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Abstract

The considered problem consists in retrieving the magnetization distribution from the

measurements of the external magnetic field which is produced by this magnetization and

mapped by the scanning SQUID microscope. This inverse source problem is ill-posed. It

appears in many domain and paleomagnetism is one of those.

We state the problem in mathematical terms. We solve the formulated minimization

problem by approximating it by Maclaurin series. In order to examine the quality of the

obtained solution we perform the recovering of the magnetization from the simulated mea-

surements of the magnetic field. We retrieve the magnetization from synthetic measurements

by solving the least square problem and show that for the computed position the recovered

magnetization resembles the simulated one. We verify that the displacement of the plane

where we recover magnetization, from the middle of the sample to the new position, improves

the numerical results.

Keywords: inverse source problem, thin plate magnetization, SQUID microscope, Maclau-

rin series, least square method.
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1 Introduction

The property of some rocks to hold the remanent magnetization is known for a long

time. The rocks acquire this magnetic property due to presence of various minerals, for

example, iron monoxide(FeO), ferric oxide (Fe2O3), siderite (the mineral composed of iron

carbonate (FeCO3)), iron chlorites, etc. There are several types of remanent magnetization

which depend on the mechanism of rocks formation. For instance, the thermoremanent

magnetization is acquired when the igneous rocks cool from a temperature above the Curie

point. As well phase change or chemical action during the formation of magnetic oxides at

low temperatures give rise to the crystallization (chemical) remanent magnetization.

The magnetization which is locked-in the rocks is called fossil magnetism. Paleomag-

netism is the study of the records of the fossil magnetization in rocks. These records contain

information about the direction and intensity of the geomagnetic field at that moment when

rocks were formed. Paleomagnetic data is used to verify the theories of continental drift and

plate tectonics, to determine the age of the igneous rocks, to estimate the age sites bearing

fossils and hominid remains, to investigate the behavior of Earth’s magnetic field. For more

information about paleomagnetism we refer to [6, 7].

A scanning SQUID (superconducting quantum interference device) microscope is a super-

sensitive magnetometer, it is capable of measuring very weak magnetic field about 10−13T.

It represents a superconducting ring and two Josephson tunnel junctions. The principle of

operation is based on the presence of the wave properties of the electron. It is a very effective

tool and is used in medicine (magnetoencephalography), experimental physics (search for the

electron electric dipole moment), geophysical survey [3, 8]. The SQUID microscope is used

to image the magnetic field produced by the magnetized geological sample.

The microscope measures the vertical component of the magnetic field in a uniform

rectangular grid pattern at a certain height above the specimen placed on a horizontal plane

by moving SQUID sensor across an area. However information about the distribution of

the magnetization within the sample has a greater interest for research. Therefore it is

required to solve the appeared ill-posed problem of recovering the magnetization from the

measurements of the vertical components of the field it produced. The nonuniqueness of

this inverse problem arises because different magnetization distributions can give rise to the

same observed magnetic field. The use of supplementary information enables to restrict the

set of possible solutions and choose among all magnetization distributions which produce

the observed magnetic field that one which has the physical sense. For instance, one of

these assumptions can be the unidirectionality of the magnetization it means that it has
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fixed direction but variable nonnegative magnitude [1]. The unidirectional character of the

magnetization often occurs in nature so it is logical assumption. When rocks are formed from

the rapid cooling of basaltic lava in presence of the external magnetic field (Earth magnetic

field) they magnetize in the direction of the magnetic field lines.

The geological samples which are used in paleomagnetic analysis are polished rocks with

tiny thickness from several hundred micrometers to several micrometers that is much smaller

than the horizontal dimensions. The magnetization is measured at a distance several times

greater than the thickness of the sample. In that scale it is possible to suppose that the

sample has no thickness in the vertical direction and to represent the sample as the thin

plate.

The case of the two-dimensional magnetization distribution with compact support was

analysed in [1]. It involves applying harmonic analysis and characterizing the kernel of the

magnetization operators. A necessary and sufficient condition for a magnetization to be

silent source is determined. More precisely, a thin plate magnetization is silent when its

normal component is zero and the tangential component is divergence-free. The authors

prove that any planar magnetization distribution is equivalent to a unidimensional one.

The magnetization is called unidimentional if m = Qu for some fixed u ∈ R3 and some

scalar valued distribution Q [?]. Also it is shown that for unidirectional magnetization with

compact support it is possible to guarantee that the solution of the inverse problem is unique

assuming that there are no sources outside a considered bounded region.

An inversion technique based on the classical technique in the Fourier domain to retrieve

thin plate unidirectional magnetization distribution from the data of the normal component

of the magnetic field is presented in the article [5]. The authors test their approach both

on real geological samples and a synthetic samples. They compare results with previous

obtained ones by using spatial-domain inversion techniques in the spatial domain [8].

As already indicated above values of the sample’s thickness can be around several hundred

micrometers. For such size it is not correct to neglect the thickness of the sample. We explore

how thin plate magnetization distribution are varied depending on the placement this plate

on the z axis. And in this work we investigate for which position the reconstruction of the

magnetization is more successful by approximating the emerged minimization problem.
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2 Volumetric magnetization

2.1 Derivation of the potential’s formula

Consider the Maxwell-Ampère equation which states:

∇×B = µ0J, (1)

where B is the magnetic-field vector (magnetic induction vector), µ0 = 4π × 10−7Hm−1 is

the magnetic constant, J is the total current density and ∇× is the curl operator.

We consider that the free current density is absent so the total current density is just the

bound current density. The latter corresponds to the current which arises due to movements

of electric and magnetic dipole moments per unit volume.

The magnetization current density JM can be expressed in terms of the magnetization

vector M by formula JM = ∇ ×M. In consequence the Maxwell-Ampere equation can be

reformulated as follows:

∇×H = 0, (2)

where H is given by the following expression:

B = µ0(H + M). (3)

This function H is called the magnetic intensity (cf. [4]).

We conclude from Helmholtz’s theorem and the obtained equation (2) that the magnetic

intensity H can be defined by a function φ as follows:

H = −∇φ. (4)

The function φ is called the magnetic scalar potential.

We obtain the Poisson equation taking the divergence of the equation (3), substituting

the expression (4) for H and using the Gauss’s law which states that ∇ ·B = 0:

4φ = ∇ ·M, (5)

where 4 is the Laplacian in Cartesian coordinates.

Recalling that the fundamental solution of the Laplacian in R3 is GL(r) = − 1
4π‖r‖ that

is a Green’s function. Hence the solution of the Poisson equation is given by:

φ(r) = (GL ∗ ∇ ·M)(r) = − 1

4π

∫∫∫
R3

1

‖r − r′‖
(∇ ·M)(r′) dr′, (6)

where r ∈ R3 is a position vector and ∗ is the three-dimensional convolution operator.
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We apply the product rule for the scalar function GL and the vector field M as follows:

∇ · (GLM) = M · ∇GL +GL∇ ·M

Noting that ∇ 1
‖r‖ = − r

‖r‖3 and considering that M is compactly supported we obtain for all

r /∈ supp(M) the formula for the magnetic scalar potential:

φ(r) =
1

4π

∫∫∫
M(r′) · (r − r′)
‖r − r′‖3

dr′. (7)

2.2 Formulation of the problem

In fact the SQUID microscope maps the vertical component of the magnetic field Bz.

However the vertical component of the magnetic field is the partial derivative with respect

to z of the potential:

Bz(r) = µ0
∂

∂z
φ(r) =

µ0

4π

∫∫∫
supp(M)

3M(r′) · (r − r′)
‖r − r′‖5

(r − r′)− M(r′)

‖r − r′‖3
dr′ (8)

It is not significant which of quantities Bz or φ we explore. We formulate the problem for

the scalar magnetic potential.

The sample is thin and so the magnetization distribution undergoes marginal changes

within the sample. To be more exact, we assume the direction magnetization is uniform

in depth and the intensity differs by a constant. We define a function ϕ(z) : [−β, β] → R

describes the variation of the magnetization intensity depending on the depth in the sample.

A priori we do not know any information about the form of the function ϕ(z). At the

beginning we suppose that it is enough differentiable. More precisely, we assume that the

magnetization has the following form:

M(x, z) = ϕ(z)(mT (x),m3(x)). (9)

We denoted the tangential and normal components of the magnetization by mT (x) =

(m1(x),m2(x)) and m3(x) respectively. In the most general framework the components

of M lie in D′(R3). Thus the potential at the position r = (x, h) for a certain h and x ∈ R2

is computed by formula (7) as follows:

Vβ(x, h) =
1

4π

∫∫
supp(M)

β∫
−β

ϕ(z′)
mT (x′) · (x− x′) +m3(x

′)(h− z′)
(‖x− x′‖2 + (h− z′)2) 3

2

dz′ x′, (10)

where β is a half of the thickness of the sample. Further this potential will be called volu-

metric.
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As mentioned above the proportions of the sample allow of regarding it as a thin plate.

In that case we consider that the support of the magnetization is distributed on the finite

section of the x-y plane at a certain height z′. The magnetization can be expressed as a

tensor product distribution in D′(R3) of the form:

M(x, z) = (mT (x),m3(x)) ∗ δz′(z), (11)

Then the thin plate’s potential which is measured at the height h is defined as:

Γz′(x, h) =
1

4π

∫∫
supp(M)

mT (x′) · (x− x′) +m3(x
′)(h− z′)

(‖x− x′‖2 + (h− z′)2) 3
2

dx′. (12)

Hence the volumetric potential can be expressed in terms of the thin plate’s potential as

follows:

Vβ(x, h) =

β∫
−β

ϕ(z′)Γz′(x, h) dz′. (13)

We search for the layer within the sample which makes a rather more contribution to

the total magnetization. In other words we want to find a point on the z axis such that the

magnetization of the thin plate at this height describes the obtained measurements of the

magnetic field the best way. In mathematical terms the problem can be represented as the

minimization with respect to z0 of the square of the L2(R2) - norm of the difference between

the potentials:

Sz0(x) = α(β)Γz0(x, h)− Vβ(x, h). (14)

subject to the equality of net-moments:

α(β)

∫∫
R2

(
mT (x′)
m3(x′)

)
dx′ =

∫∫
R2

β∫
−β

ϕ(z′)
(
mT (x′)
m3(x′)

)
dz′ dx′.

The function α(β) plays a role of the weighting coefficient in the equation (14), generally

speaking it is the mean value of the function ϕ(z) on the closed interval [−β, β].

This expression also equivalents to the following:

α(β) =

β∫
−β

ϕ(z′) dz′. (15)

In general the problem can be formulated for L2(R2, but since the magnetic field is

measured on the finite region we can consider the problem on a square [−a, a]2 and value

of a depends on the experimental setup. Thus we minimize the square of the norm on

L2([−a, a]2):

min
z0∈[−β,β]

‖Sz0(x)‖2L(R2) (16)
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Since the function ϕ(z) is continuous on the interval [−β, β] and by taking the equality of

net-moments (15) into account we obtain:

α(β) = 2ϕ(0)β + o(β2). (17)

2.3 Approximation of the problem

The value of the thickness is small in comparison with other involved quantities such that

its width and length as well the sensor-to-sample distance therefore we can approximate the

potentials by a Taylor expansion centered at zero in order to find the minimum of the

difference. That sort of the series is called Maclaurin series. Also in order to compare the

order of magnitude of the potentials we identically assume that β tends to zero and analyse

how the solution z0 of the minimization problem varies.

The general formula of the Maclaurin series is given by:

F (x) =
n∑
k=0

xkF (k)(0)

k!
+Rn(x),

where Rn(x) is a remainder of the series and a function F (x) is at least n + 1 times differ-

entiable on the interval between 0 and x. The remainder can be expressed in Lagrange form

Rn(x) = x(n+1)F (n+1)(θ)
(n+1)!

, for some real number θ ∈ (0, x).

Let us consider the second-order approximation. So as to avoid cumbersome expressions

we omit h in what follows since we always measure the external magnetic field on the same

plane (i.e. h is fixed) and we introduce some notations:

γ0(x) = Γ0(x, h),

γ1(x) =
∂

∂z
Γz(x, h)

∣∣∣∣
z=0

,

γ2(x) =
∂2

∂z2
Γz(x, h)

∣∣∣∣
z=0

.

The Maclaurin series of the potential Γz(x) with respect to the variable z with the remainder

Q2(z, x) is given by:

Γz(x) = γ0(x) + zγ1(x) +
z2

2
γ2(x) +Q2(z, x). (18)

The general formula of the Maclaurin series of the potential Vβ(x) as a function of the

variable β with the remainder Pn(β, x) is given by:

Vβ(x) =
n∑
k=0

∂k

∂βk
Vβ(x)

∣∣∣∣
β=0

βk

k!
+ Pn(β, x).
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The function Vβ(x) is a odd function of the variable β so the graph of it has rotational

symmetry with respect to the origin. The derivative of an odd function is an even function

and vice-versa. Therefore the values of the even order partial derivatives of this function at

the point zero equal zero. So the Maclaurin series takes the form:

Vβ(x) =

n−1
2∑

k=0

∂2k+1

∂β2k+1
Vβ(x)

∣∣∣∣
β=0

β2k+1

(2k + 1)!
+ Pn(β, x).

We remind that for the time being we approximate the function to the second order

therefore to expand the potential Vβ(x) into series we need compute the partial derivative:

∂

∂β
Vβ(x) =

∂

∂β

β∫
−β

ϕ(z′)Γz′(x, h) dz′.

In order to obtain the explicit expression for the partial derivative of Vβ(x) we use the formula

of the differentiation under the integral sign, generally it can be stated as follows:

∂

∂t

ψ(t)∫
ξ(t)

f(x, t) dt = f(t, ψ(t))ψ′(t)− f(t, ξ(t))ξ′(t) +

ψ(t)∫
ξ(t)

∂

∂t
f(x, t) dx, (19)

where both f(x, t) and ∂
∂t
f(x, t) are continuous functions in x and t, where ξ(t) ≤ x ≤ ψ(t).

Observing that the integrand in expression (19) does not depend on the integration variable

and setting ξ = −β and ψ = β we apply the formula (19) and we obtain that the partial

derivative of Vβ(x) is of the form:

∂

∂β
Vβ(x) = ϕ(β)Γβ(x) + ϕ(−β)Γ−β(x). (20)

The series expansion of the potential Vβ(x) of the volumetric sample is given by:

Vβ(x) = 2ϕ(0)βγ0(x) + P2(β, x). (21)

Replacing in the expression (14) the potentials by their expansion into Maclaurin series

and α(β) by its explicit formula (17) we observe that terms multiplied by γ0 disappear and

we obtain the following expression for Sz0(x):

2ϕ(0)β

(
z0γ1(x) +

z20
2
γ2(x) +Q2(z0, x)

)
+ P2(β, x) (22)

This expression has the minimum with respect to z0 at the point zero. It corresponds to the

model considered in the previous works [1,8] for which the volumetric sample is regarded as

the thin-plate z = 0. The same . In order to improve this result let us consider next terms

of the series of the function Vβ(x).
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The next term of the series is multiplied by the third partial derivative. We compute the

third partial derivative of Vβ(x) by using the general Leibniz rule for the nth derivative of a

product of two functions. The Leibniz rule is formulated as follows:

(f(x) · g(x))(n) =
n∑
k=0

(
n

k

)
f (n−k)(x)gn(x),

where
(
n
k

)
are the binomial coefficients for all k = 1, . . . , n.

According to this formula and taking into account the fact that the even order partial

derivatives vanish at the point zero, the general formula of the nth derivative of Vβ(x) with

respect to β can be computed for all integer numbers n ≥ 0 as follows:

∂n+1

∂βn+1
Vβ(x)

∣∣∣∣
β=0

=


2

n∑
k=0

(
n
k

)
ϕ(n−k)(0) ∂k

∂βk Γβ(x, h)
∣∣∣
β=0

, if n+ 1isodd;

0, if n+ 1iseven.
(23)

We recall that the derivative of order zero is the function itself. Thus as a particular case

we have the formula of the third-order partial derivative of Vβ(x) at the point zero:

∂3

∂β3
Vβ(x)

∣∣∣∣
β=0

= 2ϕ′′(0)γ0(x) + 4ϕ′(0)γ1(x) + 2ϕ(0)γ2(x). (24)

As a result we obtain the Maclaurin series of Vβ(x) in the following form:

Vβ(x) = 2ϕ(0)βγ0(x) +
β3

3
(ϕ′′(0)γ0(x) + 2ϕ′(0)γ1(x) + ϕ(0)γ2(x)) + P4(β, x). (25)

We try to find the optimal position z0 in the z axis such that the planar magnetization

distribution at height z0 is the most similar to the whole magnetization of the sample as

seen on the measured potential at the height h. For this purpose we compute the difference

between the thin plate and the volumetric potentials. We expand into series the function

α(β):

α(β) = 2ϕ(0)β +
β3

3
ϕ′′(0) + o(β4). (26)

At this point the difference between potentials can be approximated as follows:

Sz0(x) = α(β)Γz0(x)− Vβ(x) = α(β)

(
γ0(x) + z0γ1(x) +

z20
2
γ2(x) +Q2(z0, x)

)
−

−
(

2ϕ(0)βγ0(x) +
β3

3
(ϕ′′(0)γ0(x) + 2ϕ′(0)γ1(x) + ϕ(0)γ2(x)) + P4(β, x)

)
=

= α(β)γ0(x) + α(β)

(
z0γ1(x) +

z20
2
γ2(x)

)
+ α(β)Q2(z0, x)−

−
(

2ϕ(0)β +
β3

3
ϕ′′(0)

)
γ0(x)− β3

3
(2ϕ′(0)γ1(x) + ϕ(0)γ2(x)) + P4(β, x).
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The underlined terms with γ0 vanish by taking into account the obtained formula of the

weighted parameter.

So we conclude that the problem consists in minimization of the following expression:

‖Sz0(x)‖2L2([−a,a]2) = ‖α(β)

(
z20
2
γ2(x) + z0γ1(x) +Q2(z0, x)

)
−

− β3

3
(2ϕ′(0)γ1(x) + ϕ(0)γ2(x)) + P4(β, x)‖2L2([−a,a]2).

Let us denote γ̂(x) = 2ϕ′(0)γ1(x) + ϕ(0)γ2(x) for simplification.

Compute the square of the L2-norm of this expression:

‖Sz0(x)‖2 = ‖α(β)

(
z20
2
γ2(x) + z0γ1(x)

)
− β3

3
γ̂(x) + α(β)Q2(z0, x) + P4(β, x)‖2 =

= ‖α(β)

(
z20
2
γ2(x) + z0γ1(x)

)
− β3

3
γ̂(x)‖2︸ ︷︷ ︸

(1)

+ ‖α(β)Q2(z0, x) + P4(β, x)‖2︸ ︷︷ ︸
(2)

+
〈
α(β)

(
z20γ2(x) + 2z0γ1(x)

)
− 2β3

3
γ̂(x), α(β)Q2(z0, x) + P4(β, x)

〉︸ ︷︷ ︸
(3)

. (27)

We compute each terms individually and analyse the order of their summands taking

into account that α(β) ∈ O(β). Since we consider approximation of the problem we have

already neglected some information i.e. we should compare the components of the equation

regard to the fact that some terms can be smaller than remainders.

The first term of the equation (27) equals:

‖α(β)

(
z20
2
γ2(x) + z0γ1(x)

)
− β3

3
γ̂(x)‖2 =

= α2(β)

(
z40
4
‖γ2(x)‖2 + z30

〈
γ2(x), γ1(x)

〉
+ z20‖γ1(x)‖2

)
−

− α(β)

(
β3z20

3

〈
γ2(x), γ̂(x)

〉
− 2β3z0

3

〈
γ1(x), γ̂(x)

〉)
+
β6

9
‖γ̂(x)‖2. (27.1)

The second term of the equation (27) equals:

‖α(β)Q2(z0, x) + P4(β, x)‖2 =

= α2(β)‖Q2(z0, x)‖2 + α(β)
〈
Q2(z0, x), P4(β, x)

〉
+ ‖P4(β, x)‖2 ∈

∈ o(β2z40) + o(β5z20) + o(β8). (27.2)

It should be noted that P4(β, x) and Q2(z0, x) are square-integrable functions with respect

to variable x so they do not affect the order with respect to z0.
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The last term of the equation (27) equals the following:〈
α(β)

(
z20γ2(x) + 2z0γ1(x)

)
− 2β3

3
γ̂(x), α(β)Q2(z0, x) + P4(β, x)

〉
=

= α2(β)
(
z20
〈
γ2(x), Q2(z0, x)

〉
+ 2z0

〈
γ1(x), Q2(z0, x)

〉)
− 2α(β)β3

3

〈
γ̂(x), Q2(z0, x)

〉
+ α(β)z20

〈
γ2(x), P4(β, x)

〉
+ 2α(β)z0

〈
γ1(x), P4(β, x)

〉
− 2β3

3

〈
γ̂(x), P4(β, x)

〉
. (27.3)

Let us analyse the order of magnitude of the summands of this expression:

α2(β)z20
〈
γ2(x), Q2(z0, x)

〉
∈ o(β2z40),

2α2(β)z0
〈
γ1(x), Q2(z0, x)

〉
∈ o(β2z30),

2α(β)β3

3

〈
γ̂(x), Q2(z0, x)

〉
∈ o(β4z20),

α(β)z20
〈
γ2(x), P4(β, x)

〉
∈ o(β5z20),

2α(β)z0
〈
γ1(x), P4(β, x)

〉
∈ o(β5z0),

2β3

3

〈
γ̂(x), P4(β, x)

〉
∈ o(β7).

We neglect the element o(β2z40) in the second and third expressions because it is smaller

according to z0 than the element o(β2z30) of the third expression. By the same consideration

the elements of order o(β5z20) vanish by comparing it with o(β5z0). Since o(β8) ⊂ o(β7) we

remove o(β8). The other elements of the second and third expressions are not comparable

with each other.

Hence we obtain the following approximate expression for ‖Sz0(x)‖2:

α2(β)
z40
4
‖γ2(x)‖2 + α2(β)z30

〈
γ2(x), γ1(x)

〉
+ α2(β)z20‖γ1(x)‖2−

− α(β)β3z20
3

〈
γ2(x), γ̂(x)

〉
− 2α(β)β3z0

3

〈
γ1(x), γ̂(x)

〉
+
β6

9
‖γ̂(x)‖2+

+ o(β2z30) + o(β4z20) + o(β5z0) + o(β7). (28)

Notice that the terms o(β2z30) and o(β4z20) are subsets of o(β2z20). Likewise the compo-

nents α2(β)z30
〈
γ2(x), γ1(x)

〉
as well as α(β)β3z20

3

〈
γ2(x), γ̂(x)

〉
belong to o(β2z20). In addition

α2(β)
z40
4
‖γ2(x)‖2 ∈ o(β2z30) is negligible quantity by comparison with o(β2z20). Therefore we

can replace all of them by the term o(β2z20).

As a result we substitute the explicit formula for γ̂(x) and we obtain the following final

equation of ‖Sz0(x)‖2:

z20α
2(β)‖γ1(x)‖2 − 2

3
z0α(β)β3

〈
γ1(x), 2ϕ′(0)γ1(x) + ϕ(0)γ2(x)

〉
+
β6

9
‖2ϕ′(0)γ1(x) + ϕ(0)γ2(x)‖2 + o(β2z20) + o(β5z0) + o(β7). (29)
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It is represented as the quadratic parabola with respect to variable z0. The coefficient of the

highest order term is positive therefore the minimum of this expression is at the vertex of

the parabola and can be computed as:

z0 =
2
3
α(β)β3

〈
γ1(x), 2ϕ′(0)γ1(x) + ϕ(0)γ2(x)

〉
2α2(β)‖γ1(x)‖2

. (30)

We simplify this equation, substitute α(β) for the expression (26) and denoted by a1 and a2

respectively ‖γ1(x)‖2L2([−a,a]2) and
〈
γ1(x), γ2(x)

〉
L2([−a,a]2).

Eventually the minimum point given by:

z0 =
β2 (2ϕ′(0)a1 + ϕ(0)a2)

a1 (6ϕ(0) + β2ϕ′′(0))
, (31)

or else

z0 =
2ϕ′(0)a1 + ϕ(0)a2

6ϕ(0)a1

(
β2 − β4ϕ

′′(0)

6ϕ(0)
+ o(β4)

)
. (32)

We introduce the obtained z0 into the expression (28) and we observe that sum of little-o

terms equal o(β7) + o(β8) ⊂ o(β7). According to the fact that α(β) ∈ O(β) the first two

summands and term α(β)β3z20
3

〈
γ2(x), γ̂(x)

〉
also belong to o(β7). Hence the approximation

order of ‖Sz0(x)‖2 is o(β7).
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3 Numerical experiments

Commonly the experiments are performed for two actual geological samples: Hawaiian

basalt (30-mm thin section of basalt from the Mauna Loa volcano) and Lonar Spherule (two

100mm diameter glass spherules from the Moon). We construct a synthetic example of the

measurements of the magnetic field for carrying out numerical experiments. The simulation

of the measurements data is justified that the true net-moment is known in this case. It

makes it possible to estimate the quality of the numerical experiments by comparing the

recovered net-moment with the true one. It is desired that the synthetic magnetization

resembles approximately the magnetization of the true Lonar Spherule example which is

presented in Figure 1.

Figure 1: The normal component of the magnetic field of the Lonar Spherule example

The magnetization of the thin geological sample is measured at a distance three times

greater than a half of the sample thickness. We set the thickness of the sample equals

2·10−4m. We represent each magnetization source element by the single magnetic dipole. We

choose a main direction and an amplitude of the dipoles in that way that the magnetization

looks like the Lonar Spherule example. All dipoles almost points in that direction but

there is small component in the plane orthogonal to this direction too. This orthogonal

component varies smoothly for all dipoles. Three components of the synthetic magnetization

are represented below.
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Figure 2: Three components of the synthetic magnetization

We use the grid with the sampling step is ten times smaller than the step of the mea-

surement grid in order to model a continuous magnetization. The sampling step of the

measurement grid equals 5 · 10−5. We consider the sample as a set of thin layers from −β

to β. The magnetization from each layers multiplied by the function ϕ(z) compose the vol-

umetric magnetization. For the numerical experiments we suppose that the function ϕ is a

constant since we do not have any information about this function. Introducing any physi-

cal specificity of the function ϕ(z) is possible with some modification since all computations

were done for a general case. We set the quantity of layers equal to 200. The magnetization

is supported in a rectangle 83x105. Its shape is the dot of the ’i’ of the Inria logo.

Figure 3: The normal component of the synthetic volumetric magnetization field Bz

We regard the synthetic magnetic field as measurements provided by the scanning mi-

croscope on the whole surface of the thin plate. We suppose that the information about the

support of the magnetization is unknown. At first, we let z0 equal zero. We use the technique

described in [2] for retrieving the magnetization from the synthetic data. We reconstruct
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the magnetization on the grid with the sampling step in three times bigger then for the

measurement grid. We solve the least squares problem which consists in seeking a vector X

that minimizes the squared Euclidean norm ‖AX − B‖2, where B is an vector containing

the measurements of the vertical component of the field and A is a discrete linear operator

that maps the dipoles on the measurements. In order to find a minimum we equate to zero

the derivative with respect to X of this norm:

∂

∂X
‖AX −B‖22 = −2ATB + 2ATAX = 0.

Hence we obtain the solution in form of X = (ATA)−1ATB. Then we invert a matrix

M = ATA which is symmetric positive. We do a singular value decomposition of this matrix

M = UDV T , matrices U and V are unitary, D is diagonal matrix. Then the solution is

X = V D−1UTATB. As a result we obtain the vector X containing the three component of

the magnetization m1, m2, m3. The true magnetization has a finite support which is smaller

that whole magnetization grid hence at most points it has very small values. Therefore we

takes the maximal absolute value for each components of the magnetization and sort out

values at least 10 % of the maximum. We shrink the support and then we perform the same

method to the operator Â that maps the dipoles disposed on the new support.

We compute the normal component Bz of the magnetic field which is produced by the

recovered magnetization and the partial derivative of Bz with respect to the variable z by

expressing the formula (8) as two-dimensional convolutions:

Bz(x, y, h) = µ0

(
m1 ∗

3xh

(x2 + y2 + h2)
5
2

)
+ µ0

(
m2 ∗

3yh

(x2 + y2 + h2)
5
2

)
+

+ µ0

(
m3 ∗

3h2

(x2 + y2 + h2)
5
2

− 1

(x2 + y2 + h2)
3
2

)
(33)

∂

∂z
Bz(x, y, h) = µ0

(
m1 ∗

15xh2

(x2 + y2 + h2)
7
2

− 3x

(x2 + y2 + h2)
5
2

)
+

+ µ0

(
m2 ∗

15yh2

(x2 + y2 + h2)
7
2

− 3y

(x2 + y2 + h2)
5
2

)
+

+ µ0

(
m3 ∗

15h3

(x2 + y2 + h2)
7
2

− 9h

(x2 + y2 + h2)
5
2

)
(34)

Then we compute the point z0 according to the formula obtained above:

z0 =
(2ϕ′(0)a1 + ϕ(0)a2) β

2

6ϕ(0)a1
, (35)

17



where a1 and a2 denote respectively ‖Bz(x, y, h)‖2L2([−a,a]2) and
〈
Bz(x, y, h), ∂

∂z
Bz(x, y, h)

〉
L2([−a,a]2).

Assuming that ϕ(z) is a constant the point z0 equate to a2β2

6a1
. We obtain that the value z0

equals 9.38 · 10−6.

Subsequently we again recover the magnetization at the new depth by using the same

approach.

The magnetization retrieved by the described above method is quite similar to the syn-

thetic magnetization. Comparing the net-moments the magnetization we can see that the

difference between the directions is very small, equals 0,87 degrees and it is more accurate

than for the recovered magnetization at the middle for which the difference is about 0,98

degrees. The quantity of the points for which the magnetization has significant amplitude is

about 5 %. In the figure 4 the new supports are marked by a red color.

Figure 4: The left image: the reduced support of the magnetization z = 0 (3%) . The right

image: the reduced support of the magnetization z = z0 (4%).
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4 Conclusion

Solving the minimization problem by Maclaurin series approximation we determined

at which height one should dispose the thin plate in order to recover the magnetization

distribution from the measurements of the magnetic field which is mapped above the sample

at the distance h from the middle of the sample. We generated a synthetical example to test

the obtained results numerically. The numerical experiments confirm that the location for

the thin plate at the plane z = 0 is not optimal since the net-moment of the magnetization

at the new position is improved.

Owing to the absence of the information about physical characteristics of the function

ϕ(z) we cannot suppose anything about the behavior or properties of it. The quality of

the approximation as well the results depend on the form of this function. On the other

hand, possessing supplementary information we can adjust computations according new

constraints. For the future work it is possible to explore how the calculations are changed

if we introduce the specific function ϕ(z). In case when ϕ(z) is nonuniform (significant

value lie outside the interval [−β2, β2]) the second order approximation with respect to z is

inappropriate. We can introduce the function ϕ( z
β
) and obtain the solution for this function.
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