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Abstract  —  In this paper a new approach to the synthesis of 

coupling matrices for microwave filters is presented.  The new 
approach represents an advance on existing direct and 

optimization methods for coupling matrix synthesis in that it will 
exhaustively discover all possible coupling matrix solutions for a 
network if more than one exists.  This enables a selection to be 

made of the set of coupling values, resonator frequency offsets, 
parasitic coupling tolerance etc that will be best suited to the 
technology it is intended to realize the microwave filter with.  To 

demonstrate the use of the method, the case of the recently – 
introduced ‘extended box’ coupling matrix configuration is 
taken.  The extended box is a new class of filter configuration 

adapted to the synthesis of asymmetric filtering characteristics of 
any degree.  For this configuration the number of solutions to the 
coupling matrix synthesis problem appears to be high and offers 

therefore some flexibility that can be used during the design 
phase.  We illustrate this by carrying out the synthesis process of 
two asymmetric filters of 8th and 10th degree.  In the first example 

a ranking criterion is defined in anticipation of a dual mode 
realization and allows the selection of a “best” coupling matrix 
out of 16 possible ones.  For the 10th degree filter a new technique 

of approximate synthesis is presented yielding some 
simplifications of the practical realization of the filter as well as 
of its computer aided tuning phase.  

Index Terms  —  Coupling matrix, filter synthesis, bandpass 
filter, Groebner basis, inverted characteristic, multiple solutions. 

I. INTRODUCTION 

In reference [1], a synthesis method for the ‘Box Section’ 

configuration for microwave filters was introduced. Box 

sections are able to realize a single transmission zero each, and 

have an important advantage that no ‘diagonal’ inter-resonator 

couplings are required to realize the asymmetric zero, as 

would the equivalent trisection. Also the frequency 

characteristics are reversible by retuning the resonators alone, 

retaining the same values and topology of the inter-resonator 

couplings. 

The first feature leads to particularly simple coupling 

topologies, and is suitable for realization in the very compact 

waveguide or dielectric dual-mode resonator cavity, whilst the 

ability to reverse the characteristics by retuning makes the 

box-filter useful for diplexer applications, the same structure 

being usable for the complementary characteristics of the two 

channel filters. 

Reference [1] continued on to introduce the extended box 

configuration for filter degrees  N > 4, able to realize a 

maximum of (N–2)/2 (N even) or (N–3)/2 (N odd) symmetric 

or asymmetric transmission zeros.  Fig. 1 gives extended box 

networks of even degree 4 (basic box section), 6, 8 and 10, 

showing the particularly simple ladder network form of the 

extended box configuration.  In each case, the input and output 

are from opposite corners of the ladder network.  The 

extended box network also retains the property of giving 

lateral inversion of the frequency characteristics by retuning of 

the resonators alone. 
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Fig. 1. Coupling and routing diagrams for extended box section 
networks:  (a) 4th degree (basic box section)  (b) 6th degree  (c) 8th 
degree  (d) 10th degree. 
 

   The prototype coupling matrix for the extended box network 

may be easily synthesized in the folded or ‘arrow’ forms.  

However it appears that there is no simple closed form 

equation or procedure that may be used to transform the folded 

or arrow coupling matrix to the extended box form.  In [1] a 

method was described which is essentially the reverse of the 

general sequence that reduces any coupling matrix to the 

folded form, for which a regular sequence of rotation pivots 

and angles does exist.  Using this method means that some of 

the rotation angles cannot be determined by calculation from 

the pre-transform coupling matrix (as can be done from the 

‘forward’ method) and so they have to be determined by 

optimization. Other methods (eg. [2], [3]) are also known to 

produce a solution. 



Although most target coupling matrix configurations (eg 

propagating in-line) have one or two unique solutions, the 

extended box configuration is distinct in having multiple 

solutions, all returning exactly the same performance 

characteristics under analysis as the original prototype folded 

or arrow configuration.  The solutions converged upon by 

existing optimization methods tend to be dependent upon the 

starting values given to the coupling values or rotation angles, 

and it can never be guaranteed that all possible solutions have 

been found.  In [4] an approach based on computer algebra 

was outlined that allows to compute all the solutions for a 

given coupling matrix topology, including those with complex 

values (which of course are discarded from the solutions 

considered for the realization of the hardware).  In this paper 

we detail the latter procedure as well as a modification in the 

choice of the set of algebraic equations to solve that leads to 

an important improvement of the algorithm’s efficiency in 

practice. 

Having a range of solutions enables a choice to be made of 

the coupling value set most suited to the technology it is 

intended to realize the filter with.  Considerations influencing 

the choice include ease of the design of the coupling elements, 

minimization of parasitic couplings or resonator frequency 

offsets.  Some of the coupling matrix solutions may contain 

coupling elements with values small enough to be ignored 

without damage to the overall electrical performance of the 

filter, so simplifying the manufacture and tuning processes. 

In the following section a general proof will be given for the 

inversion of the frequency characteristics of a network.  This 

is followed by a description of the multi-solution synthesis 

method, applicable to the extended box network and others 

that support multiple solutions.  Finally we apply our 

procedure to the synthesis of two filtering characteristics of 

degree 8 and 10 with respectively 3 and 4 transmission zeros. 

In each case we demonstrate how the ability to choose among 

several coupling matrices simplifies the practical realization of 

the filter in dual-mode waveguide or dielectric resonator 

cavities.  In the 10
th
 degree case, the complete list of 

equivalent coupling matrices is used to identify couplings 

corresponding to an iris that can be safely neglected. Finally 

an approximate synthesis technique based on a post-

processing optimization step is presented and improves the 

approach of reference [4]. 

II. REVERSED FREQUENCY CHARACTERISTICS 

In this section we detail the approach given in [4] 

concerning the reversion of the response of a filter by means 

of the sign inversion of some elements of its coupling matrix. 

If S(jw) and G(jw) are filter responses we call G reverted 

with respect to S if the following relation holds: 

)()( ,, jwSjwG jiji −= . 

 

The so-called symmetric responses are self-reverted in the 

latter sense.  One striking fact is that the coupling matrices of 

all usual symmetric filters have a particular geometry, namely, 

all their couplings Mi,j where (i+j) is even are zero. We will 

say that their coupling matrix is “odd”; a typical example is 

presented on Fig.2 with a coupling matrix of a 5-2 symmetric 

filtering characteristic.  

 
0 0.11 0 0 0 

0.11 0 -0.31  0.12 
0 -0.31 0 0.21 0. 

0 0 0.21 0 0.61 

0 0.12 0 0.61 0 

Fig.2: “Odd” coupling matrix, adapted to a 5-2 symmetric filtering 
function. 
 

Conversely the coupling matrices of all asymmetric filters 

have some of their “even” entries Mi,j (i+j even) that are non-

zero.  It is therefore natural to ask about the effects of the 

inversion of the latter entries.  Below it is shown that these 

sign changes in the coupling matrix are related to the reversion 

of the filter response. 

We say that a matrix M is “odd” (as opposed to “even” ) if 

the following holds: for all indices (i,j) such that (i+j) is even 

(as opposed to “odd”) we have M[i,j]=0.  It is straightforward 

that every matrix M decomposes uniquely in the sum of its 

odd part (denoted Mo) and even part (Me).  Now if M is the 

(NxN) coupling matrix of a lossless filter we denote by yi,j[M] 

and Sij[M] the corresponding reduced admittance and 

scattering parameters (the input and output loads are fixed).  

The following properties relate in a simple manner the 

inversion of the even entries of a coupling matrix with the 

reversion of the associated frequency response. 

 

• y11[Mo – Me](s) = –y11[Mo + Me](–s) and the same is true 

for y22   

• y12 [Mo – Me](s) = (–1)
N y12[Mo + Me](–s) 

 

On the imaginary axis  s = jω, 
• S11[Mo – Me](jω) = (S11[Mo + Me](–jω))* and the same is 

true for S22. 

• S12[Mo – Me](jω) = (-1)N+1
 (S12[Mo + Me](–jω))* 

 

Proof:  From the fact that the product of two square matrices 

with the same parity is “even” and the product of two square 

matrices with different parities is “odd” one proves by 

induction on k that, 

Odd((Mo – Me)
k
 )= (–1)

k+1
Odd((Mo + Me)

k
) (1) 

Even((Mo – Me)
k) = (–1)kEven((Mo + Me)

k) (2) 

where Odd( ) and Even( ) means respectively taking the odd 

and the even parts.  Now recalling that: 
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(R1, RN are the input/output termination impedances), and 

plugging in the relations (1-2) yields directly the formulae for 

Y.  Finally the classical formula  S = (I – Y)/(I + Y)  and the 

fact that Y is purely imaginary on the imaginary axis leads to 

the formulae for S.  In particular this implies that every 

response associated to an odd coupling matrix is symmetric, 

i.e. self-reverted. 

For asymmetric filters the latter properties mean that to 

reverse the frequency characteristic of any coupling matrix, 

elements with indices  (i, j)  where  (i+j) = even are changed in 

sign, whilst those where (i+j) = odd retain their original sign.  

Thus for a ladder network such as the extended box network, 

the elements on the principal diagonal, each of whose indices 

add to an even integer, need to be changed in sign (ie. 

conjugate-tuned), to laterally invert the network’s response 

with frequency.  All off-diagonal elements retain their original 

sign, except for 4
th
, 8

th
, 12

th
… degree cases where the indices 

of the last two couplings (eg M68 and  M57 in the 8
th
 degree 

case, see Fig. 1c) have an index sum that is even.  However, in 

the latter cases applying in addition the diagonal similarity 

transform that reverts the sign of the last two vectors ( 7
th
 and 

8
th
 in the 8 degree case) to the coupling matrix restores the 

original signs of these couplings without affecting the reverted 

response of the filter. 

III. A GENERAL FRAMEWORK FOR THE COUPLING MATRIX 

SYNTHESIS PROBLEM 

In this section we work with a fixed coupling topology, that 

is we are given a set of independent non-zero couplings 

associated to a low pass prototype of some filter with N 

resonators.  Starting with numerical values for the couplings 

and the i/o loads one can easily compute the admittance matrix 

using equation (3).  The coupling matrix synthesis problem is 

actually about inverting the latter procedure: given an 

admittance matrix we want to find values for the input/output 

loads and couplings that realize it.  In order to formalize this 

we give a name to the mapping that builds the admittance 

matrix from the free electrical parameters and we define: 
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The above definition is justified by the fact that the 

admittance matrix is entirely determined by the first 2N 

coefficients of its power expansion at infinity [5]. 

Now suppose that each of the electrical parameters move 

around in the complex plane: what about the corresponding set 

of admittance matrices?  The latter can be identified with the 

image by T of C
r
 (C is here the field of complex numbers) 

where r is the number of free electrical parameters.  We call 

this set V (= T(C
r
)) and refer to it as the set of admissible 

admittance matrices with respect to the coupling topology. 

In this setting the coupling matrix synthesis problem is the 

following:  given an element w in V compute the solution set 

of: 

T(p) w=  (4) 

Now from the definition of T it follows that equation (4) is a 

non-linear polynomial system with r unknowns, namely: the 

square roots of the i/o loads and the free couplings of the 

topology.  From the polynomial structure of the latter system 

we can deduce following mathematical properties (we will 

take them here for granted): 

• Equation (4) has a finite number of solutions for all generic 

w in V (generic means for almost all w in V) if and only if 

the differential of T is generically of rank r.  In this case 

we will say that the coupling topology is non-redundant. 

• The number of complex solutions of the equation (4) is 

generically constant with regard to w in V. Because of the 

sign symmetries this number is a multiple of 2
N 
and can 

therefore be written as m2
N
.  The number m is the number 

of complex solutions up to sign symmetries and we will 

call it the “reduced order” of the coupling geometry. 

Remarks:  

The non-redundancy property ensures that a coupling 

geometry is not over-parameterized which would yield a 

continuum of solutions to our synthesis problem. We 

illustrate this with the 6
th
 degree topology of Fig. 3. 

• if no diagonal couplings are present (as suggested by the 
grey dots in Fig. 3), the topology is redundant, ie the 

synthesis problem admits an infinite number of solutions. 

• If, for example, the coupling (1,4) is removed, the topology 

becomes non-redundant and is adapted to a 6-2 symmetric 

filtering characteristic.  In this case the resulting coupling 

topology is the so called “arrow form” for which the 

coupling matrix synthesis problem is known to have only 

one solution.  The reduced order of the latter topology is 

therefore 1. 

• Finally, if diagonal couplings are allowed, the topology 
becomes non-redundant, and is actually the 6

th
 degree 

extended box topology of Fig. 1 and is adapted to a 6-2 

asymmetric filtering characteristic.  We will see in the 

following section that its reduced order is 8. 

 
 
Fig. 3. Redundant topology 

 

The use of the adjective “generic” in the latter statements is 

necessary for their mathematical correctness. In fact 
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properties concerning parameterised algebraic systems are 

often true for all possible values of the parameters but an 

exceptional set.  An example of this is given by following 

polynomial: 

1)( 2 += axxp . 

The latter polynomial has two distinct roots for almost all 

complex values of the parameter a: the exceptional parameter 

set where the latter property does not hold is characterised by 

the equation a=0 and is very “thin” (or non-generic) as a 

subset of the complex plan. 

The constructive nature of our framework for the synthesis 

problem depends strongly on our ability to invert numerically 

the mapping T,  i.e compute the solution set of equation (4).  

In the next section we briefly explain how this can be done 

using Groebner basis computations. 

IV. GROEBNER BASIS 

As an example of the use of Groebner basis, suppose we are 

given the following system: 

2

2

( )2 1 0

( )3 2 0

ax xy

bx xy y

 + + =


+ + + =
 

By combining equations we get the following polynomial 

consequences: 

2 2

2

2

3

( ) ( ) : 1 0 ( )

( ) ( ) : 3 2 0 ( )

( ) ( ) : 2 0 ( )

( ) ( ) : 2 1 0 ( )

( ) ( ) : 2 2 1 0 ( )

b a xy y c

c x b y xy yx x y y d

d c y yx x y y e

e c x y f

f y c y y g

− + + =
− − − + + =

− − − − − =
+ − − + =

+ − + + =

 

Note that equation (g) is a univariate polynomial in the 

unknown y. Solving the latter numerically yields the following 

3-digit approximations for y: {–0.56+0.25j, –0.56–0.25j, 1.19} 

and from (f) we get the corresponding values for  x = {0.42–

0.61j, 0.42+0.61j, -1.84}.  Now we can verify that the latter 

three pairs of values for (x,y) are also solutions of  (a) and (b) 

and therefore the only three solutions of our original system.  

Equations (f) and (g) are what is called a Groebner basis [6] of 

our original system and allows us to reduce the resolution of a 

multivariate polynomial system to the one of a polynomial in a 

single unknown. 

The technique that we have presented is a simple example is 

called “elimination” and can be thought as the non-linear 

version of the classical Gaussian elimination technique for 

linear systems.  The fact that the process of variables 

elimination by means of combinations of equations always 

ends up with a polynomial in a single variable is equivalent to 

the property that the original system has only isolated 

solutions [7].  In the case of our synthesis problem this is 

ensured by the non-redundancy of the considered coupling 

topology.  

In practice, computing a Groebner basis can be 

computationally very costly: the number of necessary 

combinations of equations can be very large and strongly 

grows with the total number of variables of the system.  

Therefore the use of specialized algorithms and their effective 

software implementation is strongly recommended.  In this 

work we have used the tool  Fgb [8]. 

Table I summarizes the reduced order and the number of 

real solutions observed for a particular filtering characteristic 

for each of the extended box networks of Fig.1.  The synthesis 

method is not limited to the case of extended box topologies: 

Table I also mentions the case of a 10
th
 degree topology (Fig. 

4) adapted to 10-8 symmetric characteristics.  The reduced 

order of the latter is equal to 3 and is therefore much smaller 

than the reduced order of 384 of its 10
th
 degree extended box 

analogue.  This is something we observed empirically by 

testing our method on various networks: topologies adapted to 

asymmetric characteristics seem to have a much higher 

reduced order than those adapted to symmetric ones. 

 Whereas the reduced order depends only on the coupling 

geometry, the number of real solutions depends on the 

prototype characteristic the network is realizing (position of 

transmission zeros (TZs), return loss, etc…) and is, by 

definition, bounded from above by the reduced order.  One can 

even construct some coupling topologies and some filtering 

characteristics for which the synthesis problem admits only 

complex solutions.  An academic example of this is given by 

the topology of Fig. 5 and the filtering characteristic, the 

canonical coupling matrix in arrow form of which is given on 

Fig. 6.  In this latter case the reduced order of the coupling 

topology is 2 but both solutions to the synthesis problem are 

complex and equal to the matrix of Fig. 7 and to its conjugate. 

 

TABLE I 

REDUCED ORDER & OBSERVED NUMBER OF REAL SOLUTIONS 

Topology Max. No. of 

TZs 

Reduced 

Order 

Observed No. of 

Real Solutions 

Fig. 1(a) 1 2 2 

Fig. 1(b) 2 8 6 

Fig. 1(c) 3 48 16 

Fig. 1(d) 4 384 36, 58 

Fig. 4 8 3 1 

 

 
Fig. 4. Coupling topology adapted to 10-8 symmetric 
characteristics. 

 



 
Fig. 5. Academic example of a 5th degree coupling topology 
adapted to 5-2 asymmetric characteristics. 

 

0 0.4 0 0 0 

0.4 0.3 0.1 0 0.1 

0 0.1 .2 0.2 0.2 

0 0 0.2 0.2 1 

0 0.1 0.2 1 0.1 

Fig. 6. Canonical coupling matrix in “arrow form” of a 5-2 
filtering function, admitting only complex coupling matrices when 
using the topology of Fig. 5. 
 

Fig. 7. Complex solution to the synthesis problem with coupling 
topology of Fig. 5 and coupling matrix in canonical arrow form of 
Fig. 6. 
 

V. Practical Implementation of the Synthesis procedure And 
Examples 

A. 8
th 

 Degree Extended Box Filter. 

As an application we will consider the synthesis of an 8
th
 

degree filter in extended box configuration (see Fig. 1c).  

Using a computer algebra system (eg. Maple) we check that 

that this topology is non-redundant and from the application of 

the minimum path rule we conclude that the set of admissible 

admittances consists of rational reciprocal matrices of degree 8 

with at most 3 transmission zeros.  Using classical quasi-

elliptic synthesis techniques an eighth degree filtering 

characteristic is designed with a 23dB return loss and three 

prescribed TZs producing one rejection lobe level of 40dB on 

the lower side and two at 40dB on the upper side (see Fig. 8a). 

 

 
Fig. 8. (a) Original and (b) inverted rejection and return loss 

performance of an 8-3 asymmetric characteristic in extended 

box configuration. 

 

Now computing the 2N first terms of the power expansion 

of the admittance matrix yields the left hand term of  (4) which 

in turn could be solved using Groebner basis computations.  

At this point it is important to mention that the complexity of 

the Groebner basis computations of a system increases with its 

total number of complex solutions.  The natural sign 

symmetries of the system derived from equation (4) tend to 

artificially increase the latter (total number of solutions = m2
N
) 

and may dramatically increase the computation time of the 

corresponding Groebner basis.  Before continuing on with the 

synthesis we therefore explain how a rewriting of equation (4) 

allows us to get rid of these unwanted sign symmetries. 

An alternative to equation (4) to invert the mapping T is to 

use an algebraic version of the approach presented in [9] that 

is based on similarity transforms.  If M is a coupling matrix in 

canonical form realizing the admittance matrix then equation 

(4) is “equivalent” to the following matrix equation where the 

unknown is a similarity transform P. 
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   In the latter, I is the set of indices corresponding to the 

couplings that must be zero in the target topology (in our 

example I={(1,3),(1,5),(1,6)…….}).  If P is a solution of (5) it 

is readily seen that all the similarity transforms that are 

obtained from P by inverting some of the columns vectors of 

the submatrix H are also solutions of (5).  In order to break 

these symmetries the “trick” is to slightly modify (5b). We 

denote by hi the i
th
 column vector of H.  Some of the equations 

of (5b) indicate that the vectors hi are unitary with regard to 

the Euclidean norm.  We replace these normalizing equations 

by: 

1=i
t
i hu  (6) 

where ui is a randomly-chosen vector.  We call (5’) the 

resulting system.  It can be verified that for a generic choice of 

the ui’s, all the solutions of (5) that are equivalent up to sign 

changes of their column vectors correspond to a single 

solution of (5’).  More precisely to every set of solutions of (5) 

of the form: 

...)...,( 21 ihhhH ±±±=  (7) 

there corresponds a unique solution G = (g1…gi…) of (5’) 

where the column vectors gi are given by: 

i
h

t
i

u

i
h

g i =  (8) 

0 0.41-0.001j 0.006+0.074j 0 0 

0.41-0.001j 0.3-0.035j 0.079+0.031j 0 0 

0.006+0.074j 0.079+0.031j .099-0.2j 0.3-0.075j 0.043-0.54j 

0 0 0.3-0.075j 0.3+0.23j 1.2+0.02j 

0 0 0.043-0.54j 1.2+0.02j 0.1 



With regard to the Groebner basis computation system, (5’) 

has shown to be much more tractable than the algebraic 

system derived from equation (4). 

Getting back to our 8
th
 degree example, we compute M the 

associated coupling matrix in arrow form and set up (5’).  The 

latter is an algebraic system of linear and quadratic equations 

in the entries of H.  The computation of its Groebner basis 

leads to the following result: 

• the reduced order of the topology is 48 
• for this particular filtering characteristic, 16 of the 48 
solutions are real-valued. 

Only the real solutions have a physical interpretation and are 

therefore of practical interest. 

The criterion used to choose the best coupling matrix out of 

the 16 realizable ones will depend on the hardware 

implementation of the filter.  Having in mind a realization 

with dual mode cavities, we choose to select solutions where 

the asymmetry between the two “arms” of each cross-iris is 

maximized in order to minimize parasitic couplings.  The best 

ratios between couplings of the relevant pairs (M14, M23), (M36, 

M45) and (M57, M68) are found for the solution shown in Fig.9a,  

where each cross-iris has one of its coupling values at least 5 

times larger than the other one. 

 

0.0107 -0.2904 0 -0.8119 0 0 0 0 

-0.2904 -0.9804 0.1081 0 0 0 0 0 

0 0.1081 0.0605 0.5475 0 0.5984 0 0 

0.8119 0 0.5475 0.1384 -0.0663 0 0 0 

0 0 0 -0.0663 0.0152 0.5334 0.6782 0 

0 0 0.5984 0 0.5334 0.0226 0 -0.1260 

0 0 0 0 0.6782 0 0.0113 0.8530 

0 0 0 0 0 -0.1260 0.8530 0.0107 

(a) 

 

0.0107 0.0001 0 -0.2464 0 0 0 0 

0.0001 -0.9590 0.2094 0 0 0 0 0 

0 0.2094 0.0498 0.4681 0 -0.4681 0 0 

-0.2464 0 0.4681 0.0115 0.3744 0 0 0 

0 0 0 0.3744 -0.0439 0.3744 0.8165 0 

0 0 -0.4681 0 0.3744 0.0115 0 0.8623 

0 0 0 0 0.8165 0 0.1975 0.0001 

0 0 0 0 0 0.8623 0.0001 0.0107 

(b) 

Fig. 9. ‘NxN’ coupling matrices for an 8-3 asymmetric prototype:  

a) extended box configuration,  b) ‘cul-de-sac’ configuration.  R1 = 

RN = 1.0878 

 

Fig. 9b illustrates that sometimes solutions emerge which 

have very small values for certain couplings (M12 and M78 in 

this case), which may be safely omitted for the implementation 

without damaging the final response of the network.  In this 

case a quasi cul-de-sac network is produced, similar to the 8-3 

example given in [1].  In fact one can show that with some 

renumbering, the cul-de-sac network of [1] is a sub-topology 

of the extended box where the couplings M12 and M78 are set 

to zero.  The cul-de-sac topology is more restrictive than the 

extended box one in the sense that it is only adapted for the 

synthesis of “double-terminated” characteristics.  However our 

current filtering characteristic is, up to numerical errors, 

“double-terminated” and this explains why in this example a 

quasi cul-de-sac network is found among all possible coupling 

matrices. 

Finally, using the result of Section II, it is shown that only 

the resonators need to be retuned in order to obtain an inverted 

characteristic.  Fig. 8(b) shows the rejection and return loss 

obtained from the coupling matrices of Fig. 9 when the signs 

of their diagonal elements  Mi,i  are changed. 

B. 10
th 

 Degree Extended Box Filter and approximate 

synthesis  technique 

We consider the synthesis of a 10
th
 degree filter in the 

extended box topology of Fig. 1(d). Using our procedure we 

check that this topology is non-redundant and that it is adapted 

to asymmetric characteristics with up to 4 TZs.  A filtering 

characteristics is designed with a 23dB return loss, 2 TZs at 

+j1.10929 and +j1. 19518  to give two 50dB rejection lobes on 

the upper side, and 2 more complex zeros at 

±0.75877-j0.13761 for group delay equalization purposes (see 

Fig. 11). 

The corresponding coupling matrix in arrow form is 

determined and the computation of a Groebner basis of system 

(5’) yields the following: 

• The reduced order of the topology is 384 
• For our specific filtering characteristic 36 real and 
therefore realizable solutions are found 

When realized with dual mode cavities this topology 

requires 4 cross- irises.  Our aim is to demonstrate how our 

exhaustive approach may allow the “replacement” of a cross-

iris by an iris with a single arm as well as to simplify the 

future computer-aided tuning process of the filter. 

Amongst all the possible coupling matrices the one with the 

smallest coupling corresponding to an iris is selected, which 

leads to the matrix of Fig. 12 where M45 is equal to -0.001.  

Setting M45 to zero yields a small but undesirable variation of 

the return loss as well as of the upper-band rejection lobes.  

The remaining couplings are therefore re-tuned thanks to an 

optimization step that minimizes the discrepancy between the 

original response and the one obtained by imposing that M45 

be zero (see Fig. 13 for the resulting coupling matrix).  A 

quasi perfect fit is obtained between the two responses: the 

least square error between the two return losses on the 

normalized broadband [-3,3] equals 8.83.10
-5  

(on the Bode 

plot there is visually no difference). 

Finally the simplified coupling topology of Fig. 10 is 

considered as a new topology in its own right.  Using our 

procedure its reduced order is found to be equal to 2 and a 

second equivalent coupling matrix with the same coupling 

topology is computed (see Fig. 14).  With regard to the “iris 

asymmetry criterion” of the last section the latter matrix is the 

best one. 



 

 

 

 

 

 

 

Fig. 10. Simplified 10th degree topology. 

 

Note that besides the removal of a cross-iris we have also 

lowered the reduced order of our target topology from 384 to 

2.  This is important if one wants to use a computer aided 

tuning process [10] that typically identifies a coupling matrix 

from measured data.  In the cases of topologies with multiple 

solutions, such a tool will return a set of equivalent coupling 

matrices and leave to the user the ‘expert’ task of choosing the 

“right” one. This can be done by using some extra information 

concerning the physical device, like for example an a priori 

estimation of the coupling value realizable by some irises.  

Nevertheless the latter task is of course much easier to carry 

out with a short list of equivalent coupling matrices than with 

a huge one. 

CONCLUSION 

In this paper, a new method for the synthesis of the full 

range of coupling matrices for networks that support multiple 

solutions is presented.  This procedure yields an exhaustive list 

of all the solutions to the synthesis problem. Based on the 

latter, an approximate synthesis technique is derived which 

allows the reduction of the constructional complexity of high-

degree asymmetric filters in dual-mode technologies.  In 

addition it has been shown that a knowledge of which 

solutions are possible is important when reconstructing the 

coupling matrix from measured data, during development or 

computer-aided tuning (CAT) processes.  Also the property of 

reversibility of frequency characteristics by tuning alone has 

been proved. 
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APPENDIX 

 
(a) (b) 

Fig. 11.  10-2-2 asymmetric characteristic:  (a) rejection and return loss (b) group delay. 

 

 

Fig. 12. Coupling matrix of the 10-2-2 characteristic of Fig. 11 with the extended box topology and a “small” M45 coupling,  R1=RN= 1.04326. 
 
 

0.0161 0.7655 0 0.4053 0 0 0 0 0 0 

0.7655 0.2705 -0.5173 0 0 0 0 0 0 0 

0 -0.5173 0.0560 0.2057 0 -0.5386 0 0 0 0 

0.4053 0 0.2057 -0.8923 0 0 0 0 0 0 

0 0 0 0 -0.7810 -0.2512 0 0.2968 0 0 

0 0 -0.5386 0 -0.2512 0.0445 -0.4761 0 0 0 

0 0 0 0 0 -0.4761 0.2867 -0.5041 0 -0.1984 

0 0 0 0 0.2968 0 -0.5041 -0.0850 0.4851 0 

0 0 0 0 0 0 0 0.4851 0.0016 0.8427 

0 0 0 0 0 0 -0.1984 0 0.8427 0.0173 

Fig. 13. Coupling matrix of the 10-2-2 characteristic of Fig. 11 with a simplified topology, (i.e. M45=0) , R1=1.0969, RN=1.0963. 

 

 

0.0161 0.4053 0 0.7655 0 0 0 0 0 0 

0.4053 -0.8923 -0.2057 0 0 0 0 0 0 0 

0 -0.2057 0.0560 0.5173 0 -0.5386 0 0 0 0 

0.7655 0 0.5173 0.2705 0 0 0 0 0 0 

0 0 0 0 -0.7810 -0.2512 0 0.2968 0 0 

0 0 -0.5386 0 -0.2512 0.0445 -0.4761 0 0 0 

0 0 0 0 0 -0.4761 0.2867 -0.5041 0 0.1984 

0 0 0 0 0.2968 0 -0.5041 -0.0850 -0.4851 0 

0 0 0 0 0 0 0 -0.4851 0.0016 0.8427 

0 0 0 0 0 0 0.1984 0 0.8427 0.0173 

Fig. 14. Coupling matrix with a simplified topology and the most asymmetric irises, R1=1.0969, RN=1.0963. 

0.0145 0.7712 0 0.3879 0 0 0 0 0 0 

0.7712 0.2493 -0.5232 0 0 0 0 0 0 0 

0 -0.5232 0.0554 0.1925 0 -0.5393 0 0 0 0 

0.3879 0 0.1925 -0.9071 -0.0010 0 0 0 0 0 

0 0 0 -0.0010 -0.7492 -0.2683 0 0.3110 0 0 

0 0 -0.5393 0 -0.2683 0.0437 -0.4668 0 0 0 

0 0 0 0 0 -0.4668 0.3195 -0.4934 0 -0.2040 

0 0 0 0 0.3110 0 -0.4934 -0.1000 0.4827 0 

0 0 0 0 0 0 0 0.4827 -0.0021 0.8388 

0 0 0 0 0 0 -0.2040 0 0.8388 0.0145 


