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Abstract  —  We present a method to derive a rational
model from scattering data for electrical parameter
extraction. Unlike other methods, the stability and the
MacMillan degree of the rational approximation are
guaranteed. In order  to improve the usability of our
method in computer-aided tuning , we also present an
algorithm performing automatic reference plane
adjustment. Results obtained on a 10th order dual mode
IMUX filter are presented.

I. INTRODUCTION

Extracting coupling parameters from measured or
simulated scattering data of filters can be very effective
to reduce the cost of hardware and CAD tuning.
However, the direct approach which consists in feeding
to a generic optimizer the function evaluating the
scattering matrix from the coupling parameters, in order
to fit the data, often depends on a favorable initial guess
and substantial efforts are currently being spent to
design more robust methods.

Another approach consists in first deriving a rational
model for the data. In a second step, the coupling
parameters are extracted from this rational model using
classical design methods [1]-[2]. Recent publications
[3]-[4] have advocated the use of the Cauchy method to
compute the rational model. Let us point out three major
problems encountered in this direction:
- there is no guaranty on the stability of  the rational
model, i.e. the derived model can have unstable poles;
- there is no control on the MacMillan degree of  the
model (the number of  circuits in the equivalent low-
pass model), i.e. the residues of the corresponding
rational  matrix will usually not be of rank 1, whereas
this is mandatory in the electrical model (see [2]);
- no constraint is imposed to the model outside the
frequency band of measurement, which may result in
unrealistic behavior there.

To overcome these difficulties, the usual trick
consists in forming the stable lossless rational model
matching the transmission and reflection zeroes
computed by the Cauchy method. Specifically, this
amounts to forget about the denominator computed by
the Cauchy method  and replace it by the one computed

from the numerators using spectral factorization.
Unfortunately, nothing ensures that the derived lossless
rational model will fit our data, which in turn can lead to
a loss of accuracy of the whole parameter extraction
procedure.

We present here a method to derive a stable rational
model of prescribed MacMillan degree from scattering
measurements. As the determination of the delays
caused by access devices can be quite a laborious task,
our method also includes, as a preliminary step, an
automatic reference plane adjustment.

II. AUTOMATIC REFERENCE PLANE ADJUSTMENT

We denote by  (wi, S1,1(wi), S2,1(wi), S1,2(wi), S2,2(wi))
the scattering measurements after low-pass
transformation. The low-pass model, including delay
components assumes the following form:
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where h(w) is the transformation which maps
normalized frequencies to high frequencies. The pi,j and
q are polynomials defining the rational scattering matrix
associated to the low-pass equivalent circuit. In order to
reduce the problem to pure rational approximation, we
first need to determine the real numbers α and β.

For this, let us select a subcollection of measurement
indices according to the following rule:

{ }ci wwi >= ||,I  (2)

where wc is chosen sufficiently large for the moduli of
S1,1 and S2,2  to behave smoothly when |w|> wc ; this of
course entails that  the broadband, where measurements
are made, is somewhat larger than the equiripple
bandwidth. Now, at higher frequencies, far off the pass-
band, one can reasonably expect  a good approximation
of the rational components in  (1) by the first few terms
of their Taylor expansion at infinity. Letting nc denote



selected number of Taylor coefficients, which is to be
viewed as a design parameter of the algorithm,  we
define the cost function:
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and the number α we are seeking will be assigned to
the value where ψ reaches  its minimum.

The underlying idea here is that, away from the pass
band, the filter will be close to a polynomial in 1/w if,
and only if, the delay components are properly
compensated. In practice, the values wc=2.5 (we  work
throughout with normalized frequencies) and nc =4
seem to give very satisfying results when the broadband
is three times bigger than the pass band.

For practical implementation of this method , note
that evaluating ψ is a standard least squares problem,
whose solution requires a matrix inversion of size
(nc+1)x(nc+1). This matrix does not depend on τ hence
the inversion needs to be performed only once for. This
allows us to perform the minimization in a brute force
manner: we first select a priori bounds for the delay
values  (recall that α can be seen as the time it takes for
the signal to travel from the source to the reference
plane of the filter)  and proceed by exhaustive
evaluations leading to the determination of  α within a
prescribed tolerance. To determine β we proceed in the
same manner using the measurements of S2,2 instead of
those of S1,1.

III. PROJECTION ON A SET OF STABLE CAUSAL
SYSTEMS

In addition to estimating the delay, the above method
provides us, by means of the Taylor expansion it
computes, with a completion of our data outside of the
broadband, all the way to infinity. In what follows, we
shall improve this completion by making use of two
basic properties our identified model should possess,
namely causality and stability.

In terms of rational functions, these properties are
equivalent to the fact that  poles are located at finite
distance in the open left half plane. The latter is in turn
equivalent to the fact that the rational function is
analytic in the closed right half plane including at
infinity. We now imbed such rational functions in a
larger space of analytic function on the right half plane
which allows us (thanks to its Hilbert space structure) to
handle causality and stability in a convenient manner.
The space we have in mind is the Hilbert space of
analytical functions on the open right half plane whose
L2(dw/(1+w2))-norm remains uniformly bounded on

vertical lines [5]. This space is one of the so-called
Hardy spaces of the right half-plane, denoted by H2. We
also define the space L2 of all complex functions
defined on the imaginary axis whose modulus to the
square is integrable against the measure dw/(1+w2), and
we endow it with the  the L2 norm:
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An important fact is that each  member of H2 can be
identified with its trace on the imaginary axis (the trace
exists as a non-tangential limit, see [5]). This allows one
to consider H2 as a subspace of L2.  We let G2 be the
orthogonal complement of H2 in L2. Note that, by
construction each L2 function can be decomposed as the
sum of a function in H2 (which is called its stable part)
and a function in G2 (that can be considered as its
unstable part).

Consider now that our data have been compensated as
explained in the previous section and that each Si,j  is a
function defined on the broadband J=[min(wi),max(wi)],
its value between two measurement points being
obtained using, say spline interpolation. Using again the
hypothesis that our rational model should behave nearly
like a polynomial of order nc in 1/w for |w|>wc, we
consider the following optimization problem:
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In what precedes, Jc is the complement of J and ∨
denotes the concatenation operator, so that S1,1 ∨p is the
function defined by S1,1 on J and by p(1/w) on Jc.
Moreover PG^2, denotes the orthogonal projection from
L2 onto G2 and Cnc[x] is the set of polynomials with
complex coefficients whose degree is less or equal to nc.

In words, our optimization problem (5) reads: find the
polynomial completion which best fits  the data on I
under the constraint that:

• the complemented data have an anti-stable part
whose  L2-norm to the square is less than Ec

• the modulus of the completion remains bounded
by 1 on Jc.
The latter constraint is meaningful as our filter is
passive. In addition for the diagonal terms S1,2 and S2,1



one can prescribe zeros at infinity by imposing zeros at
0 for the polynomial p.

As to the solution of problem (5), it can be shown that
as soon as the number of measurement points in I
exceeds (nc+1) the cost function is strictly convex. The
admissible set defined by the constraints in (5) is easily
shown to be convex. This two remarks leads two the
fact that (5) has a unique optimal solution unless its
admissible set is empty. Let us mention here without
proof that the following family of functions
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is an orthogonal basis of G2 that can be extended to an
orthogonal basis of L2 by letting k  range over negative
integer as well, so the matrix of the orthogonal
projection PG2 is easily expressed. Concerning the last
constraint in (5) we choose do discretise it, which of
course entails an approximation that can, however, be
controlled by classical theorems. All this allows one to
regard (5) as a convex quadratic optimization problem
(in the coefficients of p) which can be tackled by
classical Lagrangian techniques [6]. For nc=4 its
resolution (Pc, 600 Mhz Pentium) takes less than 2
seconds.
In order to ensure that the admissible set of (5) is not
empty we simply solve in the same manner the
following problem:
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and denote by Emin its optimal value (note that the
admissible set for this problem is never empty as it
contains p=0). This gives an easy characterization of the
solvability of (5), namely: Ec ≥ Emin .

If pi,j are the polynomial completions computed by the
latter method we define

)(F ,,, 2 jijiHji pSP ∨= .  (8)

Those functions can be seen as the causal, stable
projections of our initial data; note that, by construction,
their L2 distance to the data is less than the square root
of Ec.

IV. STABLE RATIONAL APPROXIMATION OF GIVEN
MACMILLAN DEGREE

If nf is the order of the filter (i.e the number of
coupled circuits considered in the low pass equivalent

circuit) we now consider the following rational
approximation problem:
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where the degree of a matrix is the Mc-Millan degree.
We denote by Wopt the optimal solution of (9). Note first
that, thanks to the fact that F is defined on the whole
imaginary axis, Wopt cannot have purely imaginary
poles. Suppose now that Wopt has some strictly unstable
pole. Its partial fraction expansion  decomposes  as the
sum of a stable part Ws (corresponding to the stable
poles) and an unstable one Wu (corresponding to the
unstable poles). But the orthogonality of Wu with H2 (to
which the elements of F do belong, thanks to the
preceding step) indicates that Ws would be a better
rational approximation to F than Wopt. This implies that:
- Wopt is stable
- In any algorithm constructing a minimizing
sequence for problem (9) (typically a gradient
algorithm) it is never favourable to let one or several
poles become unstable. In other words, for such
algorithms, we can restrict quite naturally to stable
rational functions (the constraint of stability is never
active).
For the practical implementation of such an algorithm
there remains to find a tractable parametrization for the
rational matrices of given MacMillan degree. This
problem has been widely studied in [7]-[8]. Getting into
details here would deserve a paper on its own but what
can  be said briefly on this topic is:
- Schur parameters allow one to nicely parametrize
stable rational matrices of given MacMillan degree
(such parameters are interpolation values from which
the rational matrix is recovered explicitly ).
- This in turn offers a way to parametrize all stable
rational matrices of given degree in connection with (9).

Those ideas were implemented in two gradient based
rational approximation engines called hyperion [9] and
RARL2 [10] (the two software differ in their choice of
Schur parametrization).

V. PARAMETER EXTRACTION OF AN IMUX FILTER OF
ORDER 10

We implemented this three steps approximation
algorithm (delay detection, completion, rational
approximation) as a matlab toolbox. We present here the
results obtained on a 10th order Imux filter realized using
5 dual mode cavities (f0 = 3.727 GHz, Bw= 44.5 Mhz).



Figure.1 shows the data, the compensated  data, as
well as the polynomial completion. Ec, the maximal
norm of the anti-causal part (5), was set here to 0.3% of
the L2 norm of the data. Figure.2 shows the computed
rational approximation. Note that the theoretical filter
which couplings are shown in Table.1 has 6
transmission zeros: 4 at the border of the pass-band and
2 real opposite zeros used to adjust the group delay.
Finally the extracted couplings are shown in Table.1.

The later measurements arise from a tuning session at
the laboratory of Alcatel Space. After each parameter
extraction phase, corrections were applied to the filter’s
tuning screws and irises. Convergence to the desired
filter response was obtained in five such iterations.

VI. CONCLUSION

A complete strategy for deriving a stable rational
model of given MacMillan degree from scattering data
has been presented. The derived computer aided tuning
method has shown to be very effective in practice, in
particular when dealing with high order filters.

Theo. Extract. Theo. Extract.

Zin 1.075 0.98 M1,2 -0.845 -0.79
Zout 1.075 1.08 M2,3 -0.538 -0.53

M1,1 0 -0.06 M3,4 -0.591 -0.56
M2,2 0 -0.06 M4,5 0.521 0.52

M3,3 0 -0.01 M5,6 -0.516 -0.50

M4,4 0 -0.00 M6,7 -0.546 -0.53
M5,5 0 0.02 M7,8 0.351 0.22

M6,6 0 -0.02 M8,9 -0.903 -0.96

M7,7 0 0.01 M9,10 -0.664 -0.52
M8,8 0 -0.07 M1,4 -0.080 -0.06

M9,9 0 0.08 M5,8 -0.029 -0.01

M10,10 0 0.06 M7,10 -0.532 -0.67

Table 1 : Theoretical and extracted couplings
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Fig.1: Data, Compensated Data, Completion

Fig.2: Compensated Data, Rational Approximation


