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1 Problem formulation and symmetries

Consider the eigenvalue problem with the Poisson kernel

T [f ] (x) := (Ph ? f) (x) =
h

π

ˆ a

−a

f (x̃)

(x− x̃)
2

+ h2
dx̃ = λf (x) , x ∈ [−a, a] , (1)

D (T ) :=
{
f ∈ L2 (R) : supp f ⊂ [−a, a]

}
,

where a, h > 0.

Since the Poisson kernel is real and symmetric, T is self-adjoint and compact (integration is over a �nite range,

and Ph is non-singular), which ensures us that there exist countably many eigenvalues λ ∈ R accumulating to 0 and

corresponding eigenfunctions f are mutually orthogonal and complete in L2 (−a, a).

We start by noting symmetries of the operator with respect to re�ection and complex conjugation. First of all,

the operator T preserves parity: if R is the sign-inversion operator (i.e. Rf (x) = f (−x)), then we check that the

operators R and T commute:

R [T [f ]] (x) =
h

π

ˆ a

−a

f (x̃)

(−x− x̃)
2

+ h2
dx̃ =

h

π

ˆ a

−a

f (−x̃)

(x− x̃)
2

+ h2
dx̃ = T [R [f ]] (x) .

But the vanishing commutator {R, T} = RT − TR = 0 implies that the spectral problem (1) can be splitted into

two, for odd and even eigenfunctions, so we consider them separately. Similarly, since the kernel is real, it is evident

that if f (x) is an eigenfunction, so is Ref (x) and hence it is su�cient to consider only real-valued functions.

2 Going to the Fourier domain...

First of all, since χ̂[−a,a] (k) =
´ a
−a e

−2πikxdx =
sin 2πak

πk
and P̂h (k) = e−2πh|k|, in the Fourier domain, the problem

recasts as

T̂
[
f̂
]

(k) :=

ˆ
R

sin 2πa
(
k − k̃

)
π
(
k − k̃

) e−2πh|k̃|f̂
(
k̃
)
dk̃ = λf̂ (k) , (2)
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where f̂ ∈ PW a :=
{
g ∈ H (C) ∩ L2 (R) : |g (k)| ≤ Ce2πa|Imk| for some C > 0

}
.

Next, we notice that the identity f (x) = χ[−a,a] (x) f (x) implies1

f̂ (k) = F
[
χ[−a,a]f

]
(k) =

(
χ̂[−a,a] ? f̂

)
(k) =

ˆ
R
K
(
k, k̃
)
f̂
(
k̃
)
dk̃, (3)

K
(
k, k̃
)

:= 2a sinc2a
(
k − k̃

)
.

Another observation is that since Fourier transform is an isometry on L2 (R), and

{
1√
2a
eiπnx/aχ[−a,a] (x)

}
n∈Z

is an orthonormal basis in L2 (−a, a), the functions
{√

2a sinc (2ka− n)
}
n∈Z constitute orthonormal basis in PW a.

Moreover, due to (3), if f̂ (k) =
∑∞
n=−∞ fn

√
2a sinc (2ka− n), then fn =

1√
2a
f̂
( n

2a

)
, that is, the expansion

coe�cients of a function in are essentially its values on a uniform grid.

As it was mentioned, eigenfunctions of the operator T are either odd or even. We now focus on �nding class of

odd eigenfunctions so assume that f (x) = −f (−x) and it is real-valued. Then the Fourier transform f̂ (k) := F [f ]

is an odd purely imaginary function: f̂ (k) = −f̂ (−k) = −f̂ (k) for k ∈ R. Then the problem (2) transforms into

T̂o

[
f̂
]

(k) :=

ˆ ∞
0

Ko
(
k, k̃
)
e−Hk̃f̂

(
k̃
)
dk̃ = λf̂ (k) , (4)

Ko
(
k, k̃
)

:= 2a
[
sinc2a

(
k − k̃

)
− sinc2a

(
k + k̃

)]
, H := 2πh,

and −Ko
(
k, k̃
)
is a reproducing kernel for the odd Paley-Wiener space

PW a
o =

{
g ∈ PW a : g (k) = −g (−k) = −g (k) for k ∈ R

}

with respect to the standard L2 (0,∞) inner product:

〈
−Ko (k, ·) , f̂

〉
L2(R+)

=

ˆ ∞
0

Ko
(
k, k̃
)(
−f̂
(
k̃
))

dk̃ = f̂ (k) .

2.1 Some di�erential operators

It would be desirable to construct a di�erential operator D : PW a
o → PW a

o such that2

ˆ ∞
0

Ko
(
k, k̃
)
e−Hk̃D

[
f̂
(
k̃
)]
dk̃ =

ˆ ∞
0

Dk
[
Ko
(
k, k̃
)]
e−Hk̃f̂

(
k̃
)
dk̃,

since then the problem would reduce to solving a di�erential equation D
[
f̂
]

= λf̂ . We have not succeeded with

that, yet observed an interesting di�erential property.

1We use the de�nition sinc(k) :=
sinπk

πk
.

2The index k in Dk stands for the variable on which D operates.
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Lemma 2.1. De�ne D1 : PW a
o → PW a

o , D1 [f ] := k2f ′′ + 2kf ′ +A2k2f =
(
k2f ′

)′
+ (Ak)

2
f , A := 2πa. Then

ˆ ∞
0

e−Hk̃D1,k̃

[
Ko
(
k, k̃
)]
f̂
(
k̃
)
dk̃ = λD1

[
f̂ (k)

]
. (5)

Proof. We observe that g0 (k) := sinc (2ak) is a scaled zeroth spherical harmonic and hence is a solution to the

following Bessel equation

k2g′′0 + 2kg′0 +A2k2g0 = 0. (6)

Set g (k) = 2ag0 (k) so Ko
(
k, k̃
)

= g
(
k − k̃

)
− g

(
k + k̃

)
. By linearity, g (k) satis�es the same equation (6),

hence g′ (k) = −1

2
k
[
g′′ (k) +A2g (k)

]
.

We compute

∂kKo
(
k, k̃
)

= −1

2

(
k − k̃

) [
g′′
(
k − k̃

)
+A2g

(
k − k̃

)]
+

1

2

(
k + k̃

) [
g′′
(
k + k̃

)
+A2g

(
k + k̃

)]
= −1

2
k
[
∂2kKo

(
k, k̃
)

+A2Ko
(
k, k̃
)]

+ U1

(
k, k̃
)
,

where U1

(
k, k̃
)

:=
1

2
k̃

(
d2

dk2
+A2

)[
g
(
k − k̃

)
+ g

(
k + k̃

)]
. Similarly

∂k̃Ko
(
k, k̃
)

= −1

2
k̃
[
∂2kKo

(
k, k̃
)

+A2Ko
(
k, k̃
)]

+ U2

(
k, k̃
)
,

with U2

(
k, k̃
)

:=
1

2
k

(
d2

dk̃2
+A2

)[
g
(
k − k̃

)
+ g

(
k + k̃

)]
. Since kU1

(
k, k̃
)

= k̃U2

(
k, k̃
)
, we obtain the relation

k∂kKo
(
k, k̃
)
− k̃∂k̃Ko

(
k, k̃
)

=
1

2

(
k̃2 − k2

) [
∂2kKo

(
k, k̃
)

+A2Ko
(
k, k̃
)]
. (7)

Since ∂2kKo
(
k, k̃
)

= ∂2
k̃
Ko
(
k, k̃
)
, we can combine

ˆ ∞
0

e−Hk̃k∂kKo
(
k, k̃
)
f̂
(
k̃
)
dk̃ = λkf̂ ′ (k) ,

ˆ ∞
0

e−Hk̃∂2
k̃
Ko
(
k, k̃
)
f̂
(
k̃
)
dk̃ = λf̂ ′′ (k)

with (7) to yield the property (5).

Remark 2.2. Repetetive integration by parts of (5) leads to

ˆ ∞
0

e−Hk̃Ko
(
k, k̃
)
D1

[
f̂
] (
k̃
)
dk̃ = λD1

[
f̂
]

(k) +

ˆ ∞
0

e−Hk̃Ko
(
k, k̃
)
D2

[
f̂
] (
k̃
)
dk̃, (8)
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where D2 [f ] (k) := Hk [2f (k)−Hkf (k) + kf ′ (k)]. In other words, we have the following commutation property

(
T̂D1 −D1T̂

) [
f̂
]

=
(
T̂D2

) [
f̂
]
. (9)

2.2 False solution by nonlinear Laplace transformation

Now moving to a further idea, we slightly modify the domain D (T ): let us additionally assume super smoothness,

that is f ∈ C∞c (−a, a), and hence T becomes a densely de�ned operator. It then follows that f is in the Schwartz

class S, and thus so is f̂ (since F : S → S). Therefore, f̂ (k) kn ∈ L2 (R) for any n ∈ N0 and we observe that

f̂ (k) k2n and f̂ ′ (k) k2n+1 are in PW a
o . Taking inner product of (4) with each of these functions and using the

reproducing kernel property, we obtain, respectively

ˆ ∞
0

e−Hk̃f̂2
(
k̃
)
k̃2ndk̃ = λ

ˆ ∞
0

f̂2 (k) k2ndk, (10)

ˆ ∞
0

e−Hk̃f̂
(
k̃
)
f̂ ′
(
k̃
)
k̃2n+1dk̃ = λ

ˆ ∞
0

f̂ (k) f̂ ′ (k) k2n+1dk. (11)

Denote the Laplace transform F (s) := L
[
f̂2
]

(s) and employing the following properties3

L
[(
f̂2
)′]

(s) = sL
[
f̂2
]

(s)− f̂2 (0) = sF (s) ,

L
[
knf̂2 (k)

]
(s) = (−1)

n dn

dsn
L
[
f̂2
]

(s) = (−1)
n
F (n) (s) ,

(sF (s))
(2n+1)

= sF (2n+1) (s) + (2n+ 1)F (2n) (s) , n ∈ N0,

we realize that (10)-(11) are nothing but the following relations between derivatives


F (2n) (H) = λF (2n) (0) ,

HF (2n+1) (H) + (2n+ 1)F (2n) (H) = λ (2n+ 1)F (2n) (0) .

(12)

This simpli�es to 
F (2n) (H) = λF (2n) (0) ,

F (2n+1) (H) = 0.

(13)

Since F (s) is analytic in the right half-plane of C (as a Laplace transform), we can expand, in particular, about

s = 1 and such expansion must be valid at least up to the point s = 0, that is in the disk |s−H| ≤ H. Taking into

3Since f̂ (k) vanishes at the origin as it is odd and holomorphic. But in fact, the same would also remain true for the case of even

eigenfunctions as it is stated in Lemma 3.1.
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account the second equation in (13), we have

F (s) =

∞∑
m=0

F (2m) (H)
(s−H)

2m

(2m)!
.

Since

F (2k) (s) =

∞∑
m=k

F (2m) (H)
(s−H)

2(m−k)

[2 (m− k)]!
,

the �rst equation in (13) yields
∞∑
m=k

cm
H2(m−k)

[2 (m− k)]!
=

1

λ
ck,

that is

cm =
λ

1− λ

∞∑
k=1

cm+k
H2k

(2k)!
, (14)

where we introduced cm := F (2m) (H).

To sum up, we are searching for the set {cm}∞m=0 ⊂ C satisfying, for some λ ∈ R, (14) which is an in�nite-

dimensional system with upper-triangular Toeplitz matrix with zero diagonal elements. However, the solution is

not unique for a given λ, for if {cm}∞m=0 is a solution, then so are {cm+n}∞m=0 for any n ∈ N (this corresponds

to the fact that if F (s) is a solution, then F (2n) (s), n ∈ N are solutions as well). This is in contrast with the

original formulation of the problem which does not allow in�nite multiplicities for each given eigenvalue 0 < λ < 1

(as suggested by the general spectral theory of compact self-adjoint operators; the fact that eigenvalues are positive

is seen, for instance, from (10)). The issue arises from the nonlinear transformation f̂ 7→ L
[
f̂2
]
which breaks

equivalence of the problems. Therefore, we have to formulate a criteria to weed out those solutions to (14) which

are not Laplace transforms of the square of a function from the space PW a
o . The Bernstein theorem (see Th.12b

in [4]) which characterizes Laplace transforms of non-negative functions can serve as one such �lter. Namely, if

F̃ (s) is a Laplace transform of a non-negative function, then it must be completely monotonic, meaning that, for

all k ∈ N0, (−1)
k
F̃ (k) (s) ≥ 0, s ∈ R+. In our case, since f̂ is purely imaginary, F (s) is Laplace transform of a

non-positive function, and hence must satisfy, for all k ∈ N0,

(−1)
k+1

F (k) (s) ≥ 0, s ∈ R+. (15)

We can see that even such condition is already restrictive enough to make simplest solutions to (14) fail. Indeed,

suppose the solution is in the form cm = c0a
m
0 for some c0, a0 ∈ R. Then (14) leads to

1 =
λ

1− λ

∞∑
k=1

H2kak0
(2k)!

⇒ λ =
1

cosh
(
H
√
a0
) ,
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F (s) = c0

∞∑
m=0

am0
(s−H)

2m

(2m)!
= c0 cosh [(s−H)

√
a0] , (16)

which also comprise cosine functions when the parameter a0 is negative. However, in either case, the derivatives

fail to have a constant sign on R+ and therefore, such family does not qualify to yield appropriate solutions by

the criterion (15). In fact, the general solution does not di�er much from this. It is due to the mentioned shift

invariance property that solutions must be of the form cm = c0a
m
0 , but in the general case it should be a0 ∈ C,

which would give, for any βn ∈ C,

F (s) =

∞∑
n=−∞

βn cosh

[
1

H
(arccosh (1/λ) + 2πin) (s−H)

]
. (17)

However, because of the fact that Laplace transform of a real function must be real on the real axis, the restriction

to the case a0 ∈ R was appropriate and we have not reduced generality in (16) where parametric representation

immediately allowed to sort out meaningless solutions. The same result would be obtained (17) should one impose

simple conditions on derivatives: real-valuedness of F (s) and F ′ (s) for s ∈ R+ already implies that β0 ∈ R and

βn = 0 for all n 6= 0.

This approach fails due to a fundamental issue which can pinned down to the following problem. Taking n = 0

in (11), we have ˆ ∞
0

e−Hkk
(
f̂2 (k)

)′
dk = λ

ˆ ∞
0

k
(
f̂2 (k)

)′
dk,

which (under automatically ful�lled condition kf̂2 (k) →
k→∞

0) integrates by parts to yield

ˆ ∞
0

e−Hkf̂2 (k) dk −H
ˆ ∞
0

e−Hkkf̂2 (k) dk = λ

ˆ ∞
0

f̂2 (k) dk.

But, on the other hand, the �rst term here exactly equals to the right-hand side due to (10) for n = 0. Therefore,

ˆ ∞
0

e−Hkkf̂2 (k) dk = 0 ⇒ f̂ (k) ≡ 0.

This nonsense stems from the assumption kf̂ ′ (k) ∈ L2 (R) which means that we cannot assume more regularity

than L2-integrability of the extended by zero function in the original D (T ). We thus conclude with the following

Remark 2.3. An (odd) eigenfunction of T , f (x), being smooth inside the interval (−a, a) (as the convolution

with a smooth kernel), must tend to a non-zero constant when approaching the boundary of the interval so the

distributional derivative of its extension by zero outside (−a, a) would result in a Dirac delta function there, and

hence the eigenfunction would fail to be in the Sobolev space W 1,2 (R) (which is not a surprise realizing that T will

not be self-adjoint when de�ned on such space).
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2.3 Remedy attempts with linear Laplace transform

2.3.1 General strategy, Mittag-Le�er functions, etc

Even though we arrived to a wrong solution by making a wrong assumption, we don't want to give up the previous

approach since it is proven to be constructive. But instead of �projecting� the integral equation (4) on k2nf̂ (k)

and k2n+1f̂ ′ (k) as done in (10)-(11), we now would like to �nd a family of suitable functions g (k) meaning that

they are from the space PW a
o and generate su�cient amount of information to reconstruct a single function in

Laplace domain which is directly related to f̂ (k). However, �nding functions in PW a
o may already be a challenge

not to mention having any nice connection between their Laplace transforms. Ideal candidate would be a PW a
o -

function decaying on R faster than any polynomial (so we can generate in�nitely many moments), such functions

can be obtained as Fourier transform of in�nitely smooth bump functions supported on [−a, a], for instance,

g (k) = F
[
χ[−a,a] (x) exp

(
− 1

a2 − x2

)]
, however it is not clear if we can obtain any explicit form of them.

A naive guess would be gn,m (k) = k2n+1

(
sinc

2ak

m

)m
for any m ∈ N+, n ∈ N0 such that 2n + 1 ≤ m which,

due to loss of integrability at in�nity, for a given m, limits the number of moments we can obtain whereas, on the

other hand, varying m makes it di�cult to establish any neat relation between the functions.

More intelligent constructions can be made from the Mittag-Le�er function Eα,β (z) :=
∑∞
n=0

zn

Γ (αn+ β)
which

is known to be entire and of order 1/α. Namely, taking odd part, scaling and rotating by π/2 in the C-plane to

achieve the decay at in�nity on the real axis, we construct

gβ (k) =

∞∑
n=0

(−1)
n

(Ak)
2n+1

Γ (2n+ 1 + β)
, (18)

where as before we denoted A := 2πa. We see that for β = 1 this gives g1 (k) = sin (Ak) which is not L2-summable

whereas g2 (k) =
1

Ak
[cos (Ak)− 1] is already suitable, so perhaps gβ (k) for any β > 3/2 is good enough. From the

integral representation of the Mittag-Le�er function, we can also obtain gβ (k) =
A

2πi
k
´
C

z1−βez

z2 + (2πak)
2 dz, where

the contour C starts and ends at −∞ going counterclockwise encompassing all three singular points z = 0, ±iAk.

2.3.2 Bessel functions

One can also consider di�erent generalized versions of the Mittag-Le�er function, while we notice that Bessel

functions Jn (Ak) might serve as suitable candidates as well: they are entire, have even/odd parity according to

the index n, have properly restricted exponential growth along the imaginary axis, but they lack L2-integrability

due to insu�cient asymptotic decay Jn (Ak) ∼
√

2

πAk
cos (Ak − nπ/2− π/4) as k → +∞. This can be remedied

by improving power of denominator which is possible to do without adding singularities due to the fact that Jn

have zero at the origin of order n. Finally, let us also introduce an additional scaling degree of freedom 0 < γ ≤ A

and hence consider function families
1

k2m−1
J2n (γk) and

1

k2m
J2n+1 (γk) for n, m ∈ N+, m ≤ n, which are by
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construction in PW a
o but su�er from the same problem as sinc-family functions de�ned above: for a given order

n, only limited number of (negative) moments are possible to construct4, however there are number of recurrence

formulas which might be useful to establish a link between functions in those two families with di�erent values n

2J ′n (z) = Jn−1 (z)− Jn+1 (z) ,
2n

z
Jn (z) = Jn+1 (z) + Jn−1 (z) ,

d

dz
(znJn (z)) = znJn−1 (z) .

However, now we want to employ other relations for Bessel functions which can be obtained from their generating

function, namely

sin (z sin θ) = 2

∞∑
n=0

J2n+1 (z) [sin (2n+ 1) θ] (19)

cos (z sin θ) = J0 (z) + 2

∞∑
n=1

J2n (z) cos (2nθ) , cos (z cos θ) = J0 (z) + 2

∞∑
n=1

(−1)
n
J2n (z) cos (2nθ)

⇒ cos (z sin θ)− cos (z cos θ) = 4

∞∑
n=0

J4n+2 (z) cos [(2n+ 1) 2θ] (20)

We are going to work with the both families of the mentioned functions �xing m = 1. As before, for the sake of

brevity, denote H := 2πh. We therefore have

ˆ ∞
0

e−Hk
J2n (γk)

k
f̂ (k) dk = λ

ˆ ∞
0

J2n (γk)

k
f̂ (k) dk,

ˆ ∞
0

e−Hk
J2n+1 (γk)

k2
f̂ (k) dk = λ

ˆ ∞
0

J2n+1 (γk)

k2
f̂ (k) dk.

Premultiplying this with the respective cosine or sine factors and summing over n according to the right-hand side

of (20), we obtain

ˆ ∞
0

e−Hk [cos (kγ sin θ)− cos (kγ cos θ)]
f̂ (k)

k
dk = λ

ˆ ∞
0

[cos (kγ sin θ)− cos (kγ cos θ)]
f̂ (k)

k
dk, (21)

ˆ ∞
0

e−Hk [sin (kγ sin θ)− 2J1 (kγ sin θ)]
f̂ (k)

k2
dk = λ

ˆ ∞
0

[sin (kγ sin θ)− 2J1 (kγ sin θ)]
f̂ (k)

k2
dk. (22)

We are going to proceed with (21) denoting F (s) := L
[
f̂ (k) /k

]
(s). Then, we are facing a problem of �nding

analytic in Res > 0 function satisfying the functional equation

F (H + iγ sin θ) + F (H − iγ sin θ)− F (H + iγ cos θ)− F (H − iγ cos θ) =

λ [F (iγ sin θ) + F (−iγ sin θ)− F (iγ cos θ)− F (−iγ cos θ)] . (23)

We note that the substitution θ → θ + π/2 does not change the equation so the solution must be
π

2
-periodic in

4Again the same problem is encountered when one tries to work with family of spherical Bessel functions: j2n−1, n ∈ N+.
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θ and singular when either θ = π/4 or γ = 0 as the equation degenerates. In other words, instead of matching

discrete moments as in the previous approach, the left- and right-hand sides of (23) must match for continuous set

of parameters θ ∈
[
0,
π

4

)
∪
(π

4
,
π

2

)
and γ ∈ (0, A].

Moreover, since F (s) is purely imaginary on the real line, we have F (H − iγ sin θ) = F
(
H + iγ sin θ

)
=

−F (H + iγ sin θ), so F (H + iγ sin θ) + F (H − iγ sin θ) = 2ImF (H + iγ sin θ) and (23) becomes

v (H, γ sin θ)− v (H, γ cos θ) = λ [v (0, γ sin θ)− v (0, γ cos θ)] , (24)

where v (x, y) := ImF (x+ iy). Since F (s) is analytic in Res > 0, we have ∆v = 0 in the right half-plane

{(x, y) : x > 0} ⊂ R2.

Denote g (y) := v (0, y), y ∈ R, then v (x, y) = (Px ? g) (x, y) and (24) reads

ˆ ∞
−∞

g (y)

(y − γ sin θ)
2

+H2
dy −

ˆ ∞
−∞

g (y)

(y − γ cos θ)
2

+H2
dy =

π

H
λ [g (γ sin θ)− g (γ cos θ)] ,

that is

ˆ ∞
−∞

g (y + γ sin θ)− g (y + γ cos θ)

y2 +H2
dy =

π

H
λ [g (γ sin θ)− g (γ cos θ)] , γ ∈ [0, A] , θ ∈

[
0,
π

2

]
. (25)

We now note the connection with the original eigenfunctions f :

g (y) = v (0, y) = ImF (iy) =

ˆ ∞
0

cos (yk)
f̂ (k)

ik
dk

⇒ g′ (y) = −
ˆ ∞
0

sin (yk)
f̂ (k)

i
dk = −1

2
ImF−1

[
f̂/i
]

(y/2π) =
1

2
f (y/2π) .

In particular, due to the support of f , this implies that g (y) ≡ C for |y| > A and, by continuity (as a result of

integration) and parity, it follows that C = g (A) = g (−A).

Therefore, (25) becomes

[
H

π

ˆ A

−A

g (y)

H2 + (y − γ cos θ)
2 dy − λg (γ cos θ)

]
−

[
H

π

ˆ A

−A

g (y)

H2 + (y − γ sin θ)
2 dy − λg (γ sin θ)

]
= R (γ, θ) , (26)

where

R (γ, θ) : = 2C +
C

π

[
arctan

(
γ

H
sin θ − A

H

)
− arctan

(
γ

H
sin θ +

A

H

)
− arctan

(
γ

H
cos θ − A

H

)
+ arctan

(
γ

H
cos θ +

A

H

)]
.

By rescaling and trigonometric transformations, (26) can also be rewritten as the equation in x ∈ [0, a] involving
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the original quantities h and a:

[
h

π

ˆ a

−a

g (2πx̃)

(x̃− x cos θ)
2

+ h2
dx̃− λg (2πx cos θ)

]
−

[
h

π

ˆ a

−a

g (2πx̃)

(x̃− x sin θ)
2

+ h2
dx̃− λg (2πx sin θ)

]
= R0 (x, θ)

with

R0 (x, θ) /C := 2 +
1

π
arctan

 2ax2
(
cos2 θ − sin2 θ

)
4a2h+ h3

(
1 + a2−x2 sin2 θ

h2

) (
1 + a2−x2 cos2 θ

h2

)


= 2 +
1

π
arctan

 2ax2 cos 2θ

4a2h+ h3
[(

1 + 2a2−x2

2h2

)2 − x4 cos2 2θ
4h4

]
 ,

moreover, by parity of g (or by noting that the change of variable θ → π+θ, x→ −x leaves the equation invariant),

the range of validity of this equation extends to x ∈ [−a, a]. In other words, the original eigenvalue problem (1)

reformulates into �nding odd functions w (x) := g (2πx) ∈ L2 (−a, a) such that

T [w] (x cos θ)− T [w] (x sin θ) = λ [w (x cos θ)− w (x sin θ)] +R0 (x, θ) .

Since R0 (x, θ) is a given term (up to a normalization constant), it can be computed for any value θ. In particular,

when θ is close to
π

4
, all the di�erences entering the equation are small, but must be comparable in some sense.

Perhaps, at this point, tools like Stieltjes inversion formula or secondary measure may be useful after an appropriate

change of variable.

2.3.3 Power series approach after �regularization�

We recall the discussion that the bump functions are ideal candidates to project the equation since they act as

regularizing multipliers allowing us to work with in�nitely many moments exactly as it was done before when the

nonlinear transformation was considered. In this subsection, we would like to pursue this approach but now paying

more respect to functional spaces.

For the sake of determinicity, put

ge (k) := F
[
χ[−a,a] (x) exp

(
− 1

a2 − x2

)]
(k) , (27)

however, we are not going to use the speci�c form of this function rather than just general properties of a Fourier

transformed in�nitely smooth even bump function. Namely, if we denote go (k) := g′e (k), then the functions

gn (k) := k2n+1ge (k) and g̃n (k) := k2ngo (k), n ∈ N0 are all in the space PW a
o . Let us introduce the following
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�regularized� Laplace transforms

F (s) := L
[
f̂ (k) ge (k)

]
(s) , G (s) := L

[
f̂ (k) go (k)

]
(s) , Q (s) := L

[
f̂ ′ (k) ge (k)

]
(s) .

Because of vanishing at the origin of f̂ (k) ge (k), we have the connection formulas

G (s) = sF (s)−Q (s) ⇒ G(2n) (s) = sF (2n) (s) + 2nF (2n−1) (s)−Q(2n) (s) , n ∈ N+. (28)

Analogously to (10)-(11), we have

ˆ ∞
0

e−Hk̃f̂
(
k̃
)
ge

(
k̃
)
k̃2n+1dk̃ = λ

ˆ ∞
0

f̂ (k) ge (k) k2n+1dk, (29)

ˆ ∞
0

e−Hk̃f̂
(
k̃
)
go

(
k̃
)
k̃2ndk̃ = λ

ˆ ∞
0

f̂ (k) go (k) k2ndk. (30)

These give 
F (2n+1) (H) = λF (2n+1) (0) ,

HF (2n) (H) + 2nF (2n−1) (H)−Q(2n) (H) = λ
(
2nF (2n−1) (0)−Q(2n) (0)

)
,

⇒


F (2n+1) (H) = λF (2n+1) (0) ,

HF (2n) (H)−Q(2n) (H) = −λQ(2n) (0) ,

n ∈ N0. (31)

F (s) is analytic in the right half-plane Res > 0, so

F (s) =

∞∑
m=0

F (m) (H)
(s−H)

m

m!
⇒ F (l) (s) =

∞∑
m=l

F (m) (H)
(s−H)

m−l

(m− l)!
.

Denoting cm := F (m) (H), due to the validity of the expansion in the disk |s−H| < H up to the origin, the system

(31) reads

c2n =
1

H

(
Q(2n) (H)− λQ(2n) (0)

)
,

c2n+1 = λ

∞∑
m=2n+1

cm
(−H)

m−2n−1

(m− 2n− 1)!
.

If we relabel the coe�cients an := c2n+1, then, for n ∈ N0,

1

λ
an −

∞∑
k=n

ak
H2(k−n)+1

[2 (k − n)]!
= bn,

bn := −
∞∑

k=n+1

(
Q(2k) (H)− λQ(2k) (0)

) H2(k−n)−1

[2 (k − n)− 1]!
,
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which are in�nite systems with solvable matrices (see [1, 2, 3]). Nevertheless, such a decoupling does not seem

to be useful since the coe�cients an and bn are certainly not independent, as F (s) and Q (s) are connected with

each other by means of f̂ according to (28). Establishing this connection requires if not explicit form but at least

more precise characterization of (27) or similar functions. Alternatively, we can try to �ll this gap working out the

projections of (8).

3 Meanwhile in the original domain...

3.1 Use of the Green's identity

There is an observation about the Fourier transform of the solution to (1) which can be obtained without transferring

the problem to the Fourier domain. Perhaps the same approach may yield other useful results.

Lemma 3.1. Regardless of parity of f , we have f̂ (0) := F [f ] (0) = 0.

Proof. Suppose that f solves (1) for some �xed λ 6= 0. For x ∈ [−a, a], y ∈ [0, h], consider

u (x, y) := Py ?
(
χ[−a,a]f

)
=

1

π

ˆ a

−a

f (x̃) y

(x− x̃)
2

+ y2
dx̃. (32)

By the property of the Poisson kernel, this de�nes a harmonic function in the rectangle R := [−a, a] × [0, h] such

that lim
y→0+

u (x, y) = χ[−a,a]f (x) pointwise. In other words, u (x, y) solves the following boundary value problem



∆u (x, y) = 0, (x, y) ∈ R,

u (−a, y) =
1

π

´ a
−a

f (x) y

(a+ x)
2

+ y2
dx,

u (a, y) =
1

π

´ a
−a

f (x) y

(a− x)
2

+ y2
dx, y ∈ [0, h] ,

u (x, 0) = f (x) ,

u (x, h) = λf (x) , x ∈ [−a, a] .

Proof. Let us now apply the Green's identity

ˆ
R

(u∆v + ∇u ·∇v) dxdy =

˛
∂R

u∇v · dS

choosing v (x, y) = y (so ∆v = 0 and ∂xv ≡ 0, hence contribution from the vertical boundaries in the right-hand
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side is zero) and u (x, y) as in (32). Then, using the boundary conditions, we have

ˆ a

−a

ˆ h

0

∂yudxdy = − (1 + λ)

ˆ a

−a
f (x) dx ⇒ (λ− 1)

ˆ a

−a
f (x) dx = − (1 + λ)

ˆ a

−a
f (x) dx,

and therefore, since λ 6= 0, we conclude that
´ a
−a f (x) dx = 0 =

´∞
−∞ f (x) dx = f̂ (0).

3.2 Reformulation with the Plemelj-Sokhotski formulas

By partial fraction expansion, the equation (1) can be rewritten as

i

2π

(ˆ a

−a

f (x̃)

x̃− x+ ih
dx̃−

ˆ a

−a

f (x̃)

x̃− x− ih
dx̃

)
= λf (x) , x ∈ [−a, a] . (33)

Now consider F (z) :=
1

2πi

´∞
−∞

f (x̃)

x̃− z
dx̃ =

1

2πi

´ a
−a

f (x̃)

x̃− z
dx̃. It de�nes the functions F+ (z) and F− (z) analytic

in the horizontal half-planes Imz > 0 and Imz < 0, respectively. The Plemelj-Sokhotski formulas provide information

of boundary behavior of these functions:


F+ (x) = 1

2f (x) + F (x) ,

F− (x) = − 1
2f (x) + F (x) ,

⇒ f (x) = F+ (x)− F− (x) , x ∈ R.

Then (33) reads

F+ (x+ ih)− F− (x− ih) = λ (F+ (x)− F− (x)) , x ∈ [−a, a] , (34)

whereas F+ (x) = F− (x) for x ∈ R\ [−a, a]. In other words, we are after �nding an analytic function in the cut

complex plane C\ [−a, a] with (34) characterizing a jump across the cut. At least for small h, this formulation of the

problem reduces to some perhaps already available in literature results and thus makes our problem asymptotically

solvable.
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