈ DJ− , since ϕ− does. Lastly, 〈ϕ2〉
J
− 〈ϕ〉2

J
≤ ε2, because, by

assumption, x ∈ Ωε.
We can now take supremum in (3.2) over all admissible functions ϕ which yields

B(x) ≥ B(x+) + B(x−)

2
− η ,

which proves the main inequality because η is arbitrarily small. �

As in the case of the Buckley inequality, the next our step is to derive a boundary
condition for B.

Lemma 3.2 (Boundary condition).

(3.3) B(x1, x
2
1) = ex1 .
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Proof. The function ϕ(s) = x1 is the only test function corresponding to the point
x = (x1, x

2
1), because the equality in the Hölder inequality x2 ≥ x2

1 occurs only for
constant functions. Hence, eϕ = ex1 . �

Now we are ready to describe super-solutions as functions verifying the main in-
equality and the boundary conditions.

Lemma 3.3 (Bellman induction). If B is a continuous function on the domain Ωε,

satisfying the main inequality (3.1) for any pair x± of points from Ωε such that x
def
=

x++x−

2
∈ Ωε, as well as the boundary condition (3.3), then B(x) ≤ B(x).

Proof. Fix a bounded function ϕ ∈ BMOε(J). By the main inequality we have

|J |B(xJ)| ≥ |J+|B(xJ+)|+ |J−|B(xJ−)| ≥
∑
I∈DnJ

|I|B(xI) =

∫
J

B(x(n)(s)) ds ,

where x(n)(s) = xI , when s ∈ I, I ∈ DnJ . (Recall that DnJ stands for the set of
subintervals of n-th generation.) By the Lebesgue differentiation theorem we have
x(n)(s) → (ϕ(s), ϕ2(s)) almost everywhere. Now, we can pass to the limit in this
inequality as n → ∞. Since ϕ is assumed to be bounded, x(n)(s) runs in a bounded
— and, therefore, compact — subdomain of Ωε. Since B is continuous, it is bounded
on any compact set and so, by the Lebesgue dominated convergence theorem, we can
pass to the limit in the integral using the boundary condition (3.3):

(3.4) |J |B(xJ) ≥
∫
J

B(ϕ(s), ϕ2(s)) ds =

∫
J

eϕ(s)ds = |J |〈eϕ〉
J
.

To complete the proof of the lemma, we need to pass from bounded to arbitrary
BMO test functions. To this end, we will use the following result:

Lemma 3.4 (Cut-off Lemma). Fix ϕ ∈ BMO(J) and two real numbers c, d such that
c < d. Let ϕc,d be the cut-off of ϕ at heights c and d :

(3.5) ϕc,d(s) =


c, if ϕ(s) ≤ c;

ϕ(s), if c < ϕ(s) < d;

d, if ϕ(s) ≥ d.

Then
〈ϕ2

c,d〉I − 〈ϕc,d〉2I ≤ 〈ϕ
2〉
I
− 〈ϕ〉2

I
, ∀I, I ⊂ J,

and, consequently,
‖ϕc,d‖BMO ≤ ‖ϕ‖BMO.

Proof. First, let us note that it is sufficient to prove this lemma for a one-sided cut,
for example, for c = −∞. We then get the full statement by applying this argument
twice. Indeed, if we denote by Cdϕ the cut-off of ϕ from above at height d, i.e.
Cdϕ = ϕ−∞,d, then ϕc,d = −C−c(−Cdϕ).

Take a measurable subset I ⊂ J and let I1 = {s ∈ I : ϕ(s) < d} and I2 = {s ∈
I : ϕ(s) ≥ d}. Let βk = |Ik|/|I|, k = 1, 2. We have the following identity:[

〈ϕ2〉
I
− 〈ϕ〉2

I

]
−
[
〈(Cdϕ)2〉

I
− 〈Cdϕ〉2I

]
=β2

[
〈ϕ2〉

I2
− 〈ϕ〉2

I2

]
+ β1β2

[
〈ϕ〉

I2
− d
][
〈ϕ〉

I2
+ d− 2〈ϕ〉

I1

]
,
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which proves the lemma, because 〈ϕ〉
I1
≤ d ≤ 〈ϕ〉

I2
. �

Now, let ϕ ∈ BMOε(J) be a function bounded from above. Then, by the above

lemma, ϕn
def
= ϕ−n,∞ ∈ BMOε(J), and, according to (3.4), we have

B(〈ϕn〉J , 〈ϕ2
n〉J ) ≥ 〈eϕn〉

J
.

Since eϕ is a summable majorant for eϕn and B is continuous, we can pass to the limit
and obtain the estimate (3.4) for any function ϕ bounded from above. Finally, we
repeat this approximation procedure for an arbitrary ϕ. Now, we take ϕn = ϕ−∞,n
and use the monotone convergence theorem to pass to the limit in the right-hand side
of the inequality.

So, we have proved the inequality

B(xJ) ≥ 〈eϕ〉
J

for arbitrary ϕ ∈ BMOε(J). Taking supremum over all admissible test functions
corresponding to the point x, we get B(x) ≥ B(x). �

As before, we pass from the finite-difference inequality (3.1) to the infinitesimal
one:

(3.6)
d2B

dx2

def
=


∂2B

∂x2
1

∂2B

∂x1∂x2

∂2B

∂x1∂x2

∂2B

∂x2
2

 ≤ 0 ,

and we will require this Hessian matrix to be degenerate, i.e. det(d
2B
dx2 ) = 0. Again, to

solve this PDE, we use a homogeneity property to reduce the problem to an ODE.

Lemma 3.5 (Homogeneity). There exists a function G on the interval [0, ε2] such
that

B(x; ε) = ex1G(x2 − x2
1) , G(0) = 1 .

Proof. Let ϕ be an arbitrary test function and x = (〈ϕ〉
J
, 〈ϕ2〉

J
) its Bellman point on

J. Then the function ϕ̃
def
= ϕ + τ is also a test function with the same norm, and its

Bellman point is x̃ = (x1 + τ, x2 + 2τx1 + τ 2). Therefore,

B(x̃) = sup
ϕ̃
〈eϕ̃〉

J
= eτ sup

ϕ
〈eϕ〉

J
= eτB(x) .

Choosing τ = −x1 we get

B(x) = e−τB(x1 + τ, x2 + 2τx1 + τ 2) = ex1B(0, x2 − x2
1) .

Setting G(t) = B(0, t) completes the proof. �

Since G > 0, we can introduce g(t) = logG(t) and look for a function B of the
form

B(x1, x2) = ex1+g(x2−x2
1) .
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By direct calculation, we get

∂2B

∂x2
1

=
(
1− 4x1g

′ + 4x2
1(g′)2 − 2g′ + 4x2

1g
′′)B ,

∂2B

∂x1∂x2

=
(
g′ − 2x1(g′)2 − 2x1g

′′)B ,

∂2B

∂x2
2

=
(
(g′)2 + g′′

)
B.

The partial differential equation det(d
2B
dx2 ) = 0 then turns into the following ordinary

differential equation:(
1− 4x1g

′ + 4x2
1(g′)2 − 2g′ + 4x2

1g
′′) ((g′)2 + g′′

)
=
(
g′ − 2x1(g′)2 − 2x1g

′′)2
,

which reduces to
g′′ − 2g′g′′ − 2(g′)3 = 0 .

Dividing by 2(g′)3 (since we are not interested in constant solutions), we get(
1

g′
− 1

4(g′)2

)′
= 1 ,

which yields
1

g′
− 1

4(g′)2
= t+ const

or, equivalently,

−
(

1− 1

2g′

)2

= t+ const, ∀s ∈ [0, ε2] .

Since the left-hand side is non-positive, the constant cannot be greater than −ε2. Let
us denote it by −δ2, where δ ≥ ε.

Thus, we have two possible solutions:

1− 1

2g′±
= ±
√
δ2 − t .

Using the boundary condition g(0) = 0, we obtain

g±(t) =
1

2

∫ t

0

ds

1∓
√
δ2 − s

= log
1∓
√
δ2 − t

1∓ δ
±
√
δ2 − t∓ δ .

This yields two solutions for B :

B±(x) =
1∓

√
δ2 − x2 + x2

1

1∓ δ
exp

{
x1 ±

√
δ2 − x2 + x2

1 ∓ δ
}
.

Homework assignment.

(1) Check that the quadratic form of the Hessian is:

2∑
i,j=1

∂2B±
∂xi∂xj

∆i∆j = ∓

((
x1±

√
δ2−x2+x2

1

)
∆1− 1

2∆2

)2

√
δ2 − x2 + x2

1(1∓ δ)
exp
{
x1±

√
δ2−x2+x2

1 ∓ δ
}
.

(2) Find the extremal trajectories along which the Hessian degenerates.
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4. Homogeneous Monge–Ampère equation

Now, we change the subject of our consideration for a while and look for the
solutions of the equation

(4.1) Bx1x1Bx2x2 = (Bx1x2)
2

in a general setting.
Linear functions always satisfy (4.1). Since we are looking for the smallest possible

concave function B, it always will be linear, if a linear function satisfies the required
boundary conditions. It is a simple case, and in what follows we assume that B is
not linear. This means that in each point x of the domain there exists a unique (up

to a scalar coefficient) vector, say Θ(x), from the kernel of the matrix d2B
dx2 .

Let us check that functions Bxi are constant along the vector field Θ. The tangent

vector field to the level set f(x1, x2) = const has the form

(
−fx2

fx1

)
(it is orthogonal

to grad f =

(
fx1

fx2

)
). Thus, we need to check that the both vectors

(
−(Bxi)x2

(Bxi)x1

)
are

in the kernel of the Hessian (i.e. proportional the kernel vector Θ). This is a direct
consequence of (4.1). For example, for i = 1 we have:(

Bx1,x1 Bx1x2

Bx2x1 Bx2x2

)(
−(Bx1)x2

(Bx1)x1

)
=

(
−Bx1x1Bx1x2 +Bx1x2Bx1x1

−Bx2x1Bx1x2 +Bx2x2Bx1x1

)
= 0.

If we parameterize the integral curves of the field Θ by some parameter s we can

write Bxi
def
= ti(s), s = s(x1, x2). Any Bxi that is not identically constant can itself

be taken as s. However, usually it is more convenient to parameterize the integral
curves by some other parameter with a clear geometrical meaning.

Now, we check that the function t0
def
= B − x1t1 − x2t2 is also constant along the

integral curves. Since

− ∂t0
∂x2

= −Bx2 + x1
∂t1
∂x2

+ x2
∂t2
∂x2

+ t2 = x1Bx1x2 + x2Bx2x2

and
∂t0
∂x1

= Bx1 − t1 − x1
∂t1
∂x1

− x2
∂t2
∂x1

= −x1Bx1x1 − x2Bx1x2 ,

we have (
−(t0)x2

(t0)x1

)
= −x1

(
−(t1)x2

(t1)x1

)
− x2

(
−(t2)x2

(t2)x1

)
∈ Ker

d2B

dx2
.

So, we have proved that in the representation

(4.2) B = t0 + x1t1 + x2t2

of a solution of the homogeneous Monge–Ampère equation, the coefficients ti are
constant along the vector field generated by the kernel of the Hessian. Now we prove
that the integral curves of this vector field are in fact straight lines given by the
equation

(4.3) dt0 + x1dt1 + x2dt2 = 0 .
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This is, indeed, the equation of a straight line, because all the differentials are constant
along the trajectory. In a parametrization of the trajectories is chosen, this equation
can be rewritten as a usual linear equation with constant coefficients. For example,
let us take s = t0; then (4.3) turns into

1 + x1
dt1
dt0

+ x2
dt2
dt0

= 0 ,

where the coefficients dti
dt0

, being functions of t0, are constant on each trajectory.

Now, let us deduce equation (4.3). On one hand,

(4.4) dB = Bx1dx1 +Bx2dx2 = t1dx1 + t2dx2 .

On the other hand, from representation (4.2) we have

(4.5) dB = dt0 + t1dx1 + x1dt1 + t2dx2 + x2dt2 .

A comparison of (4.4) and (4.5) yields (4.3).

More details about solutions of the homogeneous Monge–Ampère equation, to-
gether with an example of its application to the John–Nirenberg inequality, can be
found in [12]. In the following section, we just consider this alternative method of find-
ing a candidate for the role of the Bellman function for the integral John–Nirenberg
inequality.

5. John–Nirenberg inequality, Part II

Let us now re-solve the Monge–Ampère boundary value problem for the John–
Nirenberg inequality using the method described in the previous section. We are
looking for a solution of the form B(x) = t0 + x1t1 + x2t2 satisfying the boundary
condition

(5.1) B(x1, x
2
1) = ex1

and the homogeneity condition

B(x1 + τ, x2 + 2τx1 + τ 2) = eτB(x) .

This time, instead of using this identity to reduce the number of variables, we differ-
entiate it with respect to τ,

∂B

∂x1

+ (2x1 + 2τ)
∂B

∂x2

= eτB(x) ,

and set τ = 0 :

t1 + 2x1t2 = t0 + x1t1 + x2t2 .

Thus, we obtain an equation of a straight line:

(5.2) (t0 − t1) + x1(t1 − 2t2) + x2t2 = 0 .

Since our B cannot be a linear function (a linear function cannot satisfy the boundary
condition), we have only one extremal line passing through a given point. Therefore,
this line must coincide with (4.3), which yields proportionality of the coefficients:

(5.3)
dt0

t0 − t1
=

dt1
t1 − 2t2

=
dt2
t2
.
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Using the second equality, we express t1 in terms of t2 :

t2dt1 = (t1 − 2t2)dt2

t2dt1 − t1dt2 = −2t2dt2

d
(t1
t2

)
= −2

dt2
t2

t1
t2

= −2 log |t2|+ 2c1

t1 = −2t2 log |t2|+ 2c1t2 .

Now, we use the equality between the first and third terms in (5.3):

t2dt0 = (t0 − t1)dt2

t2dt0 − t0dt2 = −t1dt2

d
(t0
t2

)
= −t1

t2

dt2
t2

= 2(log |t2| − c1)d log |t2|
= d(log2 |t2| − 2c1 log |t2|)

t0
t2

= log2 |t2| − 2c1 log |t2|+ c2

t0 = t2 log2 |t2| − 2c1t2 log |t2|+ c2t2 .

Dividing (5.2) by t2 gives(t0
t2
− t1
t2

)
+ x1

(t1
t2
− 2
)

+ x2 = 0.

Plugging into this equality the earlier expressions for t1 and t0, we get

(5.4)
(

log2 |t2|−2c1 log |t2|+c2 +2 log |t2|−2c1

)
+x1

(
−2 log |t2|+2c1−2

)
+x2 = 0 .

From this expression, it is clear that it is convenient to introduce a new parametriza-
tion of our extremal trajectories:

a = log |t2| − c1 + 1 .

The equation of the extremal trajectory (5.4) then takes the form

a2 − 2ax1 + x2 − 1 + c2 − c2
1 = 0 .

Since

c2
1 + 1− c2 = a2 − 2ax1 + x2 = (a− x1)2 + (x2 − x2

1) ≥ 0 ,

we can introduce a new positive constant δ
def
= (c2

1 + 1− c2)1/2. In this notation (5.4)
becomes

(5.5) x2 = 2ax1 − a2 + δ2 .

Note that this is an equation of the line tangent to the parabola x2 = x2
1 + δ2 at the

point (a, a2 + δ2).
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Now, let us collect everything and write down a formula for B :

t0 = (a2 − 2a+ 2− δ2)t2

t1 = −2(a− 1)t2

t2 = ±ea+c1−1 = cea

B = t0 + x1t1 + x2t2

= (a2 − 2a+ 2− δ2 − 2(a− 1)x1 + x2)t2

= 2c(1− a− x1)ea .

From the equation of the extremal line (5.5), we can express a as a function of x :

a = a(x) = x1 ±
√
δ2 − x2 + x2

1.

Therefore,

B(x) = 2c
(

1∓
√
δ2 − x2 + x2

1

)
exp

{
x1 ±

√
δ2 − x2 + x2

1

}
.

We find the constant c from the boundary condition (5.1), and we choose the sign by
checking the sign of the Hessian. Finally, we obtain

(5.6) B(x) =
1−

√
δ2 − x2 + x2

1

1− δ
exp

{
x1 +

√
δ2 − x2 + x2

1 − δ
}
.

Were we a bit more clever, we could realize from the beginning that any extremal
trajectory must touch the upper boundary tangentially, because, when splitting the
interval, a boundary point x can be split into x± only along the tangential direction.
With that realization all calculations become much simpler.

Indeed, take an extremal line given by (5.5). It intersects the lower boundary
x2 = x2

1 at two points (u, u2) with u = a∓ ε. Since B has to be linear on the extremal
line, we have

B(x) = k(u)(u− x1) + f(u),

where f(u) is the boundary value of B. We will not specify this value until the very
end of calculation. This will serve to demonstrate that knowing extremal trajectories
in advance allows one to solve some rather general problems, and not just this specific
one.

Let us calculate the partial derivative of B with respect to either coordinate, say x2 :

t2 = Bx2 =
(
k′(u)(x1 − u)− k(u) + f ′(u)

) ∂u
∂x2

.

Using (5.5), we get
∂u

∂x2

=
∂a

∂x2

=
1

2(x1 − a)

and

t2 =
1

2
k′(u) +

±εk′(u)− k(u) + f ′(u)

2(x1 − a)
.

Since t2 has to be constant on the extremal line, we conclude that

t2 =
1

2
k′(u)
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and the coefficient k satisfies the equation

∓εk′(u)− k(u) + f ′(u) = 0,

whose general solution is

k(u) = ±1

ε

∫ ±∞
u

e−|t−u|/εf ′(t) dt+ C±e
±u/ε .

(The same conclusion could be reached by considering Bx1 .) Let us not discuss at
this point why the constant C± should be chosen equal to zero, other than say that it
is a consequence of our trying to find the best possible estimate. Rewriting the last
formula for our case, f(u) = eu, we get

k(u) =
1

1∓ ε
eu ,

and, therefore,

B(x) = eu
(x1 − u

1∓ ε
+ 1
)

=
1∓

√
ε2 − x2 + x2

1

1∓ ε
exp

{
x1 ±

√
ε2 − x2 + x2

1 ∓ ε
}
.

Taking the upper sign throughout, we get (5.6) with δ = ε.

Homework assignment. To emphasize the dependence on parameter, let us refer to

the function (5.6) as B(x; δ). Check that B(x; ε) does not satisfy the main inequality in the

domain Ωε, but B(x; δ) does, provided δ ≥ 3
2
√

2
ε.

6. John–Nirenberg inequality, Part III

We now prove a geometric result that is crucial to applying the Bellman function
method to the usual, non-dyadic BMO (recall that up to this point all discussions
were about the dyadic space). Let [x, y] denote the straight-line segment connecting
two points x and y in the plane. Then we have the following lemma.

Lemma 6.1 (Splitting lemma). Fix two positive numbers ε, δ, with ε < δ. For an
arbitrary interval I and any function ϕ ∈ BMOε(I), there exists a splitting I =
I+ ∪ I− such that the whole straight-line segment [xI− , xI+ ] is inside Ωδ. Moreover,

the parameters of splitting α±
def
= |I±|/|I| are separated form 0 and 1 by constants

depending on ε and δ only, i.e. uniformly with respect to the choice of I and ϕ.

Proof. Fix an interval I and a function ϕ ∈ BMOε(I). We now demonstrate an
algorithm to find a splitting I = I− ∪ I+ (i.e. choose the splitting parameters α± =
|I±|/|I|) so that the statement of the lemma holds. For simplicity, put x0 = xI and
x± = xI± .

First, we take α− = α+ = 1
2

(see Fig. 1). If the whole segment [x−, x+] is in Ωδ, we
fix this splitting. Assuming it is not the case, there exists a point x on this segment
with x2 − x2

1 > δ2. Observe that only one of the segments, either [x−, x0] or [x+, x0],
contains such points. Denote the corresponding endpoint (x− or x+) by ξ and define
a function ρ by

ρ(α+) = max
x∈[x−, x+]

{x2 − x2
1} = max

x∈[ξ, x0]
{x2 − x2

1}.
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6

-

x−
x0

ξq q q
x2 = x2

1

x2 = x2
1 + ε2

x2 = x2
1 + δ2

Figure 1. The initial splitting: α− = α+ = 1
2
, ξ = x+.

By assumption, ρ
(

1
2

)
> δ2. We will now change α+ so that ξ approaches x0, i.e. we

will increase α+ if ξ = x+ and decrease it if ξ = x−. We stop when ρ(α+) = δ2

and fix that splitting. It remains to check that such a moment occurs and that the
corresponding α+ is separated from 0 and 1.

Without loss of generality, assume that ξ = x+. Since the function x+(α+) is
continuous on the interval (0, 1] and x+(1) = x0, ρ is continuous on [1

2
, 1]. We have

ρ
(

1
2

)
> δ2 and we also know that ρ(1) ≤ ε2 < δ2 (because x0 ∈ Ωε). Therefore, there

is a point α+ ∈
[

1
2
, 1
]

with ρ(α+) = δ2 (Fig. 2).
Having just proved that the desired point exists, we need to check that the corre-

sponding α+ is not too close to 0 or 1. If ξ = x+, we have α+ > 1
2

and ξ1 − x0
1 =

x+
1 −x0

1 = α−(x+
1 −x−1 ). Similarly, if ξ = x−, we have α− >

1
2

and ξ1−x0
1 = x−1 −x0

1 =
α+(x−1 − x+

1 ). Thus, |ξ1− x0
1| = min{α±}|x−1 − x+

1 |. For the stopping value of α+, the

6

-

q q qq q q q q
x2 = x2

1

x2 = x2
1 + ε2

x2 = x2
1 + δ2

x− x0 x−(ε)

y
x+(ε)

ξ x+(0)

x−(0)

Figure 2. The stopping time: [x−, ξ] is tangent to the parabola x2 =
x2

1 + ε2.



18

straight line through the points x−, x+, and x0 is tangent to the parabola x2 = x2
1 +δ2

at some point y. The equation of this line is, therefore, x2 = 2x1y1− y2
1 + δ2. The line

intersects the graph of x2 = x2
1 + s2 at the points

x±(s) =
(
y1 ±

√
δ2 − s2, y2 ± 2y1

√
δ2 − s2

)
.

Let us focus on the points x±(0) and x±(ε). We have

[x−(ε), x+(ε)] ⊂ [x0, ξ] ⊂ [x−, x+] ⊂ [x−(0), x+(0)]

and, therefore,

2
√
δ2 − ε2 = |x+

1 (ε)− x−1 (ε)| ≤ |x0
1 − ξ1| = min{α±}|x+

1 − x−1 |

≤ min{α±}|x+
1 (0)− x−1 (0)| = min{α±}2δ,

which implies √
1−

(ε
δ

)2

≤ α+ ≤ 1−
√

1−
(ε
δ

)2

.

As promised, this estimate does not depend on ϕ or I. �

From now on, we shall consider not the dyadic Bellman function B, but the “true”
one:

B(x; ε)
def
= sup

ϕ∈BMOε(J)

{
〈eϕ〉

J
: 〈ϕ〉

J
= x1, 〈ϕ2〉

J
= x2

}
.

The test functions now run over the ε-ball of the non-dyadic BMO.
Using the splitting lemma, we are able to make the Bellman induction work in the

non-dyadic case.

Lemma 6.2 (Bellman induction). If B is a continuous, locally concave function on
the domain Ωδ, satisfying the boundary condition (3.3), then B(x; ε) ≤ B(x) for all
ε < δ.

Proof. Fix a function ϕ ∈ BMOε(J). By the splitting lemma we can split every
subinterval I ⊂ J, in such a way that the segment [xI− , xI+ ] is inside Ωδ. Since B is
locally concave, we have

|I|B(xI) ≥ |I+|B(xI+) + |I−|B(xI−)

for any such splitting. Now we can repeat, word for word, the arguments used in the
dyadic case. If Dn is the set of intervals of n-th generation, then

|J |B(xJ) ≥ |J+|B(xJ+) + |J−|B(xJ−) ≥
∑
I∈Dn

|I|B(xI) =

∫
J

B(x(n)(s)) ds ,

where x(n)(s) = xI , when s ∈ I, I ∈ Dn. By the Lebesgue differentiation theorem we
have x(n)(s)→ (ϕ(s), ϕ2(s)) almost everywhere. (We have used here the fact that we
split the intervals so that all coefficients α± are uniformly separated from 0 and 1,
and, therefore, max{|I| : I ∈ Dn} → 0 as n → ∞). Now, we can pass to the limit
in this inequality as n → ∞. Again, first we assume ϕ to be bounded and, by the
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Lebesgue dominated convergence theorem, pass to the limit in the integral using the
boundary condition (3.3):

|J |B(xJ) ≥
∫
J

B(ϕ(s), ϕ2(s)) ds =

∫
J

eϕ(s)ds = |J |〈eϕ〉
J
.

Then using the cut-off approximation, we get the same inequality for an arbitrary
ϕ ∈ BMOε(J). �

Corollary 6.3.
B(x; ε) ≤ B(x; δ) ε < δ < 1 .

Proof. The function B(x; δ) was constructed as a locally concave function satisfying
boundary condition (3.3). �

Corollary 6.4.

(6.1) B(x; ε) ≤ B(x; ε) .

Proof. Since the function B(x; δ) is continuous with respect to the parameter δ ∈
(0, 1), we can pass to the limit δ → ε in the preceding corollary. �

Now, we would like to prove the inequality converse to (6.1). To this end, for
every point x of Ωε we construct a test function ϕ on any interval with BMO norm
ε, satisfying 〈eϕ〉 = B(x; ε), and such that its Bellman point is x (let us call such a
function an optimizer for the point x). This would imply the inequality B(x; ε) ≥
B(x; ε).

First, we construct an optimizer ϕ0 for the point (0, ε2). Without loss of generality,

we can work on I
def
= [0, 1]. Note that the function ϕa

def
= ϕ0 + a will then be an

optimizer for the point (a, a2 + ε2). Indeed, ϕa has the same norm as ϕ0, and if

〈eϕ0〉 = B(0, ε2; ε) =
e−ε

1− ε
,

then

〈eϕa〉 =
ea−ε

1− ε
= B(a, a2 + ε2; ε) .

The point (0, ε2) is on the extremal line starting at (−ε, ε2). To keep equality on each
step of the Bellman induction, when we split I into two subintervals I− and I+, the
segment [x−, x+] has to be contained in the extremal line along which our function
B is linear. Since x is a convex combination of x− and x+, one of these points, say
x+, has to be to the right of x. However, the extremal line ends at x = (0, ε2), and
so there seems to be nowhere to place that point. We circumvent this difficulty by
placing x+ infinitesimally close to x and using an approximation procedure. Where
should x− be placed? We already know optimizers for points on the lower boundary
x2 = x2

1, since the only test function there are constants. Thus, it is convenient to
put x− there. Therefore, we set

x− = (−ε, ε2) and x+ = (∆ε, ε2) ,

for small ∆. To get these two points, we have to split I in proportion 1 : ∆, that
is we take I+ = [0, 1

1+∆
] and I− = [ 1

1+∆
, 1]. To get the point x−, we have to put

ϕ0(t) = −ε on I−. On I+, we put a function corresponding not to the point x+, but
to the point (∆ε, (1+∆2)ε) on the upper boundary, which is close to x+ (the distance
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I+ I−

0 1
1+∆ 1

ϕ0(t) ≈ ϕ∆ε((1 + ∆)t) −ε

between these two points is of order ∆2). For such a point the extremal function is
ϕ∆ε(t) = ϕ0(t) + ∆ε. Therefore, this function, when properly rescaled, can be placed
on I+. As a result, we obtain

ϕ0(t) ≈ ϕ0

(
(1 + ∆)t

)
+ ∆ε ≈ ϕ0(t) + ϕ′0(t)∆t+ ∆ε ,

which yields

ϕ′0(t) = −ε
t
.

Taking into account the boundary condition ϕ0(1) = −ε, we get

ϕ0(t) = ε log
1

t
− ε .

Let us check that we have found what we need:

〈eϕ0〉
[0,1]

=

∫ 1

0

e−ε
dt

tε
=

e−ε

1− ε
= B(0, ε2; ε) .

It easy now to get an extremal function for an arbitrary point x in Ωε. First of all,
we draw the extremal line through x. It touches the upper boundary at the point
(a, a2+ε2) with a = x1+

√
ε2 − x2 + x2

1 and intersects the lower boundary at the point
(u, u2) with u = a− ε. Now, we split the interval [0, 1] in proportion (x1−u) : (a−x1)
and concatenate the two known optimizers, ϕ = u for the x− = (u, u2) and ϕ = ϕa
for x+ = (a, a2 + ε2). This gives the following function:

ϕ(t) =

{
ε log x1−u

t
+ u 0 ≤ t ≤ x1 − u

u x1 − u ≤ t ≤ 1
, where u = x1 +

√
ε2 − x2 + x2

1 − ε .

This is a function from BMOε satisfying the required property 〈eϕ〉
[0,1]

= B(x; ε) (see

the homework assignment below).
This completes the proof of the following theorem

Theorem. If ε < 1, then

B(x; ε) =
1−

√
ε2 − x2 + x2

1

1− ε
exp

{
x1 +

√
ε2 − x2 + x2

1 − ε
}

;

if ε ≥ 1, then B(x; ε) =∞.

Indeed, the second statement can be verified by the same extremal function ϕ,
because eϕ is not summable on [0, 1] for ε ≥ 1.

The first proof of the theorem above appeared in [5] and [10]; a complete proof of
this result together with the estimate from below (i.e. the lower Bellman function)
and consideration of the dyadic version of the problem can be found in [8] (the online
version of this paper is [9]).

Homework assignment 1. Verify the following properties of the extremal function ϕ :
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• 〈ϕ〉
[0,1]

= x1;
• 〈ϕ2〉

[0,1]
= x2;

• 〈eϕ〉
[0,1]

= B(x1, x2; ε);
• ϕ ∈ BMOε.

1

Homework assignment 2. Recall that we also obtained a second solution,

b(x; ε) =
1 +

√
ε2 − x2 + x2

1

1 + ε
exp
{
x1 −

√
ε2 − x2 + x2

1 + ε
}
.

Check that this is the solution of the following extremal problem:

b(x; ε) def= inf
ϕ∈BMOε(J)

{
〈eϕ〉J : 〈ϕ〉J = x1, 〈ϕ2〉J = x2

}
,

that is check that the Bellman induction works and construct an extremal function for every

x ∈ Ωε.

7. Dyadic maximal operator

Let us define the dyadic maximal operator on the set of positive locally summable
functions w, as follows:

(Mw)(t)
def
= sup

I∈DR, t∈I
〈w〉

I
.

We would like to estimate the norm of M as an operator acting from L2(R) to
L2(R). Even though the operator is defined on the whole line, we first localize its
action to a fixed dyadic interval J ; we will pass to all of R at the end. Thus, we are
looking for the function

B(x1, x2;L)
def
= sup

w≥0

{
〈(Mw)2〉

J
: 〈w〉

J
= x1, 〈w2〉

J
= x2, sup

I⊃J, I∈DR

〈w〉
I

= L

}
.

We need the “external” parameter L because M is not truly local: the value of Mw
on an interval J depends not only on the behavior of w on J, but also on that on
the whole line R. The function B depends on three variables, and each of them can
change when we split the interval of definition. Nevertheless, we will consider L as a
parameter. The reason will become clear a bit later.

As before, B does not depend on J. Its domain is

Ω
def
=
{

(x1, x2;L) : 0 < x1 ≤ L, x2
1 ≤ x2

}
,

or, if we consider L as a fixed parameter,

ΩL
def
=
{

(x1, x2) : 0 < x1 ≤ L, x2
1 ≤ x2

}
.

Lemma 7.1 (Main inequality). Take (x;L) ∈ Ω and let the points (x±;L±) ∈ Ω
be such that x = (x+ + x−)/2 and L± = max{x±1 , L}. Then the following inequality
holds :

(7.1) B(x;L) ≥ B(x+;L+) + B(x−;L−)

2
.

1Hint: Due to the cut-off lemma (Lemma 3.4), it is sufficient to check that log t ∈ BMO1, which

follows from 〈log2 t〉[c,d] − 〈log t〉2
[c,d]

= 1− cd
(d−c)2

(
log d

c

)2

.
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Proof. The proof is now standard. Fixing an interval J and a small number η > 0,
we take a pair of functions w± such that

B(x±;L±) ≥ 〈(Mw±)2〉
J±
− η

and set

w(t) =

{
w±(t), if t ∈ J±,
L, if t /∈ J .

Then w is a test function corresponding to the Bellman point (x;L) with (Mw)(t) =
(Mw±)(t) for t ∈ J±. Therefore,

B(x;L) ≥ 〈(Mw)2〉
J

=
1

2

(
〈(Mw+)2〉

J+
+ 〈(Mw−)2〉

J−

)
≥ 1

2

(
B(x+;L+) + B(x−;L−)

)
− η ,

which proves the lemma. �

Corollary 7.2 (Concavity). For a fixed L, the function B is concave on ΩL.

Proof. For any pair x± ∈ ΩL, we have L± = L and (7.1) becomes the usual concavity
condition. �

Corollary 7.3 (Boundary condition). If the function B is sufficiently smooth, then

(7.2)
∂B

∂L
(x;x1) = 0 .

Proof. First of all, we note that the definition of B immediately yields the inequality
∂B
∂L
≥ 0. Now, take an arbitrary point x on the boundary x1 = L and a pair x± such

that x = (x+ + x−)/2. Let ∆k = (x+
k − x−k )/2, k = 1, 2, and assume, without loss

of generality, that ∆1 > 0. Then x±k = xk ± ∆k and x−1 < x1 = L < x+
1 ; therefore,

L+ = x+
1 and L− = L. Writing the main inequality up to the terms of first order in

∆, we get

0 ≤ B(x;L)− 1

2

(
B(x+;L+) + B(x−;L−)

)
= B(x1, x2;x1)− 1

2

(
B(x1 + ∆1, x2 + ∆2;x1 + ∆1) + B(x1 −∆1, x2 −∆2;x1)

)
≈ B(x;x1)− 1

2

(
B(x;x1) + Bx1∆1 + Bx2∆2 + BL∆1 + B(x;x1)−Bx1∆1 −Bx2∆2

)
= −1

2
BL(x;x1)∆1 .

Since BL(x;x1) ≥ 0, the last inequality is possible only if BL(x;x1) = 0. �

Lemma 7.4 (Homogeneity). If the function B is sufficiently smooth, then

(7.3) B(x;L) =
1

2
x1Bx1 + x2Bx2 +

1

2
LBL .

Proof. As before, together with a test function w we consider the function w̃ = τw
for τ > 0. Comparing the Bellman functions at the corresponding Bellman points
gives us the equality

B(τx1, τ
2x2; τL) = τ 2B(x1, x2;L).

Differentiating this identity with respect to τ at the point τ = 1 proves the lemma. �
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Before we start looking for a Bellman candidate, let us state one more boundary
condition — in fact, the principal one.

Lemma 7.5 (Boundary condition).

(7.4) B(u, u2;L) = L2 .

Proof. The only test function corresponding to the point x = (u, u2) is the function
identically equal to u on the interval J. Hence, Mw is identically L on this interval. �

Remark 7.6. Note that the boundary x1 = 0 is not accessible, that is it does not
belong to the domain: if x1 = 0, w must be identically zero on J, which means that
x2 = 0. Therefore, no boundary condition can be stated on that boundary.

We are now ready to search for a Bellman candidate. To this end, we will, as
before, solve a Monge–Ampère boundary value problem. The arguments why we are
looking for a solution of the Monge–Ampère equation are the same as before: the
concavity condition forces us to look for a function whose Hessian is negative and the
optimality condition requires the Hessian to be degenerate.

Again, we are looking for a solution in the form

B(x) = t0 + x1t1 + x2t2

that is linear along extremal trajectories given by

dt0 + x1dt1 + x2dt2 = 0.

Let us parameterize the extremal lines by the first coordinate of their points of in-
tersection with the boundary x2 = x2

1. Since the boundary x1 = 0 is not accessible,
such an extremal line can either be vertical (i.e. parallel to the x2-axis) or slant to
the right, in which case it intersects the boundary x1 = L at a point, say, (L, v). (
A homework question: why can an extremal line never connect two points of the
boundary x2 = x2

1?)

6
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q

q

x2 = x2
1

Figure 3. The extremal trajectory passing through (u, u2) and (L, v)
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The former case is very simple. Since B is linear on each vertical line and satisfies
the boundary condition (7.4), it has the form

B(x;L) = k(x1, L)(x2 − x2
1) + L2.

Since Bx2x2 = 0 and the matrix Bxixj must be non-positive, we have Bx1x2 = kx1 = 0,
i.e. k does not depend on x1, k = k(L). Now we use the second boundary condition
BL(x1, x2;x1) = 0, which turns into k′(x1)(x2 − x2

1) + 2x1 = 0. The last equation has
no solution, therefore this case is impossible, at least in the whole domain ΩL.

Consider the latter case, when the extremal line goes from the bottom boundary
to the right boundary, as shown in the picture. The boundary condition (7.4) on the
bottom boundary gives us

(7.5) t0 + ut1 + u2t2 = L2,

and the condition (7.2) on the right boundary, together with (7.3), yields

(7.6) t0 + Lt1 + vt2 =
1

2
Lt1 + vt2.

From the last equation, we get

(7.7) t0 +
1

2
Lt1 = 0.

Now we differentiate (7.5),

(dt0 + udt1 + u2dt2) + (t1 + 2ut2)du = 0,

and use the fact that the point (u, u2) is on the trajectory, i.e. dt0 +udt1 +u2dt2 = 0.
Thus,

(t1 + 2ut2)du = 0.

This equations gives us two possibilities: either u = const, producing a family of
trajectories all passing through the point (u, u2), or t1 +2ut2 = 0. The first possibility
cannot give a foliation of the whole ΩL, since it would result in trajectories connect-
ing two points of the bottom boundary (an impossibility, by the earlier homework
question). Therefore, let us consider the second possibility, i.e.

(7.8) t1 + 2ut2 = 0.

Solving the system of three linear equations, (7.5), (7.7), and (7.8), of three variables
t0, t1, and t2, we obtain:

t0 =
L3

L− u
, t′0 =

L3

(L− u)2
,

t1 = − 2L2

L− u
, t′1 = − 2L2

(L− u)2
,

t2 =
L2

u(L− u)
, t′2 = −L

2(L− 2u)

u2(L− u)2
.

Now we can plug the derivatives of ti into the equation of extremal trajectories
dt0 + x1dt1 + x2dt2 = 0 :

(7.9)
L3

(L− u)2
− x1

2L2

(L− u)2
− x2

L2(L− 2u)

u2(L− u)2
= 0 ,
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or

x2 =
2u2

2u− L

(
x1 −

L

2

)
.

We see that this is a “fan” of lines passing through the point (L/2, 0). However,
those elements of this fan that intersect the “forbidden” boundary x1 = 0 cannot be
extremal trajectories. Therefore, the acceptable lines foliate not the whole domain
ΩL, but only the sub-domain x1 ≥ L/2. To foliate the rest, we return to considering
vertical lines. Earlier, we have refused this type of trajectories for the whole domain
ΩL, since the foliation so produced would not give a function satisfying the boundary
condition on the line x1 = L. However, such trajectories are perfectly suited for
foliating the sub-domain x1 ≤ L/2, especially because the boundary of the two sub-
domains, the vertical line x1 = L/2, fits as an element of both foliations. On this
line, we have

t0 = 2L2, t1 = −4L, t2 = 4,

and so

B(L/2, x2;L) = 2L2 − 4L(L/2) + 4x2 = 4x2.

As we have seen, the Bellman candidate on the vertical trajectories must be of the
form

B(x;L) = k(L)(x2 − x2
1) + L2.

To get B = 4x2 on the line x1 = L/2, we have to take k(L) = 4, which gives the
following Bellman candidate in the left half of ΩL :

B(x;L) = 4(x2 − x2
1) + L2.

To have an explicit formula for the Bellman candidate in the right half of ΩL, we
need an expression for u, which we find solving equation (7.9):

u =

√
x2L

√
x2 +

√
x2 − L(2x1 − L)

.

This yields

B(x;L) =
(√

x2 +
√
x2 − L(2x1 − L)

)2
.

Finally, our Bellman candidate in Ω is given by

(7.10) B(x;L) =

{
4(x2 − x2

1) + L2, 0 < x1 ≤ L
2
, x2 ≥ x2

1,(√
x2 +

√
x2 − L(2x1 − L)

)2
, L

2
≤ x1 ≤ L, x2 ≥ x2

1.

Now, we start proving that the Bellman candidate just found is indeed the Bellman
function of our problem.

Lemma 7.7. The function defined by (7.10) satisfies the main inequality (7.1).

Proof. Let us define a new function B̃ in the domain

Ω̃
def
= {x = (x1, x2) : x1 > 0, x2 ≥ x2

1} :

B̃(x;L)
def
=

{
B(x;L), 0 < x1 ≤ L, x2 ≥ x2

1,

B(x;x1), x1 ≥ L, x2 ≥ x2
1,
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or

B̃(x;L) =


4(x2 − x2

1) + L2, 0 < x1 ≤ L
2
, x2 ≥ x2

1,(√
x2 +

√
x2 − L(2x1 − L)

)2
, L

2
≤ x1 ≤ L, x2 ≥ x2

1.(√
x2 +

√
x2 − x2

1)
)2
, x1 ≥ L, x2 ≥ x2

1.

Let us calculate the first partial derivatives:

B̃x1(x;L) =



−8Lx1, 0 < x1 ≤ L
2
,

−2L
(

1 +

√
x2√

x2 − L(2x1 − L)

)
, L

2
≤ x1 ≤ L,

−2x1

(
1 +

√
x2√

x2 − x2
1

)
, x1 ≥ L, x2 ≥ x2

1.

B̃x2(x;L) =



4, 0 < x1 ≤ L
2
,(√

x2 +
√
x2 − L(2x1 − L)

)2

√
x2

√
x2 − L(2x1 − L)

, L
2
≤ x1 ≤ L,(√

x2 +
√
x2 − x2

1

)2

√
x2

√
x2 − x2

1

, L
2
≤ x1 ≤ L.

From these expressions we see that our function B̃ is C1-smooth. Since the second
derivative

B̃x1x1(x;L) =



−8L, 0 < x1 ≤ L
2
,

−
2L2√x2(

x2 − L(2x1 − L)
)3/2

, L
2
≤ x1 ≤ L,

−2
( √

x2√
x2 − x2

1

)3

− 2, x1 ≥ L, x2 ≥ x2
1,

is negative, one can check the concavity of B̃ in the domain Ω+
def
={x : x1 > 0, x2 ≥ x2

1}
by verifying that the determinant of the Hessian matrix is non-negative. We know that
this determinant is zero in ΩL and, therefore, need to calculate the second derivatives
of B̃ only in the domain x1 > L, where B̃(x1, x2) = B(x1, x2;x1). In this domain, we
have

B̃x1x2 =
x3

1√
x2

(
x2 − x2

1

)−3/2
,

B̃x2x2 = − x4
1

2x
3/2
2

(
x2 − x2

1

)−3/2
,

which yields

B̃x1x1B̃x2x2 − B̃2
x1x2

=
x4

1

x2(x2 − x2
1)2

+
x4

1

x
3/2
2 (x2 − x2

1)
3/2

> 0 .

The concavity just proved immediately implies (7.1). Indeed, we have proved that the
function B̃ is locally concave in each sub-domain of Ω+, as well as C1-smooth in the
whole domain; therefore, it is concave everywhere in Ω+. Furthermore, relation (7.1)
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is a special case of the concavity condition on the function B̃ : x− and x are in the
sub-domain ΩL, while x+ may be either in ΩL or the sub-domain x1 > L. �

Lemma 7.8 (Bellman induction). For any continuous function B satisfying the main
inequality (7.1) and the boundary condition (7.4), we have

B(x;L) ≤ B(x;L).

Proof. The proof is standard. First, we fix a test function w on R and a dyadic
interval J. This gives us a Bellman point (x;L). Then we start splitting the interval
J, while repeatedly applying the main inequality:

|J |B(x;L) ≥ |J+|B(xJ+ ;LJ+) + |J−|B(xJ− ;LJ−)

≥
∑
I∈Dn

|I|B(xI , LI) =

∫
J

B
(
x(n)(s);L(n)(s)

)
ds ,

where (x(n)(s);L(n)(s)) = (xI ;LI), when s ∈ I, I ∈ Dn. By the Lebesgue differentia-
tion theorem, we have x(n)(s) →

(
w(s), w2(s)

)
and by the definition of the maximal

function L(n)(s) → (Mw)(s) almost everywhere. For bounded w we can pass to the
limit and obtain

B(x;L) ≥ 〈(Mw)2(s)〉
J
.

Then, approximating, as before, an arbitrary test function w by its bounded cut-offs,
we get the same inequality for all w, which immediately gives the required property:
B(x;L) ≥ B(x;L). �

Corollary 7.9. For the function B given by (7.10), the inequality

B(x;L) ≥ B(x;L)

holds.

To prove the converse inequality, we need to construct an optimizer. However, in
the present setting we have no test function realizing the supremum in the definition
of the Bellman function. Thus, an optimizer will be given by a sequence of test
functions.

First, we construct an optimizer on (0, 1) for the point (L, v). The extremal line
passing through this point is x2 = v

L
(2x1 − L). It intersects the parabolic boundary

at the point (u, u2) with

u =
v −
√
v2 − L2v

L
=

L
√
v

√
v +
√
v − L2

.

We need to split the interval (0, 1) in half, which splits the Bellman point x = (L, v),
into a pair of points x±, x = (x−+ x+)/2. We use the homogeneity of the problem in
our construction. We know that the set of test functions for the point x̃ = (τx1, τ

2x2)
is the same as the set of test functions for the point x, each multiplied by τ. Therefore,
if w is an optimizer for the point x, then τw is an optimizer for x̃. Hence, for the
first splitting of x = (L, v), we take the right point x+ not on the continuation of the
extremal line, but on the parabola x2 = vL−2x2

1, which is tangent to our extremal
line at the point x. Then on the right half-interval (1

2
, 1) we can set the optimizer

to be proportional to the appropriately scaled copy of itself: w(t) = βw(2t − 1) for
t ∈ (1

2
, 1). What function do we need to take on the left half-interval? We can split the
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Figure 4. The extremal trajectory passing through (u, u2) and (L, v)
is tangent to the parabola x2 = vL−2x2

1

corresponding Bellman point along the extremal line in such a manner that the right
point x( 1

4
, 1
2

) returns to the initial point x = (L, v) and, therefore, w(t) = w(4t − 1)
for t ∈ (1

4
, 1

2
). Continuing in this fashion, we put w(t) = w(8t− 1) for t ∈ (1

8
, 1

4
) and

so on. We can assume that the first splitting was chosen in such a way that after n
steps the left point x− lands precisely on the boundary x2 = x2

1, and, therefore, on
the last interval (0, 2−n) we have to set the optimizer w to be constant. Finally, our
optimizing sequence will be given by

(7.11) wn(t) =


αnL 0 < t < 2−n,

wn(2kt− 1) 2−k < t < 2−k+1, 1 < k < n,

βnwn(2t− 1) 1
2
< t < 1.

Let us verify that this recurrent relation defines the sequence {wn} correctly. To
this end, let us introduce a sequence {wn,m} by induction:

wn,0(t) =

{
αnL 0 < t < 2−n,

0 2−n < t < 1;

wn,m(t) =


αnL 0 < t < 2−n,

wn,m−1(2kt− 1) 2−k < t < 2−k+1, 1 < k < n,

βnwn,m−1(2t− 1) 1
2
< t < 1.

We see that wn,m(t) = wn,m−1(t) for all t such that wn,m−1(t) 6= 0, and the measure of
the set where wn,m−1(t) = 0 is (1− 2−n)m, i.e. it tends to zero as m→∞. Therefore,
wn,m stabilizes almost everywhere as a sequence in m, and its limit wn satisfies the
recurrent relation (7.11).
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Now, let us calculate the values of the parameters αn and βn. We choose them to
get (L, v) as a Bellman point of wn :

L = 〈wn〉(0,1)= 2−nαnL+
(1

2
− 2−n

)
L+

1

2
βnL,

v = 〈w2
n〉(0,1)= 2−nα2

nL
2 +

(1

2
− 2−n

)
v +

1

2
β2
nv.

Solving this system yields

αn =
√

1 + 2−n+1

√
1 + 2−n+1 −

√
1− L2

v

L2

v
+ 2−n+1

−−−→
n→∞

v

L2

(
1−

√
1− L2

v

)
=
u

L
.

When solving the quadratic equation for αn, we chose the minus sign specifically to
get this limit. Choosing the plus sign would produce, instead of u, the first coordinate
of the second intersection point of the extremal line with the boundary x2 = x2

1.
Now, we need to calculate the maximal function for wn, which is a simple matter:

Mwn =
wn
αn

.

It is easy to check by induction in m that (Mwn,m)(t) = wn,m(t)

αn
for all t for which

wn,m(t) 6= 0. In the limit we obtain the required relation for Mwn.
Finally, we have

〈(Mwn)2〉 =
〈w2

n〉
α2
n

=
v

α2
n

−→ vL2

u2
=
(√

v +
√
v − L2

)2
= B(L, v;L) .

Thus, we have proved the inequality B(x;L) ≥ B(x;L) for x on the line x1 = L.
Now, take an arbitrary x ∈ ΩL with x1 > L/2. Let the extremal line passing through
this point intersect the two boundaries of ΩL at the points (u, u2) and (L, v) and
assume that the point x splits the segment between these two points in proportion
α : (1− α). Using the main inequality for B, linearity of B on the extremal line, and
the just-proved inequality B(L, v;L) ≥ B(L, v;L), we can write down the following
chain of estimates:

B(x;L) ≥ αB(L, v;L) + (1− α)B(u, u2;L)

= αB(L, v;L) + (1− α)L2

≥ αB(L, v;L) + (1− α)L2

= αB(L, v;L) + (1− α)B(u, u2;L) = B(x;L) .

We use the same trick to prove inequality B(x;L) ≥ B(x;L) for x1 ≤ L/2, except
now, instead of the vertical extremal line, we use a nearby line with a large slope.
Take a number ξ close to x1, ξ < x1, and take the line passing through x and (ξ, 0).
Let (u, u2) and (L, v) be the points where this line intersects the two boundaries of
ΩL. Then

v =
L− ξ
x1 − ξ

−−−→
ξ→x1

∞ , u =
2ξ
√
x2

√
x2 +

√
x2 − 4ξ(x1 − ξ)

−−−→
ξ→x1

x1 .
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The concavity of B implies that

B(x) ≥ x1 − u
L− u

B(L, v) +
L− x1

L− u
B(u, u2) ≥ x1 − u

L− u
(√

v +
√
v − L2

)2
+
L− x1

L− u
L2.

The limit of the second term in the last expression is L2. To calculate the limit of the
first term is a bit of work. First of all, note that(√

v +
√
v − L2

)2
= v
(

1 +

√
1− L2

v

)2

,

i.e. that term can be rewritten in the form

x1 − u
L− u

v
(

1 +

√
1− L2

v

)2

=
x1 − u
x1 − ξ

· L− ξ
L− u

x2

(
1 +

√
1− L2

v

)2

.

The limit of the expression in parentheses is 2, the second fraction tends to 1, and
for the first fraction we have

x1 − u
x1 − ξ

= 1− u− ξ
x1 − ξ

= 1− u2

x2

−−−→
ξ→x1

1− x2
1

x2

.

In the end, we have

B(x;L) ≥
(
1− x2

1

x2

)
· x2 · 4 + L2 = 4x2 − 4x2

1 + L2 = B(x;L) .

Thus, we have proved the following lemma.

Lemma 7.10.

B(x;L) ≥ B(x;L).

Taken together, this lemma and Corollary 7.9 prove the following theorem:

Theorem 7.11.

B(x;L) =

{
4(x2 − x2

1) + L2, 0 < x1 ≤ L
2
, x2 ≥ x2

1,(√
x2 +

√
x2 − L(2x1 − L)

)2
, L

2
≤ x1 ≤ L, x2 ≥ x2

1.

The Bellman setup of the problem discussed in this section was first stated in [4],
the Bellman function above was found in [3] without solving the Monge–Ampère
equation and without using the Bellman function method at all. The consideration
presented here appears in [7] (an initial version in [6]).

Homework assignments:

(1) Show that this theorem implies that

‖Mw‖L2(R) ≤ 2‖w‖L2(R).

(2) Follow the same steps to find the Bellman function for the dyadic maximal operator
on Lp, for p > 1.
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