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Abstract – Although the synthesis of symmetrical dual-band bandpass filters has been studied in the literature, very 

little seems to be known about the general asymmetrical case. In this paper, a procedure for the synthesis of 

asymmetrical dual-band bandpass filters implemented with in-line dual-mode cavities is proposed. The latter starts 

with the determination of a filtering characteristic fulfilling the electrical specifications in the spectral domain by 

means of an optimization scheme. As to the coupling topology, the in-line architecture that is intended for the 

hardware realisation, as well as the asymmetrical nature of the response, lead naturally to the choice of an extended 

box topology or its variants. It was recently shown that these topologies possess the property of multiple solutions, 

meaning that the related coupling matrix synthesis problem admits several solutions. On one hand, this multiplicity 

offers some  additional flexibility to the designer, but on the other hand, working with multiple solutions may lead to 

ambiguities during the tuning process. Our procedure takes the best of both worlds : after an exhaustive synthesis 

step yielding a list of equivalent coupling matrices, simplifications of the original topology are obtained by cancelling 

some particular couplings. The locations of cancelled couplings are chosen so as to preserve the electrical response 

and to provide some important hardware simplifications. It is also shown that the resulting simplified coupling 

topology no longer has the multiple solution property, solving ambiguity problems that might occur during the tuning 

step. The procedure is demonstrated on two examples of 11-pole asymmetrical dual-band bandpass filters. A 

numerical model driven by a coupling matrix extraction process is used to determine the geometrical dimensions. 

Finally an experimental prototype is built in order to validate our design approach. 

Index Terms – microwave filters, circuit synthesis, coupling matrix, dual band filters 

I. INTRODUCTION 

The demand for advanced filtering functions has considerably increased with the development of space 

telecommunications. For example, in satellite communication systems, highly selective transfer functions with 

self-equalised group delays are required for IMUX channels. Another emerging application in this domain is the 

design of dual-band bandpass filters used to transmit non-contiguous channels to the same geographical region 

through one beam [1]. In this case, a single high power amplifier (HPA) can be used together with the dual-band 

bandpass filter, dramatically simplifying the system architecture. 

An approach for implementing such a circuit consists of designing two classical single-band bandpass filters, one 

for each passband. Their input/output ports are then connected together through waveguide junctions. However, 

this approach leads to a complex design procedure since waveguide junctions and filters have to be optimised 

together to comply with the mechanical constraints. Indeed, each channel must have the same length and 

input/output waveguide ports must have the same orientation. Another approach consists of designing a single 

circuit realising the dual-band characteristic. This straightforward approach requires the synthesis of an advanced 

filtering function but makes the hardware implementation easier since a classical filter architecture can be used. 

Narrow-band filters, dedicated to space applications, are generally implemented using cavities or resonators 

since they offer better performances in terms of losses and power handling. For reducing mass and volume, these 

resonant elements are often excited on dual-modes. Furthermore, non-adjacent couplings between resonant 

elements are generally required in order to add transmission zeroes to the transfer function for improving the 

selectivity and/or flattening the group delay. A practical way to implement a filter with dual-mode cavities, while 

permitting non-adjacent couplings, is the in-line architecture which consists of connecting dual-mode cavities in 

a row. The latter architecture is used in this work for implementing asymmetrical dual-band bandpass filters. 

The synthesis of a microwave filter starts with the selection of a transfer function that fulfils the electrical 

specifications. For single-band filtering characteristics, quasi-elliptic polynomial functions given by explicit 

formulas are widely employed [2]. For symmetrical dual-band characteristics of even degree and with an even 

number of transmission zeroes, the latter formulas may be adapted by means of frequency transformations [3]. 



This is no longer the case for more general situations and gets designers to use direct optimisation methods [1], 

[4]-[6]. In this work, a local optimisation method is applied where the starting point is computed from the quasi-

elliptic synthesis of each individual channel. 

In a second step, an equivalent lumped element network is synthesized in order to realize the selected transfer 

function. The equivalent network is characterised by its coupling topology specifying the distribution of zero and 

non-zero couplings between resonators. The latter has obviously to be consistent with the filter architecture, as 

well as with the transfer function it is supposed to realise. The main difficulty comes here from the conflicting 

requirements of the design, on one hand, a topology able to realise several asymmetric transmission zeroes, 

while on the other hand, the latter should remain simple enough to admit a classical hardware implementation. In 

our case, the hardware implementation is an in-line dual-mode cavity architecture ideally with no cross 

couplings. This will lead to considering the use of extended box coupling topologies [7], as well as their 

extensions in order to synthesise some extra transmission zeroes. For these topologies, it was shown recently that 

the number of solutions to the coupling matrix synthesis problem is high [8]. The current work demonstrates 

how to use this extra flexibility by providing rules to be applied in order to obtain significant simplifications of 

the original topology while keeping the electrical response nearly unchanged. The latter translates into hardware 

simplifications like transformation of cross-irises into single-arm irises or realignment of irises with respect to 

the cavities. Such a simplification approach has been employed in [9] for implementing a symmetrical filter 

architecture while realising an asymmetrical single-band transfer function. 

Finally, the proposed approach is also consistent with numerical modelling techniques which are often used by 

designers. These methods are used along with a coupling matrix extraction algorithm [10]-[13]: this allows 

driving the tuning process, so as to converge towards a device implementing the ideal coupling matrix. 

Nevertheless, when working with topologies which admit multiple solutions, the latter coupling matrix 

extraction step returns a list of several equivalent coupling matrices. This leaves the difficult task of choosing the 

right one to the designer and thus represents the main drawback of topologies with multiple solutions. The 

current work shows how hardware simplifications obtained in the preceding step of our procedure solve the 

addressed ambiguity and allow to use a tuning process based on a well-posed coupling matrix extraction 

problem. 

The approach is illustrated by the design of two asymmetrical dual-band filters at Ka-band. In the first part, an 

11-pole dual-band bandpass filter with 4 transmission zeroes is designed. The synthesis procedure is presented 

from the determination of the characteristic function, up to the simplified network construction. The latter 

network allows the simplification of cross irises into single-arm irises without any notable effect on the circuit 

behaviour. A numerical model and an experimental model are also investigated in order to demonstrate the 

efficiency of the proposed approach. In the second part, the approach is repeated, synthesising an 11-pole dual-

band bandpass filter with 5 zeroes. Here the simplified network allows re-aligning of all the distributed elements 

for an easier hardware implementation of the in-line dual-mode cavity filter. 

II. DESIGN OF AN 11 POLE-4 ZERO DUAL-BAND BANDPASS FILTER 

The electrical specifications of the dual-band bandpass filter to be designed are : 

 - a first passband centred at 18.362-GHz, with a 39-MHz bandwidth, 

 - a second passband centred at 18.508-GHz, with a 78.5-MHz bandwidth. 

A 20-dB return loss in each passband and a 10-dB insertion loss in the intermediate stopband are required. An 

insertion loss greater than 25-dB is also desired in the lower and upper stopbands. 

Starting from these electrical specifications, the transfer and reflection functions of the dual-band filter are 

calculated. 

A. Characteristic function selection 

The characteristic function D(s) can be written as a polynomial rational function : 
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where  sri and spi are respectively the normalised reflection and transmission zeroes, 

  N is the number of reflection zeroes, i.e. the order of the filtering function and  

  Nz is the number of transmission zeroes. 

The modulus of the transfer function admits the following simple expression in terms of its characteristic 

function : 
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where ε is an adjustable real parameter. 

Applying the procedure described in [6], the initial dual-band characteristic function is constructed from two 

single-band functions. In our case, the lower passband is realised with a 5
th
 order quasi-elliptic function and the 

upper passband is realised with a 6
th
 order quasi-elliptic function. Each single-band characteristic function 

presents 2 transmission zeroes for improving the selectivity in the stopbands. 

As a result, the dual-band characteristic function is initialised with 4 transmission zeroes and 11 reflection 

zeroes. The initial reflection and transmission zeroes are then slightly retuned in order to improve the 

transmission feature (2) within the two passbands, leading to the following normalised values : 

   

1 063 0 565 0.205 1 063

0 996 0 943 0 823 0 682 0 610

0 261 0 354 0 557 0 774 0 922 0 985

p1 p2 p3 p4

r1 r 2 r3 r 4 r5

r6 r7 r8 r 9 r10 r11

s j  . , s j  . , s j  , s j  . ,

s j  . , s j  . , s j  . , s j  . , s j  . ,

s j  . , s j  . , s j  . , s j  . , s j  . , s j  .

= − = − = =
= − = − = − = − = −
= = = = = =

 (3) 

with ε = 47. 
The transfer and reflection functions corresponding to these values are presented in figure 1. 
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Fig.1 – Ideal transfer () and reflection (---) functions 

B. Exact synthesis 

An equivalent lumped element network that realises the previous transfer function is now synthesised. The 

related coupling topology has to be adapted to the exact synthesis of the desired asymmetrical characteristic, as 

well as compatible with the in-line dual-mode cavity architecture. The extended box topology presented in Fig. 2 

meets our requirements since this coupling topology allows to realise any asymmetrical transfer function of order 

11 with 4 transmission zeroes. 
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Fig.2 – Coupling topology realising 11 pole-4 zero transfer functions 

The exhaustive synthesis method presented in [8] is applied in order to determine all the coupling matrices that 

correspond to the previous coupling topology. The method is based on computations that solve exhaustively an 

algebraic system of equations related to the synthesis problem.  

Generically, an 11-pole 4-zero transfer function can be realised in 384 manners with the above coupling 

topology. This theoretical number, called the reduced order, is the number of complex solutions to the synthesis 

problem and does not depend on the considered filtering characteristic (only on the coupling topology). 



Nevertheless, the number of real solutions, i.e. the only ones of physical interest, depends on the numerical 

values of the characteristic polynomials. For our particular filtering characteristic, 66 real solutions are found. 

Theoretically, any solution among these 66 ones could be chosen to design the filter. But our goal is now to 

simplify the initial coupling topology by cancelling one or several couplings without severely affecting the 

electrical response. To this end, some rules have to be observed when seeking to simplify the coupling topology: 

− the number of couplings in the shortest coupling path, between source and load, has to be preserved in 

order to keep the number of transmission zeroes constant, 

− couplings corresponding to irises are cancelled in priority, since couplings realised with screws can 

hardly be completely set to zero in practice because of remaining residual couplings. 

The latter rule indicates that starting from the coupling diagram in Fig. 3, our simplification will apply only to 

cancel one or several horizontal couplings. The shortest path rule imposes some conditions on cancellable 

horizontal couplings. For example, if coupling M14 (between resonators 1 and 4) is cancelled, all the couplings in 

the inferior path (M23, M36, M67, M710) needs to remain non zero. 

C. Approximate synthesis with a simplified network  

Following latter rules, solutions with low cross couplings M14 and M58 are explored. A good candidate, out of all 

66 matrices is the following matrix : 

Rin = Rout = 0.563 

0 115 0 773 0 0 079 0 0 0 0 0 0 0

0 773 0 142 0 521 0 0 0 0 0 0 0 0

0 0 521 0 221 0 514 0 0 264 0 0 0 0 0

0 079 0 0 514 0 296 0 697 0 0 0 0 0 0

0 0 0 0 697 0 305 0 425 0 0 094 0 0 0

0 0 0 264 0 0 425 0 318 0 507 0 0 0 0

0 0 0 0 0 0 507 0 323 0 189 0 0 390 0

0 0 0 0 0 094 0 0

. . .

. . .

. . . .

. . . .

. . . .

. . . .

. . . .

.

− −

− −
−

−
−

−
189 0 482 0 314 0 0

0 0 0 0 0 0 0 0 314 0 101 0 267 0

0 0 0 0 0 0 0 390 0 0 267 0 144 0 777

0 0 0 0 0 0 0 0 0 0 777 0 115

. . .

. . .

. . . .

. .

 
 
 
 
 
 
 
 
 
 
 −
 
  − 
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The cancellation of M14 and M58 modifies the resulting transfer and reflection functions as shown in Fig. 3. But 

compensating this effect with the remaining couplings, the original transfer function is almost recovered as 

shown in Fig. 4. The coupling topology is the one presented in Fig. 5 and the final coupling matrix is then : 

Rin = Rout = 0. 571 

0 106 0 781 0 0 0 0 0 0 0 0 0

0 781 0 147 0 476 0 0 0 0 0 0 0 0

0 0 476 0 243 0 478 0 0 267 0 0 0 0 0

0 0 0 478 0 315 0 725 0 0 0 0 0 0

0 0 0 0 725 0 313 0 422 0 0 0 0 0

0 0 0 267 0 0 422 0 320 0 555 0 0 0 0

0 0 0 0 0 0 555 0 297 0 149 0 0 399 0

0 0 0 0 0 0 0 149 0 472 0 300 0 0

0 0

. .

. . .

. . . .

. . .

. . .

. . . .

. . . .

. . .

−

− −

−
−

−

0 0 0 0 0 0 300 0 113 0 245 0

0 0 0 0 0 0 0 399 0 0 245 0 130 0 787

0 0 0 0 0 0 0 0 0 0 787 0 106

. . .

. . . .

. .

 
 
 
 
 
 
 
 
 
 
 −
 
  − 
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Our approach leads to the simplification of two cross coupling irises into single-arm irises. Moreover, the tuning 

process through coupling matrix extraction will be simplified since the reduced order of the simplified topology 

is one as computed with methods detailed in [8]. More precisely, the previous simplified topology does not allow 

to realise all the transfer functions of 11
th
 order with 4 transmission zeroes but, when the latter is a realisable one, 

there corresponds only one coupling matrix. In other words, the original transfer function in Fig. 1 can not be 

realised exactly with the simplified coupling topology, but the approximate transfer function in Fig. 4 can only 

be realised with the coupling matrix in (5). 

 



 

Fig.3. – Transfer () and reflection (---) functions when couplings M14 and M58 are neglected (no compensation) 

 

Fig.4. – Approximate transfer () and reflection (---) functions (neglected couplings M14 and M58 are 

compensated) 
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Fig.5 – Simplified coupling topology leading to the 11 pole-4 zero approximate transfer function in figure 4 

D. Electromagnetic optimisation 

The electromagnetic model of the in-line dual-mode cavity filter is presented in Fig. 6. 

The filter is designed for the TE113 mode, applying the electromagnetic optimisation procedure presented in [10]. 

Each electromagnetic analysis is followed by a coupling matrix extraction step yielding some corrections on the 

modelled geometrical dimensions. 

The transfer and reflection functions obtained from the electromagnetic model are given in Fig. 7. The numerical 

model behaviour is slightly different from the ideal one since parasitic couplings between resonant elements 

have been compensated [14]. 



 

Fig.6 – Electromagnetic model of the 11-pole 4-zero asymmetrical dual-band bandpass filter 

 

 

Fig.7 – Transfer () and reflection (---) functions obtained with the electromagnetic model 

E. Measurements 

The filter has been built and tested. A picture of the realised prototype is presented in Fig. 8. 

 

Fig.8 – Picture of the realised dual-band bandpass filter 

The measured transfer and reflection functions are presented in Fig. 9. A good agreement is achieved between 

theory and measurement, validating our design approach with simplified coupling topologies.  



 

Fig.9 – Experimental transfer () and reflection (---) functions 

III. SYNTHESIS OF AN 11 POLE-5 ZERO DUAL-BAND BANDPASS FILTER 

In order to deepen the intermediate stopband, a 5
th
 transmission zero is added to the transfer function. The 

insertion loss in the intermediate stopband is then specified to be 25-dB. The previous synthesis procedure is 

repeated. 

A. Characteristic function selection 

Applying the same method, the following transmission and reflection zeroes are computed : 

   

1 065 0 515 0.153 0161 1 067

0 996 0 940 0 818 0 683 0 610

0 261 0 346 0 532 0 753 0 915 0 98

p1 p2 p3 p4 p5

r1 r 2 r3 r4 r 5

r6 r7 r8 r9 r10 r11

s j  . , s j  . , s j  , s j  . , s j  . ,

s j  . , s j  . , s j  . , s j  . , s j  . ,

s j  . , s j  . , s j  . , s j  . , s j  . , s j  .

= − = − = − = =
= − = − = − = − = −
= = = = = = 5

 (6) 

with ε = 40. 
The transfer and reflection functions corresponding to these values are presented in Fig. 10. 
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Fig.10. – Ideal transfer () and reflection (---) functions 

B. Exact synthesis 

In order to realise and adjust an additional transmission zero, the extended-box topology needs to be modified 

while keeping in mind the following facts : 



− one degree of freedom, i.e. one extra coupling, must be added to the actual extended box topology in 

order to enable to adjust the position of the new transmission zero, 

− the shortest path between resonators 1 and 11 in the new coupling topology must be of length 5 to 

satisfy the minimum path rule. 

The latter requirements are met by the coupling topology in Fig. 11 by adding cross-coupling M911 to the original 

extended box (Fig. 2). This coupling topology allows to realise any transfer function of order 11 with 5 

transmission zeroes. 
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Fig.11 – Coupling topology realising 11 pole-5 zero transfer functions 

The reduced order of this topology is found to be 963, and applying an exhaustive synthesis from the selected 

transfer function leads to 81 real coupling matrices. 

The cross-coupling M911 is the main problem of the above coupling topology as an angle is necessary between 

the last coupling iris and the last cavity in order to realise it. Our approach will therefore focus on simplifications 

of the coupling topology that allow a realisation with aligned irises and cavities. 

Obviously, the rules given for the first example still hold valid. However, one can note that now the shortest 

coupling path is unique. Consequently, none of the following couplings M14, M45, M58, M89 and M911 can be 

cancelled. 

In order to recover an aligned architecture, a possible way is to suppress coupling M1011. Indeed the latter 

cancellation will lead to the simplified coupling topology presented in Fig. 12, 
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Fig.12 – Simplified coupling topology proposed for realising the 11 pole-5 zero approximate transfer function 

C. Approximate synthesis with a simplified network 

Following our approach based on approximate synthesis, solutions with low cross coupling M1011 are 

investigated. The following coupling matrix is then a good candidate : 

Rin = Rout = 0. 563 

0 116 0 352 0 0 694 0 0 0 0 0 0 0

0 352 0 588 0 309 0 0 0 0 0 0 0 0

0 0 309 0 612 0 046 0 0 262 0 0 0 0 0

0 694 0 0 046 0 332 0 308 0 0 0 0 0 0

0 0 0 0 308 0 038 0 653 0 0 311 0 0 0

0 0 0 262 0 0 653 0 166 0 174 0 0 0 0

0 0 0 0 0 0 174 0 813 0 074 0 0 152 0

0 0 0 0 0 311 0 0

. . .

. . .

. . . .

. . . .

. . . .

. . . .

. . . .

.

− −
−

−
−

− −

− 074 0 461 0 430 0 0

0 0 0 0 0 0 0 0 430 0 146 0 198 0 778

0 0 0 0 0 0 0 152 0 0 198 0 726 0 004

0 0 0 0 0 0 0 0 0 778 0 004 0 116

. . .

. . . .

. . . .

. . .

 
 
 
 
 
 
 
 
 

− 
 
 −
  − − 

 (7) 

Considering this late matrix, couplings M34 and M78 have also weak values and should also be cancelled 

applying the approximate synthesis; but since these couplings are implemented with coupling screws, they are 

preserved in the simplified coupling topology. 

Neglecting the coupling M1011, the resulting transfer and reflection functions are only slightly modified, and by 

compensating with the remaining couplings, the original transfer function is recovered as shown in Fig. 13. The 

final coupling matrix, which is consistent with the coupling topology presented in figure 12, is then : 



Rin = Rout = 0.563 

0 116 0 352 0 0 694 0 0 0 0 0 0 0

0 352 0 588 0 309 0 0 0 0 0 0 0 0

0 0 309 0 612 0 046 0 0 262 0 0 0 0 0

0 694 0 0 046 0 331 0 307 0 0 0 0 0 0

0 0 0 0 307 0 038 0 653 0 0 311 0 0 0

0 0 0 262 0 0 653 0 166 0 174 0 0 0 0

0 0 0 0 0 0 174 0 813 0 075 0 0 152 0

0 0 0 0 0 311 0 0

. . .

. . .

. . . .

. . . .

. . . .

. . . .

. . . .

.

− −
−

−
−

− −

− 075 0 460 0 430 0 0

0 0 0 0 0 0 0 0 430 0 145 0 196 0 778

0 0 0 0 0 0 0 152 0 0 196 0 727 0

0 0 0 0 0 0 0 0 0 778 0 0 116

. . .

. . . .

. . .

. .

 
 
 
 
 
 
 
 
 

− 
 
 
  − 
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Applying this approach, the hardware implementation is highly simplified since all the irises and cavities are 

aligned. Moreover, the tuning process through coupling matrix extraction will be also simplified since here again 

the reduced order of our simplified topology is found to be one. 

 

Fig.13. – Approximate transfer () and reflection (---) functions (neglected coupling M1011 is compensated) 

IV. CONCLUSION 

This paper presents an approach based on equivalent network simplification for the synthesis and the design of 

asymmetrical dual-band bandpass filters implemented with in-line dual-mode cavities. The first step involves an 

exact and exhaustive synthesis yielding a list of equivalent coupling matrices which are consistent with the 

extended box coupling topology or variations of it. In a second step, the proposed approach takes advantage of 

the multiple solution property of these coupling topologies by providing some rules for selecting a coupling 

matrix to be used as the starting point for an approximate synthesis procedure. The approximate synthesis allows 

then some substantial simplifications of the initial coupling topology by cancelling one or several weak 

couplings between resonators. The simplified coupling topology makes the hardware implementation easier and 

also solves ambiguity problems that may occur during the tuning phase by restoring the well-posedness of the 

coupling matrix extraction step. 

The proposed approach is applied to synthesise and to design two asymmetrical dual-bandpass filters 

implemented with in-line dual-mode cavities. When applied to an 11-pole 4-zero microwave filter, the proposed 

approach allows to replace two cross irises by single-arm irises when compared with an exact synthesis. A 

numerical model and an experimental prototype of this filter have been fabricated in order to validate the 

theoretical results. The approach is repeated with an 11-pole –5-zero microwave filter and the approximate 

synthesis allows to realign all the distributed elements with respect to an exact synthesis. 
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