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Abstracts

Regularization issues for inverse magnetization problem

Laurent Baratchart
laurent.baratchart@inria.fr

Inria Sophia Antipolis, team FACTAS, France

We consider the problem of recovering a magnetization distribution supported in some known
subset in 3-D space from knowledge of the field it generates in some disjoint subset thereof.
We are interested in the case where the support is a piece of a plane, which arises naturally
in scanning magnetic microscopy for rock samples, but we keep an eye on volumic samples
as well. When the magnetization is modeled by a compactly supported measure, we present
some regularization schemes which constrain the total variation of that measure, and point out
at certain ”sparse” cases where the recovery is theoretically possible, asymptotically when the
measurement error goes to zero. The underlying machinery somewhat stands as a continuous
analog of popular methods for sparse recovery in the discrete case. The nature of the kernel
of the forward operator plays here a key role in the notion of sparsity that we set forth. We
also discuss the more realistic case where the measurements are not exact. Finally, we shall
mention the problem of recovering the net moment, which is less difficult but still substantial,
and sketch some approaches to regularize this issue.
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Water waves determination from pressure measurements at the seabed

Didier Clamond
didierc@unice.fr

University of Nice - Sophia Antipolis, Department of Mathematics, France

Water waves profile determination from pressure measurements at the seabed is of great practical
interest. Mathematically, for the pressure, this problem leads to solving a nonlinear Poisson-like
equation. The difficulty lies in that the source term of the Poisson equation is unknown and
that the equation must be solved in a domain that is unknown. The laws of Physics provide
additional relationships to close the problem, leading to a nonlinear system of PDEs.

Using the elementary complex analysis and a few calculation tricks, the problem can be com-
pletely solved analytically in an implicit form. Explicit solutions are then obtained numerically
by fixed-point iterations, that are convergent to an unique solution.
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Uncertainty Quantification of complex systems described by large-scale
equations

Francesco Ferranti
francesco.ferranti@imt-atlantique.fr

IMT Bretagne, Lab-STICC, Brest, France

The efficient and accurate prediction (quantication) of the effects of uncertain parameters (e.g.,
design, environmental, and medical parameters) is of paramount importance in a lot of appli-
cations : e.g., the performance of integrated circuits and nanotechnologies, earthquake engi-
neering, orbital mechanic, hydro-meteorological processes, the probability of failure of complex
communication networks, the stability of smart grids using renewable energy sources, the be-
havior of Internet of Things devices in changing environments, and the accuracy prediction
of medical models for reliable patient-specific medicine (clinical decision-making). Uncertainty
quantication (UQ) techniques are meant to address these challenges !

Monte Carlo (MC) is a well-known approach for UQ. It is easy to implement but computation-
ally expensive due to a very large number of simulations needed to achieve accurate results.
Therefore, alternative approaches have been explored in the literature in order to reduce the
needed computational resources while keeping the accuracy of the UQ results.

In this talk, different UQ techniques based on data-driven (system identification-based UQ)
and model-driven (model order reduction-based UQ) methodologies will be presented with a
focus on electrical engineering applications, such as design and analysis of high-speed circuits
and electromagnetic systems. Both frequency-domain and time-domain UQ will be discussed.
The development of UQ techniques oriented towards the exploitation of parallel computing
resources will be also discussed. Although the numerical examples are focused on specific
electrical engineering applications, the use of the presented UQ methods is general-purpose and
they can be applied to different real-life challenging problems.
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Examples of Satellite Data Based Potential Field Problems and
Approximation Methods on the Sphere

Christian Gerhards
christian.gerhards@univie.ac.at

University of Vienna, Computational Science Center, Austria

We begin with a brief overview on different constituents of planetary gravity and magnetic fields
(in particular, the Earth’s gravity and magnetic field). But the main focus is on two problems
addressing crustal magnetizations and magnetic induction by conductive ocean water. We
provide some analysis of the problems (in particular, uniqueness issues) as well as different
approaches to approximating the quantity of interest. The focus of the latter is on situations
where either the data is only regionally available or the underlying source reveals some spatial
localization. We present spherical multiscale methods as well as problem adapted sets of trial
functions (e.g., by the inclusion of Slepian functions).
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Sensitivity Analysis for Maxwell’s Equations and Application to an Inverse
Problem

Jérémy Heleine, j.w.w. Marion Darbas, Stephanie Lohrengel
jeremy.heleine@u-picardie.fr

LAMFA, CNRS - Université de Picardie Jules Verne, Amiens, France

We are interested in time-harmonic Maxwell’s equations for the electric field, as described below:

(M)

{
curl curlE− k2κE = 0, in Ω,
curlE× n = g, on Γ,

where Ω is a bounded domain of R3, of smooth boundary Γ, with unit outward normal denoted
by n. Here, g is a given field and E is the electric field intensity. The parameter k is the wave
number defined by k = ω

√
µ0ε0 with ω the frequency of the wave, µ0 the magnetic permeability

in vacuum and ε0 the electric permittivity in vacuum. By denoting by ε and σ, respectively,
the electric permittivity and conductivity in Ω, we define κ, the refractive index in the domain:

κ =
1

ε0

(
ε+ i

σ

ω

)
.

The aim of sensitivity analysis is to study how the electric field is affected by perturbations
of small amplitudes induced in the electric permittivity and conductivity. Mathematically, we
study the Gteaux derivative of the solution of (M) in the direction corresponding to these
perturbations. We show that this derivative is solution of Maxwell’s equations with a source
term and we study it numerically.

This study led to numerical results that gave us ideas to solve an inverse problem related to
microwave imaging. In this inverse problem, we want to localize and characterize perturbations
in the refractive index of the medium inside an object from boundary measurements. Our
algorithm allows us to retrieve the center and volume of interior perturbations from boundary
data.
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Multiscale Modelling in Poroelasticity

Bianca Kretz, j.w.w. Volker Michel
kretz@mathematik.uni-siegen.de

University of Siegen, Geomathematics Group, Germany

In geothermal research the aspect of poroelasticity is important to consider. Poroelasticity is
placed in material research and describes the interaction between solids deformation and the
fluid flow. The mathematical model and equations to describe this behaviour are dated back to
Biot in the 1930s. Since we are interested in aquifers in geothermal research, the poroelasticity
is one choice to combine and connect the manner between the solid and the fluid phase.
We regard the quasistatic equations of poroelasticity (QEP) with the unknown terms u (dis-
placement) and p (pore pressure).

−λ+ µ

µ
∇x(∇x · u)−∇2

xu+ α∇xp = f,

∂t(c0µp+ α(∇x · u))−∇2
xp = h,

Fundamental solutions -which we need for our approach- of these equations were derived for
example by [3]. One problem is that they have singularities depending on the space or the time.
Based on [2], we want to regularize these fundamental solutions concerning a parameter τ (called
scale or scaling parameter) with the help of a Taylor approximation and construct wavelets by
subtracting two regularized fundamental solutions with a different scale.
By the convolution of given data u and p e.g. from the method of fundamental solutions (cf. [1])
we want to decorrelate these data and obtain/extract more details of u and p. Furthermore we
want to show some theoretical results, that hold true for the regularized fundamental solution.

References
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The inverse problem in magnetic imaging of geological samples

Eduardo A. Lima
limaea@mit.edu

MIT, Dep. Earth, Atmospheric and Planetary Sciences, Cambridge, USA

High-resolution magnetic field imaging of geological samples is a powerful tool for studying
records of ancient planetary magnetic fields preserved in earth rocks, lunar rocks, and meteorites.
However, magnetization cannot be directly measured with existing instruments except on a very
thin surface layer of the sample. Owing to this difficulty, these imaging techniques rely instead
on measurements of the sample’s external magnetic field to infer the distribution of magnetic
sources within the specimen, which typically leads to an ill-posed inverse problem. Several
techniques and strategies in the spatial domain and in the Fourier domain have been proposed
to regularize and solve the inverse problem for magnetization. For small weakly magnetized
samples, alternative techniques for addressing the more tractable problem of estimating the
sample’s net magnetic moment (i.e., the integral of its magnetization distribution) have also
been proposed. Understanding the strengths and limitations of each technique is critical not
only for choosing the best approach when examining a particular rock sample but also for
developing new analytical tools.
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Rational approximation of a magnetic dipole from sparse field measurements

Konstantinos Mavreas, j.w.w. Sylvain Chevillard, Juliette Leblond
konstantinos.mavreas@inria.fr

Inria, Team FACTAS, Sophia Antipolis, France

Over the last few years, there is an effort to restudy Moon rock samples from Apollo missions
(available at NASA). This re-examination is motivated from recent Paleomagnetic studies, which
revealed evidences for an ancient, strong and global Moon dynamo field [5] that no longer exist.
Planetary scientists, could recover valuable information for the duration and the evolution of
this field from its residuals which preserved in the Moon rocks. Those residuals in the form
of remanent magnetization, contribute to the generated magnetic field of the rock. The issue
of recovering the remanent magnetization of a rock from magnetic field measurements, is the
inverse problem that we address. In contrast to other paleomagnetic studies, where the sample
was sliced or remagnetized, here the sample must be protected from any kind of damage.
For this nondestructive inspection purpose, a special magnetometer has been constructed by
scientists at Cerege1 which they call “lunometer”, [4] . This device encloses the rock sample
in a nonmagnetic cubic box and isolates it from external electromagnetic fields with a mu-metal
shield. The lunometer’s technical characteristics create the sparse measurement geometry of
our study.

The underlying magnetic phenomenon is modeled by Maxwell equations in the magnetostatic
and macroscopic framework [3]. We preliminary assume that the sample contains a unique
pointwise dipolar unknown magnetic source located at Xd, with moment Md. The expression
of the magnetic field at X 6= Xd (where µ0 is the permeability of the free space) has the form:

B(X) = −µ0
4π

|X −Xd|2Md − 3 [Md · (X −Xd)] (X −Xd)

|X −Xd|5
.

From measurements of the magnetic field B at sensors positions, we want to recover the moment
Md and the location Xd of the dipole. Our strategy is to decompose this inverse problem into two
subproblems and search firstly for the location Xd of the dipole (which is a nonlinear problem)
and secondly for its moment Md (which becomes a linear problem when the location is known).
For the location recovery Xd, we use best quadratic rational approximation techniques, together
with geometrical and algebraic properties of the poles of the approximants [1, 2]. During the
talk, these techniques will be explained and numerical results will be discussed.
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Reconstruction of obstacles from partial boundary for wave equation with
finite measurement time

Dmitry Ponomarev, j.w.w Laurent Bourgeois
dmvpon@gmail.com

ENSTA ParisTech, Lab. POEMS, Saclay, France

We consider a problem of determining unknown interior boundaries in a regular (Lipschitz-
smooth) domain in the case of wave equation. The ill-posed Cauchy problem is treated by
quasi-reversibility method (in particular, its mixed formulation that is more adapted for finite-
element discretization) which would allow its solution at once if the full boundary of the domain
was known. In case of reconstruction of the interior boundary this procedure has to be combined
with a level set method. We show that iterative repetition of such combined technique yields
very decent recovery of the unknown boundaries (interior obstacles) providing the measurement
time is sufficiently large.
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Some magnetic field data processing on terrestrial and planetary cases

Yoann Quesnel
quesnel@cerege.fr

CEREGE, CNRS and Aix-Marseille University, France

After 1950, the mining, gas and oil exploration - as well as military applications - led to the
rise of the airborne magnetic field mapping, where small variations of the Earth’s magnetic
field are measured using magnetometers. However, unveiling anomalies only due to the crustal
magnetization requires a lot of processing, since there are multiple sources that contribute
to the Earth’s magnetic field. Here I will shortly detail some of these processing methods
typically applied to magnetic field observations. Then, a last step consists in the numerical
modeling of buried magnetized sources using forward and inverse approaches. Such applications
on terrestrial, lunar and martian cases will be introduced.
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Modelling Earths gravitational potential with a learned best basis

Naomi Schneider, j.w.w. Volker Michel
naomi.schneider@mathematik.uni-siegen.de

University of Siegen, Geomathematics Group, Germany

The model of the Earths gravitational potential provides us with a description of its shape, the
geoid. Further, using time variable data, we can determine the mass distributions and, hence,
visualize the effects of the climate change. To construct the potential, we can theoretically use
an infinite set of trial functions. Practically, we have to make a choice which trial functions are
qualified for our needs. Traditionally, this choice limits us to only one type of trial functions,
e. g. spherical harmonics or radial basis functions (RBFs). In the last decade, algorithms have
been developed that make use of both the local and global structures of different trial func-
tions. These algorithms are called the (Regularized) Functional Matching Pursuit ((R)FMP)
and the (Regularized) Orthogonal Functional Matching Pursuits ((R)OFMP). The idea is to
use an overcomplete but in practice naturally finite dictionary to iteratively build a best ba-
sis and compute a (e. g. gravity field) model in this best basis. The question at hand is,
whether there is an optimal strategy for choosing a finite dictionary from the infinite set of trial
functions. We present a learning strategy which enables us to find an optimized finite subset
of certain RBFs (Abel-Poisson kernels) and spherical harmonics. With respect to the kernels,
this approach includes solving a nonlinear constrained optimization problem in every iteration
step of the matching pursuit. The problem is solved using the Ipopt software package with an
HSL subroutine and yields a new candidate for being an element of an optimized dictionary.
We decide whether it is inserted into the optimized dictionary by considering its effect on the
decrease of the Tikhonov functional. In our presentation, we explain the idea of our learning
algorithm and demonstrate numerical examples with respect to the EGM2008.
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