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(a) Field 𝐵meas (b) Field 𝐵dip

(c) Field 𝐵meas, saturated color scale (d) Field 𝐵dip, saturated color scale

Figure 1: Measured and synthetic field maps.

We consider here the field 𝐵meas from LONJ_NRM_10k_liftoff_675um.mat. It corresponds
to the lonar spherule, measured at a higher height than usual. It contains 200 × 200 points with
a step 𝛿 of 75 microns. By convention, we fix the origin of the horizontal plane at the center of
the map, i.e., the map corresponds to the square [−0.0075, 0.0075] × [−0.0075, 0.0075].

Based on a dipole fitting made by Eduardo, we also consider the field 𝐵dip generated
by a dipole at height ℎ = 835.38 microns under the measurement plane and located at
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(−1.5020 e−4,−3.7910 e−4) on the horizontal plane. The moment of the dipole has inclination
41.7362 degrees, declination 316.3451 degrees and magnitude 2.056. In cartesian coordinates,
the moment is hence (1.0591, 1.1100, 1.3687). Both fields are fairly similar as can be seen on
Figure 1.

1 The asymptotic formulas in a nutshell
Let us denote with 𝑄𝑅 the square [−𝑅,𝑅] × [−𝑅,𝑅] and with 𝐷𝑅 the diamond inscribed in 𝑄𝑅

(i.e., the square whose vertices are the middle of the edges of 𝑄𝑅). The SQUID microscope
does not truly measure the field, but actually the field plus some unknown constant 𝛽. The
asymptotic formulas that we have been using so far give (with 𝑖 being 1 or 2):∫︁∫︁
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The term 𝛽 is not a problem for recovering ⟨𝑚1⟩ and ⟨𝑚2⟩ because it is killed by integration
against 𝑥𝑖. The linear combination of 𝜒𝑄𝑅

and 𝜒𝐷𝑅
allows us here to kill the 𝒪(1/𝑅) that would

normally come after the constant term, and hence increase the speed of convergence to 1/𝑅3

(because the 1/𝑅2 term turns out to be 0 in the asymptotic expansion anyway). However, the
term 𝛽 is a problem for recovering ⟨𝑚3⟩ as it introduces a term of order 𝑅3 before the constant
term in the expansion. The linear combination of 𝜒𝑄𝑅

and 𝜒𝐷𝑅
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term.

2 Synthetic vs measured example
The result of applying these formulas on 𝐵meas and 𝐵dip, as a function of 𝑅 is shown on Figure 2.

(a) Estimate of ⟨𝑚1⟩ (b) Estimate of ⟨𝑚2⟩ (c) Estimate of ⟨𝑚3⟩

Figure 2: Estimates provided by Equations (1) and (2), as a function of 𝑅. The red curve
corresponds to the field 𝐵meas, the blue curve corresponds to the field 𝐵dip and the black line
corresponds to the true value ⟨𝑚𝑖⟩.

For each of the three components, one can distinguish three regions:
∙ At start, both fields lead to pretty much the same estimate. However, this estimate is a

bad approximation of the corresponding ⟨𝑚𝑖⟩, because we are still far from the asymptotic
regime.
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∙ Then, the estimates of both fields start diverging one from another. Namely, the estimate
based on the synthetic dipolar field seems to converge to the true value, while the estimate
based on the measured field diverges, but somehow smoothely. This only affects ⟨𝑚1⟩
and ⟨𝑚2⟩.

∙ Finally, the estimate based on the measured field ends up having a not so smooth behavior,
due to the noisy features near the edges of the measurement area.

The first question we addressed was: why is the estimate based on the true measurements
diverging from the synthetic one, even though both fields look the same? Eduardo came up with
a suggestion: the SQUID has a natural drift with time, and since it scans a row after another
this introduces a noise which is small but with a mean value which is not zero. Even if the effect
on the field is small, this might affect the behavior of the formulas, since they are integrating it,
exactly as with the constant 𝛽.

Let us assume that the SQUID is measuring one point after another at constant speed,
with some fixed time 𝜏 to come back from the end of a row to the start of the following row.
Also, let us assume that its drift is roughly a linear function of the time during the experiment.
Then, assuming for instance that the SQUID measures the field succesively at points (𝑥[1], 𝑦[1]),
(𝑥[2], 𝑦[1]), . . . , (𝑥[200], 𝑦[1]), (𝑥[1], 𝑦[2]), (𝑥[2], 𝑦[2]), . . . , (𝑥[200], 𝑦[200]), we see that the drift at
point (𝑥[𝑘], 𝑦[𝑗]) is ((200 + 𝜏)(𝑗 − 1) + (𝑘 − 1))𝛼, where 𝛼 is the drift during one unit of time.
Now, since 𝑦[𝑗] = 𝑦[1] + (𝑗 − 1)𝛿 and 𝑥[𝑘] = 𝑥[1] + (𝑘 − 1)𝛿, we see that the measured field
at point (𝑥, 𝑦) is indeed of the form 𝐵3(𝑥, 𝑦) + 𝛾𝑥+ 𝛾′𝑦 + 𝛽′. The term 𝛽′ is already handled
by the formulas as explained above. The terms 𝛾𝑥 and 𝛾′𝑦 do not affect the estimate of 𝑚3
because they are killed by integration. However, they affect the estimate of ⟨𝑚1⟩ and ⟨𝑚2⟩ by
introducing a 𝑅4 term before the constant term in the asymptotic expansion. Hence, even if the
constants are small, their effect when 𝑅 grows becomes quickly dominant.

3 Experimenting on the synthetic example
To validate this hypothesis, we form the synthetic field 𝐵shift(𝑥, 𝑦) = 𝐵dip(𝑥, 𝑦) − 10𝑥− 35𝑦.

(a) Field 𝐵shift (b) Field 𝐵shift, saturated color scale

Figure 3: Synthetic field with the modelled drift −10𝑥− 35𝑦.

The estimates provided by Equations (1) and (2) on this field are shown on Figure 4. As
expected, the estimate for ⟨𝑚3⟩ has not been affected, whereas the other estimates now also
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exhibit a converge-then-diverge pattern. The constants 10 and 35 have been manually chosen so
as to obtain the same kind of behavior as with 𝐵meas. Yet, it is an open question for me
why we only have a 3.5 ratio between them, when I would expect something of the
order 200.

(a) Estimate of ⟨𝑚1⟩ (b) Estimate of ⟨𝑚2⟩ (c) Estimate of ⟨𝑚3⟩

Figure 4: Estimates provided by Equations (1) and (2), as a function of 𝑅. The red curve
corresponds to the field 𝐵meas, the green curve corresponds to the field 𝐵shift and the black line
corresponds to the true value ⟨𝑚𝑖⟩.

In order to overcome this issue, we can apply the same strategy as what we did for 𝛽: instead
of using a linear combination of 𝜒𝑄𝑅

and 𝜒𝐷𝑅
to increase the convergence speed, we can use an

appropriate combination to kill the contribution of 𝛾 and 𝛾′. Of course, this comes to the price
of a convergence back in 1/𝑅. Namely, we have∫︁∫︁
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This is illustrated on Figure 5 where we see on the same graph the estimates obtained on
𝐵dip with the original asymptotic formula (1), and on 𝐵shift both with Equation (1) and with
the new formula (3). We clearly see that the converge-then-diverge pattern disappears. However,
the estimate that we get is fairly bad because the convergence is slow.

We can come back to a convergence in 1/𝑅3 by using yet another combination of shapes.
For instance, a linear combination of 𝜒𝑄𝑅

, 𝜒𝑄𝜆𝑅
and 𝑄𝐷𝑅

(for some chosen parameter 𝜆) does
the trick. Namely:∫︁∫︁
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Notice that, if 𝜆 is too close to 1, this gives a considerable importance to the edges where the
ratio signal/noise is usually lowest, while if 𝜆 is too close to 0, this assumes that the asymptotic
regime has already been reached at 𝜆𝑅, which requires 𝑅 to be fairly large. Figure 6 shows the
estimates obtained with Equation (4) when 𝜆 = 2/3.

The convergence seems to be slower with this new formula than with the original formula
when it was applied to 𝐵dip. Actually, the convergence rate is surprisingly well respected when
using Equation (1) on 𝐵dip and Equation (3) on 𝐵shift. This is indeed less true when using
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(a) Estimate of ⟨𝑚1⟩ (b) Estimate of ⟨𝑚2⟩

Figure 5: Estimates provided by Equation (1) on 𝐵dip (blue curve) and on 𝐵shift (green curve),
and estimate provided by Equation (3) on 𝐵shift (purple curve), as functions of 𝑅.

(a) Estimate of ⟨𝑚1⟩ (b) Estimate of ⟨𝑚2⟩

Figure 6: Estimates provided by Equation (1) on 𝐵dip (blue curve) and on 𝐵shift (green curve),
provided by Equation (3) on 𝐵shift (purple curve), and by Equation (4) on 𝐵shift (black curve),
as functions of 𝑅.

5



Equation (4) on 𝐵shift. On Figure 7, we show in red the result of a least square fitting of the
portion of the curve between the two circled points by a function of the form 𝑎+ 𝑏/𝑅3 + 𝑐/𝑅4

in the case of formulas (1) and (4) and by a function of the form 𝑎+ 𝑏/𝑅+ 𝑐/𝑅3 in the case of
formula (3). In any case, the fit is quite good in the region where it is applied and it is indeed
very predictive of the subsequent behavior of the curve.

(a) Estimate of ⟨𝑚1⟩ (b) Estimate of ⟨𝑚2⟩

Figure 7: Estimates of Figure 6, together with their fitting (in red). The fit is performed only
between the circled points. One sees that the fits keep being good further away.

Actually, the fitting turns out to be so good that it is a very efficient way of estimating
the limit. The following tables sums up the estimate obtained for ⟨𝑚1⟩ and ⟨𝑚2⟩ with each
method, either by simply considering the estimate obtained for 𝑅 = 0.0075 (the highest available
value for 𝑅) or by extrapolating the curve up to its limit at infinity. For ⟨𝑚3⟩, the estimate
at 𝑅 = 0.0075 is 1.3475 and the extrapolated limit (when fitting with a function of the form
𝑎+ 𝑏/𝑅2 + 𝑐/𝑅4, which is the expected form of the asymptotic expansion) gives 1.3696, the true
value being 1.3687.

at 𝑅 = 0.0075 extrapolated
𝐵dip with Equation (1) 1.0547 1.0593
𝐵shift with Equation (3) 0.7583 1.0578
𝐵shift with Equation (4) 1.0162 1.062

Figure 8: Several estimates of ⟨𝑚1⟩ (true value is 1.0591)

at 𝑅 = 0.0075 extrapolated
𝐵dip with Equation (1) 1.1102 1.1105
𝐵shift with Equation (3) 0.7136 1.1048
𝐵shift with Equation (4) 1.0905 1.1119

Figure 9: Several estimates of ⟨𝑚2⟩ (true value is 1.1100)

The conclusion that we can draw from this synthetic example is that we manage to remove a
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drift of the form 𝛾𝑥+ 𝛾′𝑦 by combining the asymptotic expansion on two shapes. The obtained
estimate converges much slower and is fairly bad for the largest value of 𝑅 that we have. However,
the estimate converges precisely as predicted, which allows us to recover a fairly good estimate
of the true value, by fitting the curve and looking at the value of the fit at infinity. We can also
combine three shapes to recover a better converging rate for the estimate. This is indeed giving
a much better estimate at 𝑅 = 0.0075 and a comparable estimate as with the other formulas,
when fitting the curve.

4 Applying the method on experimental data

Let us now apply this strategy on the true experimental data 𝐵meas. Using the same convention
as before, this leads to Figure 10.

(a) Estimate of ⟨𝑚1⟩ (b) Estimate of ⟨𝑚2⟩ (c) Estimate of ⟨𝑚3⟩

Figure 10: Estimates provided by Equation (1) (red curve), by Equation (3) (purple curve) and
Equation (4) (black curve), together with their fits, on the field 𝐵meas. The estimate of ⟨𝑚3⟩ on
the last figure, given by Equation (2) is in black.

Formula (4) is still diverging a little bit at the end, but this might be due to the noisy
features on the edges of the measured map, more than to a bad modelling or bad correction of
the drift of the SQUID.

The estimates for ⟨𝑚1⟩ and ⟨𝑚2⟩ obtained by extrapolating the fits are reported in the
following tables. As for ⟨𝑚3⟩, the extrapolation gives 1.2953 (while the estimate at 𝑅 = 0.0075
is 1.3105) to be compared to the value estimated by Eduardo which is 1.3687.

extrapolated
𝐵meas with Equation (3) 1.0333
𝐵meas with Equation (4) 1.0425

Figure 11: Several estimates of ⟨𝑚1⟩ (value estimated by Eduardo is 1.0591)

extrapolated
𝐵meas with Equation (3) 1.0489
𝐵meas with Equation (4) 1.1489

Figure 12: Several estimates of ⟨𝑚2⟩ (value estimated by Eduardo is 1.1100)
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Notice that the values estimated by Eduardo are those obtained with a dipole fitting. We
have seen with the synthetic dipolar field that these values are plausible, but it might be that
the estimates obtained above with the asymptotic formulas be indeed closer to the true moment
than what these values suggest.
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