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Abstract — In this paper a new approach to the synthesigf
coupling matrices for microwave filters is presentd. The new
approach represents an advance on existing direct nd
optimization methods for coupling matrix synthesisin that it will
exhaustively discover all possible coupling matrixsolutions for a
network if more than one exists. This enables a lsetion to be
made of the set of coupling values, resonator fregmcy offsets,
parasitic coupling tolerance etc that will be bestsuited to the
technology it is intended to realize the microwavélter with. To
demonstrate the use of the method, the case of tmecently —
introduced ‘extended box’ (EB) coupling matrix confguration is
taken. The EB represents a new class of filter c@iguration
featuring a number of important advantages, one oWhich is the
existence of multiple coupling matrix solutions foreach prototype
filtering function, eg 16 for 8" degree cases. This case is taken as
an example to demonstrate the use of the synthesisethod —
yielding one solution suitable for dual-mode realiation and one
where some couplings are small enough to neglect.

Index Terms — Coupling matrix, filter synthesis, Groebner
basis, inverted characteristic, multiple solutions.

|. INTRODUCTION

In reference [1], a synthesis method for the ‘Bacti®n’
configuration for microwave filters was introducedBox
sections are able to realize a single transmisgon each, and
have an important advantage that no ‘diagonalrirésonator
couplings are required to realize the asymmetrim,z@s
would the equivalent trisection. Also the frequenc
characteristics are reversible by retuning therratws alone,
retaining the same values and topology of the -regsonator
couplings.

The first feature leads to particularly simple daugp
topologies, and is suitable for realization in tlegy compact
waveguide or dielectric dual-mode resonator cavityilst the
ability to reverse the characteristics by retunmgkes the
box-filter useful for diplexer applications, thensa structure
being usable for the complementary characteristidbe two
channel filters.

Reference [1] continued on to introduce the extdnidex
configuration for filter degreesN > 4, able to realize a
maximum of N—2)/2 (N even) or N-3)/2 (N odd) symmetric
or asymmetric transmission zeros. Fig. 1 givesrneBvorks
of even degree 4 (basic box section), 6, 8 andti@wing the
particularly simple ladder network form of the EB
configuration. In each case, the input and ougmet from
opposite corners of the ladder network. The EBvogk also
retains the property of giving lateral inversiortloé frequency
characteristics by retuning of the resonators alone
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Fig. 1. Coupling and routing diagrams for extende section
networks: (a) # degree (basic box section) (4} Begree (c) 8
degree (d) 10degree.

The prototype coupling matrix for the EB networkynize
easily synthesized in the folded or ‘arrow’ formdowever it
appears that there is no simple closed form equatip
procedure that may be used to transform the folitedrrow
coupling matrix to the EB form. In [1] a method sa
described which is essentially the reverse of tleaegal
sequence that reduces any coupling matrix to thieedoform,
for which a regular sequence of rotation pivots amgjles
does exist. Using this method means that somleeofdtation
angles cannot be determined by calculation from phe
transform coupling matrix (as can be done from‘tbevard
method’) and so they have to be determined by dgdithon.
Other methods (eg. [2]) are also known to produselation.

Although most target CM configurations (eg propaggtn-
line) have one or two unique solutions, the EB iguration is
distinct in having multiple solutions, all returgirexactly the
same performance characteristics under analysisthas
original prototype folded or arrow configuration. The
solutions converged upon by existing optimizatioetmods



tend to be dependent upon the starting values givetine
coupling values or rotation angles, and it can nebe
guaranteed that all possible solutions have beendfo This
paper describes a new method making use of comailgtelora
techniques that exhaustively discovers all thetswig for the
given CM topology for the coupling elements, inchgithose
with complex values (which of course are discarfteth the
solutions considered for the realization of thedkare).

Having a range of solutions enables a choice tmbade of
the coupling value set most suited to the technpolitgis
intended to realize the filter with. Consideraidnfluencing
the choice include ease of the design of the cog@iements,
minimization of parasitic couplings or resonatoeduency
offsets. Some of the CM solutions may contain togp
elements with values small enough to be ignorechowit
damage to the overall electrical performance offiter, so
simplifying the manufacture and tuning processes.

In the following section a general proof will besgn for the
inversion of the frequency characteristics of amogk. This
is followed by a description of the multi-soluti@ynthesis
method, applicable to the EB network and others sbaport
multiple solutions. Finally an example is taken af

asymmetric 8 degree characteristic with 3 transmission zerosthe network’s response with frequency.

suitable for realization in dual-mode waveguidedalectric
resonator cavities.

Il. REVERSEDFREQUENCYCHARACTERISTICS

We say that a matrix M is “odd” (resp. “even” ) tlie
following holds: for all indicesifj) such that i¢j) is even
(resp. “odd”) we have MJ]j]=0. It is straightforward that
every matrix M decomposes uniquely in the sum sfodd
part (denoted ) and even part (M. Now if M is the (NxN)
coupling matrix of a lossless filter we denote ypfM] and
Sj[M] the corresponding reduced admittance and Suadte
parameters (the input and output loads are fixedjhe
following properties can be used to reverse imgpE manner
the frequency properties of a filter.

e y11[Mgy — MJ(S) = 11 [Mo + M(-s) and the same is true
for yoo
* Y12[Mo— MJ(8) = (=1)' y1oMo + Me](-9)

On the imaginary axis =jw,
* SuMo — MJ(i@= (SulMo + Md(=jc))* and the same is
true forSy,.

* SMo— MJ(1a=(-1)""* (SaAMo + Me(—j &))*

Proof: From the fact that the product of two squaratrices
with same parity is “even” and the product of twguare
matrices with different parities is “odd” one preveby
induction onk that,

Odd((Mo — Mo)* = (-1f**Odd((Ms + Mg)")
Even((M, — Mo)") = (-1fEven((M, + Mo)")

(1)
)

where Odd( ) and Even( ) means respectively takiegodd
and the even parts. Now recalling that:

o 2, C jkmkct
Y(9 =C(sl - jM)ict =§'ST 3)
with:
c - JR, 0. 0
| o 0. Ry

(Ry, Ry input/output termination impedances), and plugding
the relations (1-2) yields directly the formulae . Finally
the classical formuleés= (I — Y)/(I + Y) and the fact that Y is
pure imaginary on the imaginary axis lead to threnfdae for
S

In effect this means that to reverse the frequency
characteristic of any coupling matrix, elementshvititdices {
i) where {+j) = even are changed in sign, whilst those where
(i+)) = odd retain their original sign. Thus for a ded
network such as the EB network, the elements omptineipal
diagonal, each of whose indices add to an eveigenteneed
to be changed in sign (ie. conjugate - tuned)aterally invert
All off-glial
elements retain their original sign, except f&; 8", 12"...
degree cases where the indices of the last twoliogsp(eg
Mgs and Ms; in the &' degree case, see Fig. 1c) have an index
sum that is even. However since they always ootairs,
they too may retain their original sign.

I1l. A GENERAL FRAMEWORK FOR THECOUPLING MATRIX
SYNTHESISPROBLEM

In this section we work with a fixed coupling topgy, that
is we are given a set of independent non-zero owsl
associated to a low pass prototype of some filtéh W
resonators. Starting with numerical values for ¢beplings
and the i/o loads one can easily compute the aaimoit matrix
using equation (3). The coupling matrix synthgsisblem is
actually about inverting the latter procedure: givan
admittance matrix we want to find values for thputioutput
loads and couplings that realize it. In orderduorfalize this
we give a name to the mapping that builds the ddnuée
matrix from the free electrical parameters and efiné:

T:p:(\/ﬁ,ﬁ.Mi’j)_,

(CCt,..CM*C!,..cM2N-1ct)

The above definition is justified by the fact thtte
admittance matrix is entirely determined by thestfiN
coefficients of its power expansion at infinity [3]

Now suppose that each of the electrical parameterge
around in the complex plane: what about the comeding set
of admittance matrices? The latter can be idewtifvith the
image by T of € (C is here the field of complex numbers)
wherer is the number of free electrical parameters. \Alé ¢



this set V (=T(Q) and refer to it as the set of admissible X2 +2xy+1=0 (a)
admittance matrices with respect to the couplipplagy. 2 +3xy+y+2=0 (b)
In this setting the coupling matrix synthesis peoblis the

following: given an element w in V compute thewtimin set By combining equations we get the following polynaim
of: consequences:
T(p)=w (4) (b)-(a): XyHy+1l=0 ©)
c)x—(b)y: Xy -yx—-x+y“+2y=0 (d

Now from the definition of T it follows that equati (4) is a Ed)) —(((:)zl): _yxxx X_yzxyz - yy: 0 Y ée))
non-linear polynomial system with unknowns, namely: the (e +(c): -x-2y?+1=0 )
square roots of the i/o loads and the free cousliof)the (f)y+(c): -2y3+2y+1=0 ©)
topology. From the polynomial structure of thedatsystem
we can deduce following mathematical properties (Wit Note that equationgj is a univariate polynomial in the
take them here for granted): unknowny. Solving the latter numerically yields the followi

« Equation 4 has a finite number of solutions forgaheric ~ 3-digit approximations foy: {~0.56+0.2%, —0.56-0.2h 1.19}

w in V if and only if the differential of T is gerieally of ~ and from (6) we get the corresponding values Xor {0.42—
rankr. In this case we will say that the coupling togglo 0.63, 0.42+0.6}, -1.84}. Now we can verify that the latter
is non-redundant. three pairs of values fok,f) are also solutions ofaf and )

« The number of complex solutions of the equations4 iand therefore the only three solutions of our oagisystem.
generically constant with regard to w in V. Becaos¢he  Equations f) and @) are what is called a Groebner basis (for
sign symmetries this number is a multiple 8fahd can the lex. ordering) [4] of our original system aniibws to
therefore be written as2" The numbem is the number reduce the resolution of a multivariate polynonsgstem to
of complex solutions up to sign symmetries and v w the one of a polynomial in a single unknown. Adtuthis
call it the “reduced order” of the coupling georgetr kind of reduction can always be done as long asotfginal

« Note: The non-redundancy property ensures that 8ystem has only isolated solutions [5]. For ountlsgsis
coupling geometry is not over-parameterized whictul ~ pProblem this is ensured by the non-redundancy a& th
yield a continuum of solutions to our synthesishtemn. ~ considered coupling topology.

Fig. 2 illustrates this with a"&legree topology: In practice, computing a Groebner basis can be

« if no diagonal couplings are present (as suggesyethe ~computationally very costly and therefore the use o

grey dots in Fig. 2), the topology is redundang, the Specialized algorithms and their effective software

synthesis problem admits an infinite number of tohs. implementation is strongly recommended. In thiskvae

If, for example, the coupling (1,4) is removed, thpology ~have used the tool Fgb [6].

becomes non-redundant and is adapted to a 6-2 g_ymme Table | below summarizes the reduced order anduihgber
filtering characteristic. of real solutions observed for a particular filbeyi

Finally, if diagonal couplings are allowed, the atqgy  Ccharacteristic for each of the EB networks of FigWhereas
becomes non-redundant, and is actually tHedegree the reduced order depends only on the coupling gegnthe

extended box topology adapted to a 6-2 asymmetriumber of real solutions depends on the prototype
filtering characteristic. characteristic the network is realizing (positidriransmission

zeros (TZs), return loss, etc...) and is, by definitibounded
from above by the reduced order.
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TABLE |
RED. ORDER& OBSERVEDNUMBER OFREAL SOLUTIONS
o 7 9 : N Max. No. of | Reduced | Observed No. of
0 2 dund | TZs Order Real Solutions
Fig. 2. Redundant topology. 2 1 > >
: . . " 6 2 8 6
In the next section we briefly explain how multiiae
. ) 8 3 48 16
polynomial systems can be solved by means of Gereliisis 10 4 384 5g

computations.

A. Groebner Basis " .
B. 8" Degree Extended Box Filter.

As an example of the use of Groebner basis, suppesae

given the following system: As an application we will consider the synthesisaaf &'

degree filter in extended box configuration (seg.FLc).
Using a computer algebra system (eg. Maple) we kchieat



that this topology is non-redundant and from theliaption of
the minimum path rule we conclude that the setdwfiasible
admittances consists of rational reciprocal madricedegree 8
with at most 3 transmission zeros. Using classoqadsi-
elliptic synthesis techniques an eighth degreeeriiiy
characteristic is designed with a 23dB return lasd three
prescribed TZs producing one rejection lobe le¥e4@mB on
the lower side and two at 40dB on the upper side [8g. 3a).
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Fig. 3. (a) Original and (b) inverted rejection angturn loss

performance of an 8-3 asymmetric characteristiEBnconfiguration

Now computing the I¥ first terms of the power expansion
of the admittance matrix yields the left hand texfrequation
(4) which in turn is solved using Groebner basisygotations
and leads to following results:

. the reduced order of the topology is 48
. for this particular filtering characteristic, 16 thie 48
solutions are real valued.

Only the real solutions have a physical interpretednd are
therefore of practical interest.

The criterion used to choose the best couplingiratrt of

the 16 realizable ones should depend on the haedwar

implementation of the filter. Having in mind a ligation
with dual mode cavities, we choose to select smistiwhere
the asymmetry between the two “arms” of each cnisss
maximized in order to minimize parasitic couplingshe best
ratios between couplings of the relevant paifigy(M,3), (Mze,
M.s) and Ms7, Mgg) are found for the solution shown in Fig.
4a, where each cross-iris has one of its couplaiges being
at least 5 times larger than the other one.

Fig. 4b illustrates that sometimes solutions ementpch
have very small values for certain couplinty$,{ and Mg in
this case), which may be safely omitted for theléngentation
without damaging the final response of the netwolk. this
case a quasi cul-de-sac network is produced, sihoilthe 8-3
example given in [1].

Finally, using the result of Section Il it is showhat only
the resonators need to be retuned in order torobtainverted
characteristic. Fig. 3b shows the rejection artdirreloss
obtained from the coupling matrices of Fig. 3 whiea signs
of their diagonal elementM;; are changed.

0.0107 -0.2904 O -0.8119 0 0 0 0
-0.2904 -0.9804 0.1081 0 0 0 0 0
0 0.1081 0.0605 0.5475 0 0.5984 0 0
0.8119 0 0.5475 0.1384 -0.0663 O 0 0
0 0 0 -0.0663 0.0152 0.5334 0.6782 0
0 0 0.5984 0 0.5334 0.0226 0 -0.1260
0 0 0 0 0.6782 0 0.0113 0.8530
0 0 0 0 0 -0.126  0.8530 0.01Q7
(@)
0.0107 0.0001 0 -0.2464 0 0 0 0
0.0001 -0.9590 0.2094 0 0 0 0 0
0 0.2094 0.0498 0.4681 0 -0.4681 0 0
-0.2464 0 0.4681 0.0115 0.3744 0 0 0
0 0 0 0.3744 -0.04390.3744 0.8165 0
0 0 -0.4681 0 0.3744 0.0115 0 0.8623
0 0 0 0 0.8165 0 0.1975 0.0001
0 0 0 0 0 0.8623 0.0001 0.0107
(b)
Fig. 4.  NxN' coupling matrices for an 8-3 asymmetric prototype

a) EB configuration, b) ‘cul-de-sac’ configuratioR; = Ry = 1.0878

CONCLUSION

In this paper, a new method for the synthesis ef fifl
range of coupling matrices for networks that suppaultiple
solutions is presented. An example is made ofgktended
Box network, demonstrating that a choice may be erfad
coupling values optimal for a dual mode realization
waveguide. In addition, a knowledge of which solus are
possible is important when reconstructing the dogpiatrix
from measured data, during development or compitkrd
tuning (CAT) processes, for example. Also the prop of
reversibility of frequency characteristics by tupialone is
proved.
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