
Let C be the rectangle [−δ1 , δ1]× [−δ2 , δ2] and, for (x1, x2) ∈ R2,

ψ(x1, x2) =

(
1− |x1|

δ1

) (
1− |x2|

δ2

)
χC(x1, x2) =

1

δ1 δ2
(δ1 − |x1|) (δ2 − |x2|) χC(x1, x2)

=
1

δ1 δ2

∑
ε1∈{−1,1}

∑
ε2∈{−1,1}

(δ1 − ε1 x1) (δ2 − ε2 x2) χC(x1, x2) ,

with εi = ±1 depending on the sign of xi for i = 1, 2 (to distinguish between the 4
quadrants in C). For (t1, t2) ∈ R2, let

Λ(t1, t2) = Λ[ψ](t1, t2) =

∫∫
R2

ψ(x1, x2) dx1 dx2
[(x1 − t1)2 + (x2 − t2)2 + h2]3/2

=

∫∫
C

ψ(x1, x2) dx1 dx2
[(x1 − t1)2 + (x2 − t2)2 + h2]3/2

.

By symmetry and using the parity properties of the functions Fk,l, k, l = 0, 1, we obtain
that, for (t1, t2) ∈ R2,

Λ(t1, t2) =
4

δ1 δ2

∑
ε1∈{−1,0,1}

∑
ε2∈{−1,0,1}

(
−1

2

)|ε1|+|ε2|
×

[(t1 + ε1 δ1) (t2 + ε2 δ2) F0,0 (t1 + ε1 δ1 , t2 + ε2 δ2)
+F1,1 (t1 + ε1 δ1 , t2 + ε2 δ2)

− (t1 + ε1 δ1) F0,1 (t1 + ε1 δ1 , t2 + ε2 δ2)
− (t2 + ε2 δ2) F1,0 (t1 + ε1 δ1 , t2 + ε2 δ2)] ,

where 

F0,0(τ1, τ2) =
1

h
arctan

τ1 τ2
h dh(τ1, τ2)

,

F0,1(τ1, τ2) = − arcsinh
τ2

(τ 21 + h2)1/2
, F1,0(τ1, τ2) = F0,1(τ2, τ1) ,

F1,1(τ1, τ2) = −dh(τ1, τ2) ,

and1 dh(τ1, τ2) = (τ 21 + τ 22 + h2)
1/2

.
For (t1, t2) ∈ S (see [2]), b∗3[ψ] is then given (on S) by

b∗3[ψ](t1, t2) =
µ0

4 π

 ∂t1
∂t2
−∂h

 (hΛ(t1, t2)) .

We see (e.g. from [2] for F0,0 = k and F0,1 = `), that, with d = dh(τ1, τ2),

∂τ1F0,0(τ1, τ2) =
τ2

(τ 21 + h2) d
,

∂τ2F0,0(τ1, τ2) = ∂τ1F0,0(τ2, τ1) =
τ1

(τ 22 + h2) d
,

∂hF0,0(τ1, τ2) = −1

h

(
F0,0(τ1, τ2) +

τ1 τ2 (d2 + h2)

(τ 21 τ
2
2 + h2 d2) d

)
,

1Make use of the change of variables τi ; τi/h?
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whence

∂h (hF0,0(τ1, τ2)) = − τ1 τ2 h (d2 + h2)

(τ 21 τ
2
2 + h2 d2) d

.

Also 

∂τ1F0,1(τ1, τ2) = −1

d
,

∂τ2F0,1(τ1, τ2) =
τ1 τ2

(τ 22 + h2) d
= τ2 ∂τ2F0,0(τ1, τ2) ,

∂hF0,1(τ1, τ2) =
τ1 h

(τ 22 + h2) d
= h ∂τ2F0,0(τ1, τ2) ,

and 

∂τ1F1,1(τ1, τ2) = −τ1
d

= τ1 ∂τ1F0,1(τ1, τ2) ,

∂τ2F1,1(τ1, τ2) = −τ2
d
,

∂hF1,1(τ1, τ2) = −h
d
.

If we let Cp,q be the rectangle [x1,p− δ1 , x1,p + δ1]× [x2,q − δ2 , x2,q + δ2] similar to C but
shifted and centered at (x1,p, x2,q) ∈ Q ⊂ R2, and

ψp,q(x1, x2) = ψ(x1 − x1,p, x2 − x2,q) ,

the associated element following [1, Sec. 5] then, for (t1, t2) ∈ R2

Λ[ψp,q](t1, t2) = Λ[ψ](t1 − x1,p, t2 − x2,q) .

Next, for (t1, t2) ∈ S, do we have?

b∗3[ψp,q](t1, t2) =
µ0

4π

 ∂t1
∂t2
−∂h

 (hΛ[ψ](t1 − x1,p, t2 − x2,q)) ?

Note that b∗3[ψp,q](t1, t2) 6= b∗3[ψ](t1− x1,p, t2− x2,q) because b∗3[ψp,q] is defined on S only...
However, if we let bs3[ψ] be defined on R2 by

bs3[ψ](t1, t2) =
µ0

4π

 ∂t1
∂t2
−∂h

 (hΛ(t1, t2)) , for (t1, t2) ∈ R2 ,

so that b∗3[ψ] = (bs3[ψ])|S, then bs3[ψp,q](t1, t2) = bs3[ψ](t1 − x1,p, t2 − x2,q). Also,
b∗3[ψp,q](t1, t2) = (bs3[ψ](t1 − x1,p, t2 − x2,q))|(t1,t2)∈S.
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1 Integrals

In this section we give results on integrals involved in the evalutation of b?3[P ] where P is
a polynomial in the variables x1 and x2.
We introduce the following notations: we usually denote with i an arbitrary index i ∈
{1, 2} and with j the other element of {1, 2}. We define d = (x21 + x22 + h2)1/2, A =
arctan(x1 x2/(h d)), ai = x2i + h2 and Li = arctanh(xi/d). We focus first on various
indefinite integrals with respect to the variable xi. Whenever a function is even with
respect to variable xi, we select amongst the possible values for the indefinite integral the
one that is odd. In all other cases, the integral is defined up to an additive constant that
we do not specify.

1. Obviously,∫
1

d
dxi =

∫
1√

x2i + aj
dxi =

∫
1
√
aj
· 1√(

xi√
aj

)2
+ 1

dxi = arcsinh
( xi√

aj

)
= Li.

The last equality is obtained by remembering that the inverse hyperbolic functions can
be expressed with respect to ln, namely, on (−1, 1), arctanh(u) = 1

2
ln
(
1+u
1−u

)
and, on R,

arcsinh(u) = ln(u+
√

1 + u2) =
1

2
ln

(
u+
√

1 + u2

−u+
√

1 + u2

)
.

2. If pi is an integer greater or equal to 1, [3, Sec. 1.2.43, Eq. 6] explicitly gives an
expression for the integral of x2pii /d as:

d

2pi

[
pi−1∑
k=0

(−aj
2

)k ( k∏
s=1

2pi − 2s+ 1

pi − s

)
x2pi−2k−1i

]
+
(−aj

2

)pi ∏pi
s=1(2pi − 2s+ 1)

pi!
Li.

This (somehow heavy expression) can be elegantly summed up as∫
x2pii

d
dxi = β−1 Li +

( pi∑
k=1

β2k−1 x
2k−1
i

)
d,

where β2pi−1 = 1
2pi

, β2k−1 = −aj 2k+1
2k

β2k+1 for k ∈ J1, pi − 1K and β−1 = −aj β1.

3. Now, if pi ≥ 0 and n ∈ Z, [3, Sec. 1.2.43, Eq. 8] expresses the integral of x2pi+1
i /d2n+1

as
pi∑
k=0

(−1)k+pi+1

(
pi
k

)
api−kj d2k

(2n− 2k − 1)d2n−1
.

Since d2 = x2i + aj, we immediately see that it takes a form reminiscent of the previous

case, namely,
(∑pi

k=0 β2k x
2k
i

)
d, although the coefficients β2k are not as easily expressed

as before.
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Actually, we can obtain this expression by another way, and with an explicit formula for
the β2k using [3, Sec. 1.2.43, Eq. 3]:∫

x2pi+1
i

d2n+1
dxi =

x2pii

(2pi − 2n+ 1)dn−1
− 2pi aj

2pi − 2n+ 1

∫
x2pi−1i

d2n+1
dxi.

Unrolling this recurrence when n = 0, and using the fact the
∫

xi
d

dxi = d, we see that
β2pi = 1

2pi+1
and β2k = −aj 2k+2

2k+1
β2k+2 for k ∈ J0, pi − 1K.

4. Indeed, the results of both previous paragraphs can be summed up in a single formula:
for pi ≥ 1, ∫

xpii
d

dxi = β−1 Li +
( pi−1∑
k=0

βk x
k
i

)
d

where βpi−1 = 1
pi

, βpi−2 = 0, βk = −aj k+2
k+1

βk+2 for k ∈ J0, pi − 3K and β−1 = −aj β1.

5. More generally, for pi ≥ 2,∫ ∑pi
k=0 γk x

k
i

d
dxi = β−1 Li +

( pi−1∑
k=0

βk x
k
i

)
d,

where βpi−1 =
γpi
pi

, βpi−2 =
γpi−1

pi−1 , βk =
γk+1−(k+2) aj βk+2

k+1
for k ∈ J0, pi − 3K and β−1 =

γ0 − aj β1.
To prove it, let us simply differentiate the proposed expression with respect to xi, rewriting
once d as d2/d = (x2i + aj)/d and grouping terms by powers of xi:

d

dxi

[
β−1 Li +

( pi−1∑
k=0

βk x
k
i

)
d

]
=

β−1
d

+
( pi−1∑
k=1

k βk x
k−1
i d

)
+
( pi−1∑
k=0

βk x
k+1
i

1

d

)
=

β−1
d

+
( pi−1∑
k=1

k βk x
k−1
i

x2i + aj
d

)
+
( pi−1∑
k=0

βk x
k+1
i

1

d

)
=

1

d

pi∑
k=0

γk x
k
i .

Notice that, even though pi is required to be greater or equal to 2 for the recurrence
formula to make sense, none of the γk is required to be non-zero. This means that
the formula is valid for a polynomial of any degree: it must simply be completed with
coefficients equal to 0 when the degree is smaller or equal to 1. For instance taking
pi = 2, γ0 = 1, γ1 = γ2 = 0 leads to β1 = β0 = 0 and β−1 = 1, whence retrieving that the
indefinite integral of 1/d is Li.

6. We now turn to the indefinite integrals of a polynomial over d3. We obviously have∫
xi
d3

dxi =
−1

d
.
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Hence, ∫
x3i
d3

dxi =

∫
(d2 − aj)xi

d3
dxi = d+

aj
d

=
x2i + 2aj

d
.

The integral of x2i /d
3 is performed by parts:∫

x2i
d3

dxi =

∫
xi ·

d

dxi

(
− 1

d

)
dxi = −xi

d
+ Li.

Finally, remarking that 1 =
d2−x2i
aj

, we get∫
1

d3
dxi =

1

aj

∫
d2 − x2i
d3

dxi =
xi
aj d

.

Notice that all these integrals are explicitly listed in [3, Sec. 1.2.43, Eq. 17 to Eq. 20].

7. For pi ≥ 2, the integral of x2pii /d3 is not given explicitly in [3] although it is possible
to deduce an expression of it using, e.g., [3, Sec. 1.2.43, Eq. 2 or Eq. 3]. On the other
hand, as we have seen in paragraph 3, an expression of the integral of x2pi+1

i /d3 is given
by [3, Sec. 1.2.43, Eq. 8] and takes the form of 1/d times a polynomial in variable x2i , but
with an obfuscated expression for the coefficients of the polynomial.
Similarily to what we did in paragraph 5, we show that, when pi ≥ 4:∫ ∑pi

k=0 γk x
k
i

d3
dxi = β−1 Li +

∑pi−1
k=0 βk x

k
i

d
,

where βpi−1 =
γpi
pi−2 , βpi−2 =

γpi−1

pi−3 , βk =
γk+1−(k+2) aj βk+2

k−1 for k ∈ J0, pi − 3K\{1}, β−1 =
γ2 − 3ajβ3 and β1 = γ0

aj
− β−1.

To prove it, let us simply differentiate the proposed expression with respect to xi, rewriting
1/d as d2/d3 = (x2i + aj)/d

3 and grouping terms by powers of xi:

d

dxi

[
β−1 Li +

( pi−1∑
k=0

βk
xki
d

)]
=

β−1
d

+
( pi−1∑
k=1

k βk
xk−1i

d

)
−
( pi−1∑
k=0

βk x
k+1
i

1

d3

)
=

1

d3

(
β−1(aj + x2i ) +

pi−1∑
k=1

k βk aj x
k−1
i +

pi−1∑
k=0

(k − 1)βk x
k+1
i

)
=

1

d3

pi∑
k=0

γk x
k
i .

As in paragraph 5, the formula is indeed valid for polynomials of any degree, provided
that one completes them with zero coefficients in order to take pi ≥ 4.

8. For pi ≥ 6, ∫ ∑pi
k=0 γk x

k
i

d5
dxi = β−1 Li +

∑pi−1
k=0 βk x

k
i

d3
,

where βpi−1 =
γpi
pi−4 , βpi−2 =

γpi−1

pi−5 , βk =
γk+1−(k+2) aj βk+2

k−3 , for k ∈ J0, pi − 3K\{1, 3},
β−1 = γ4 − 5β5aj, β1 = γ0

aj
− β−1 aj and β3 = γ2

3aj
+ 2γ0

3a2j
− 4

3
β−1.

The technique of the proof is as before and the same remark about the degree applies.
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