Kelvin transform of $b_{x_{3}}\left(x_{1}, x_{2}, h\right)$ on \mathbb{S}

November 20, 2014

1 Reflexion and Kelvin transform

Let R be the reflexion map from the half-space $\mathbb{R}_{h}^{3}=\left\{x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}, x_{3} \geq h\right\}$ to the unit ball \mathbb{B}. With $S=(0,0,-1)$ the south pole of \mathbb{B}, it is given by:

$$
\begin{align*}
R(x) & =2(1+h) \frac{x-S}{|x-S|^{2}}+S \\
=\left(\begin{array}{l}
\frac{2(1+h) x_{1}}{x_{1}^{2}+x_{2}^{2}+\left(x_{3}+1\right)^{2}} \\
\frac{2(1+h) x_{2}}{x_{1}^{2}+x_{2}^{2}+\left(x_{3}+1\right)^{2}} \\
\frac{2(1+h)\left(x_{3}+1\right)}{x_{1}^{2}+x_{2}^{2}+\left(x_{3}+1\right)^{2}}-1
\end{array}\right) & =\left(\begin{array}{l}
\frac{2(1+h) x_{1}}{x_{1}^{2}+x_{2}^{2}+\left(x_{3}+1\right)^{2}} \\
\frac{2(1+h) x_{2}}{x_{1}^{2}+x_{2}^{2}+\left(x_{3}+1\right)^{2}} \\
-\frac{x_{1}^{2}+x_{2}^{2}+\left(x_{3}+1\right)\left(x_{3}+1-2(1+h)\right)}{x_{1}^{2}+x_{2}^{2}+\left(x_{3}+1\right)^{2}}
\end{array}\right) . \tag{1}
\end{align*}
$$

The reflexion R maps the (boundary) plane $\mathbb{R}^{2} \times\{h\}=\left\{x=\left(x_{1}, x_{2}, h\right)\right\}\left(x_{3}=h\right)$ of \mathbb{R}_{h}^{3} to the unit sphere $\mathbb{S}=\partial \mathbb{B}: R\left(x_{1}, x_{2}, h\right) \in \mathbb{S}$. It also maps ∞ (in any of the x_{1}, x_{2} or x_{3} directions) on the south pole S, as can be easily checked from the above definition. Conversely, because R^{2} is equal to the identity, then $R^{-1}=R$ maps $\xi \in \mathbb{B}$ into $x=R(\xi) \in \mathbb{R}_{h}^{3}$, and \mathbb{S} into the plane $x_{3}=h$. For $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \mathbb{B}$:

$$
R(\xi)=x=\left(\begin{array}{l}
\frac{2(1+h) \xi_{1}}{\xi_{1}^{2}+\xi_{2}^{2}+\left(\xi_{3}+1\right)^{2}} \tag{2}\\
\frac{2(1+h) \xi_{2}}{\xi_{1}^{2}+\xi_{2}^{2}+\left(\xi_{3}+1\right)^{2}} \\
\frac{2(1+h)\left(\xi_{3}+1\right)}{\xi_{1}^{2}+\xi_{2}^{2}+\left(\xi_{3}+1\right)^{2}}-1
\end{array}\right) \in \mathbb{R}_{h}^{3}
$$

The associated Kelvin transform K^{*} applies to a function f defined in \mathbb{R}_{h}^{3} and is a function $K^{*}[f]$ defined in \mathbb{B} by:

$$
\begin{equation*}
K^{*}[f](\xi)=2^{1 / 2} \frac{1}{|\xi-S|} f(R(\xi)) \tag{3}
\end{equation*}
$$

The Kelvin transform preserves harmonicity and is its own inverse: $K^{*}\left[K^{*}[f]\right]=f[1, \mathrm{Ch} .7]$.

2 Kelvin transform of the normal magnetic field

Let $Q \subset \mathbb{R}^{2} \times\{0\} \subset \mathbb{R}^{3}$ denote the support of the \mathbb{R}^{3}-valued magnetization $M=\left(M_{1}, M_{2}, M_{3}\right)$.
Recall the expression of the measured x_{3} (normal) component of the magnetic field $b_{x_{3}}$ at $x=\left(x_{1}, x_{2}, x_{3}\right) \in$ \mathbb{R}^{3} with $x_{3}>0$:

$$
\begin{gathered}
b_{x_{3}}(x)=-\iint_{Q} \frac{d t_{1} d t_{2}}{|x-t|^{5}} \times \\
{\left[3\left(x_{1}-t_{1}\right) x_{3} M_{1}(t)+3\left(x_{2}-t_{2}\right) x_{3} M_{2}(t)+\left(3 x_{3}^{2}-|x-t|^{2}\right) M_{3}(t)\right]}
\end{gathered}
$$

where we put $t=\left(t_{1}, t_{2}, 0\right)$. In particular, at points $x=\left(x_{1}, x_{2}, h\right)$ in the measurement plane $x_{3}=h$, we have:

$$
\begin{gather*}
b_{x_{3}}\left(x_{1}, x_{2}, h\right)=-\iint_{Q} \frac{d t_{1} d t_{2}}{|x-t|^{5}} \times \tag{4}\\
{\left[3\left(x_{1}-t_{1}\right) h M_{1}(t)+3\left(x_{2}-t_{2}\right) h M_{2}(t)+\left(3 h^{2}-|x-t|^{2}\right) M_{3}(t)\right]} \\
=-\iint_{Q} \frac{d t_{1} d t_{2}}{\left|\left(x_{1}-t_{1}\right)^{2}+\left(x_{2}-t_{2}\right)^{2}+h^{2}\right|^{5 / 2}} \times \\
{\left[3\left(x_{1}-t_{1}\right) h M_{1}(t)+3\left(x_{2}-t_{2}\right) h M_{2}(t)-\left(\left(x_{1}-t_{1}\right)^{2}+\left(x_{2}-t_{2}\right)^{2}-2 h^{2}\right) M_{3}(t)\right]}
\end{gather*}
$$

Lemma 1. At $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \mathbb{S}$, we have

$$
\begin{gathered}
K^{*}\left[b_{x_{3}}\right](\xi)=-\left(1+\xi_{3}\right) \iint_{Q} \frac{d t_{1} d t_{2}}{\left[\left(1+\xi_{3}\right)\left(t_{1}^{2}+t_{2}^{2}+1\right)-2(1+h)\left(t_{1} \xi_{1}+t_{2} \xi_{2}+\xi_{3}-h\right)\right]^{5 / 2}} \times \\
{\left[3 h\left((1+h) \xi_{1}-\left(1+\xi_{3}\right) t_{1}\right) M_{1}(t)+3 h\left((1+h) \xi_{2}-\left(1+\xi_{3}\right) t_{2}\right) M_{2}(t)\right.} \\
\left.+\left(\left(1+\xi_{3}\right)\left(t_{1}^{2}+t_{2}^{2}+1-3 h^{2}\right)-2(1+h)\left(t_{1} \xi_{1}+t_{2} \xi_{2}+\xi_{3}-h\right)\right) M_{3}(t)\right] .
\end{gathered}
$$

Proof. Let $R(\xi)_{i}, i=1,2,3$ denote the components of $R(\xi)$. Rewriting the expression (2) of $R(\xi)$ for $\xi \in \mathbb{S}$, using that $\xi_{1}^{2}+\xi_{2}^{2}+\xi_{3}^{2}=1$ there, we obtain:

$$
R(\xi)_{1}=\frac{(1+h) \xi_{1}}{1+\xi_{3}}, R(\xi)_{2}=\frac{(1+h) \xi_{2}}{1+\xi_{3}}, R(\xi)_{3}=h
$$

From the expression (4) of $b_{x_{3}}$ and the definition (3) of the Kelvin transform, we get that, at $\xi=$ $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)=R\left(x_{1}, x_{2}, h\right) \in \mathbb{S}$,

$$
\begin{gathered}
K^{*}\left[b_{x_{3}}\right](\xi)=\frac{2^{1 / 2} b_{x_{3}}(R(\xi))}{|\xi-S|}=-\frac{1}{\left(1+\xi_{3}\right)^{1 / 2}} \iint_{Q} \frac{d t_{1} d t_{2}}{|R(\xi)-t|^{5}} \times \\
{\left[3 h\left(\frac{(1+h) \xi_{1}}{1+\xi_{3}}-t_{1}\right) M_{1}(t)+3 h\left(\frac{(1+h) \xi_{2}}{1+\xi_{3}}-t_{2}\right) M_{2}(t)\right.} \\
\left.+\left(3 h^{2}-|R(\xi)-t|^{2}\right) M_{3}(t)\right]
\end{gathered}
$$

For the expression involved in the above denominator of $K^{*}\left[b_{x_{3}}\right]$, we get for $t=\left(t_{1}, t_{2}, 0\right)$:

$$
\begin{gathered}
|R(\xi)-t|^{2}=|R(\xi)|^{2}-2\langle t, R(\xi)\rangle+|t|^{2} \\
=\frac{1}{1+\xi_{3}}\left[\left(1+\xi_{3}\right)\left(t_{1}^{2}+t_{2}^{2}+1\right)-2(1+h)\left(t_{1} \xi_{1}+t_{2} \xi_{2}+\xi_{3}-h\right)\right]
\end{gathered}
$$

Alternatively, note that $|R(\xi)-t|^{2}=\left(R(\xi)_{1}-t_{1}\right)^{2}+\left(R(\xi)_{2}-t_{2}\right)^{2}+h^{2}$. Next, for the factor of M_{3} in the numerator of $K^{*}\left[b_{x_{3}}\right]$, we use that, for $\xi \in \mathbb{S}$:

$$
\begin{gathered}
|R(\xi)-t|^{2}-3 h^{2} \\
=\frac{1}{1+\xi_{3}}\left[\left(1+\xi_{3}\right)\left(t_{1}^{2}+t_{2}^{2}+1-3 h^{2}\right)-2(1+h)\left(t_{1} \xi_{1}+t_{2} \xi_{2}+\xi_{3}-h\right)\right] .
\end{gathered}
$$

An expression of $K^{*}\left[b_{x_{3}}\right]$ in terms of $\tau=\left(\tau_{1}, \tau_{2}, \tau_{3}\right)=R\left(t_{1}, t_{2}, 0\right) \in R(Q) \subset S_{0}$, the sphere of center $(0,0, h)$ and radius $1+h$, is given by the next result. Let $d \sigma_{0}(\tau)$ be the (non normalized) Lebesgue measure on S_{0} (note that S_{0} is contained in $\mathbb{R}^{3} \backslash \mathbb{B}$ has also S as its south pole) and $N_{i}(\tau)=M_{i}(R(\tau))=M_{i}(t)$, for $i=1,2,3$.
Lemma 2. At $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right) \in \mathbb{S}$, we have

$$
\begin{aligned}
& K^{*}\left[b_{x_{3}}\right](\xi)=-\left(1+\xi_{3}\right) \iint_{R(Q)} \frac{d \sigma_{0}(\tau)}{\left(1+\tau_{3}\right)^{1 / 2}\left[\left(1+h\left(1+\tau_{3}\right)-\left(\tau_{1} \xi_{1}+\tau_{2} \xi_{2}+\tau_{3} \xi_{3}\right)\right]^{5 / 2}\right.} \times \\
& {\left[3 h\left((1+h)\left(1+\tau_{3}\right) \xi_{1}-\left(1+\xi_{3}\right) \tau_{1}\right) N_{1}(\tau)+3 h\left((1+h)\left(1+\tau_{3}\right) \xi_{2}-\left(1+\xi_{3}\right) \tau_{2}\right) N_{2}(\tau)\right.} \\
& \left.\quad+\left(3 h^{2}\left(1+\xi_{3}\right)\left(1+\tau_{3}\right)-2(1+h)\left(1+h\left(1+\tau_{3}\right)-\left(\tau_{1} \xi_{1}+\tau_{2} \xi_{2}+\tau_{3} \xi_{3}\right)\right)\right) N_{3}(\tau)\right]
\end{aligned}
$$

Proof. First, let us check that (see also [1, Ch. 7]):

$$
d t_{1} d t_{2}=\frac{d \sigma_{0}(\tau)}{\left(1+\tau_{3}\right)^{2}}
$$

Indeed, for $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}_{h}^{3}$, let $\partial_{x_{i}} R(x)$ denote the partial derivative of R w.r.t. x_{i}. We compute from the definition (1) of R that at such x :

$$
\partial_{x_{1}} R(x)=\left[\frac{2(1+h)\left(-x_{1}^{2}+x_{2}^{2}+\left(x_{3}+1\right)^{2}\right)}{x_{1}^{2}+x_{2}^{2}+\left(x_{3}+1\right)^{2}} ; \frac{-4(1+h) x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}+\left(x_{3}+1\right)^{2}} ; \frac{-4(1+h) x_{1}\left(x_{3}+1\right)}{x_{1}^{2}+x_{2}^{2}+\left(x_{3}+1\right)^{2}}\right]
$$

and

$$
\partial_{x_{2}} R(x)=\left[\frac{-4(1+h) x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}+\left(x_{3}+1\right)^{2}} ; \frac{2(1+h)\left(x_{1}^{2}-x_{2}^{2}+\left(x_{3}+1\right)^{2}\right)}{x_{1}^{2}+x_{2}^{2}+\left(x_{3}+1\right)^{2}} ; \frac{-4(1+h) x_{2}\left(x_{3}+1\right)}{x_{1}^{2}+x_{2}^{2}+\left(x_{3}+1\right)^{2}}\right] .
$$

If \wedge is the curl between to vectors in \mathbb{R}^{3}, we thus get (after computations) at $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}_{h}^{3}$:

$$
\left|\partial_{x_{1}} R(x) \wedge \partial_{x_{2}} R(x)\right|=\frac{4(1+h)^{2}}{\left(x_{1}^{2}+x_{2}^{2}+\left(x_{3}+1\right)^{2}\right)^{2}}
$$

In particular, at $x=t$, because $x_{1}=t_{1}, x_{2}=t_{2}, x_{3}=0$, we obtain (or directly from $\partial_{x_{i}} R(t)$):

$$
\left|\partial_{x_{1}} R(t) \wedge \partial_{x_{2}} R(t)\right|=\frac{4(1+h)^{2}}{\left(t_{1}^{2}+t_{2}^{2}+1\right)^{2}}=\left(\tau_{3}+1\right)^{2}
$$

at $\tau=\left(\tau_{1}, \tau_{2}, \tau_{3}\right)=R(t)=R\left(t_{1}, t_{2}, 0\right) \in R(Q) \subset S_{0}$, using the correspondance:

$$
\tau_{3}+1=\frac{2(1+h)}{t_{1}^{2}+t_{2}^{2}+1}
$$

Together with the relation $d \sigma_{0}(\tau)=\left|\partial_{x_{1}} R(t) \wedge \partial_{x_{2}} R(t)\right| d t_{1} d t_{2}$, this establishes the above claim. Besides, for $\tau \in S_{0}$ we also have:

$$
\tau_{1}^{2}+\tau_{2}^{2}+\left(\tau_{3}-h\right)^{2}=(1+h)^{2} \Rightarrow \tau_{1}^{2}+\tau_{2}^{2}+\left(\tau_{3}+1\right)^{2}=2(1+h) \Rightarrow t_{1}=\frac{\tau_{1}}{1+\tau_{3}}, t_{2}=\frac{\tau_{2}}{1+\tau_{3}}
$$

Lemma 1 thus implies that

$$
\begin{gathered}
K^{*}\left[b_{x_{3}}\right](\xi)=-2^{5 / 2}\left(1+\xi_{3}\right) \iint_{R(Q)} \frac{d \sigma_{0}(\tau)}{\left(1+\tau_{3}\right)^{1 / 2}|\tau-\xi|^{5}} \times \\
{\left[3 h\left((1+h)\left(1+\tau_{3}\right) \xi_{1}-\left(1+\xi_{3}\right) \tau_{1}\right) N_{1}(\tau)+3 h\left((1+h)\left(1+\tau_{3}\right) \xi_{2}-\left(1+\xi_{3}\right) \tau_{2}\right) N_{2}(\tau)\right.} \\
\left.+\left(3 h^{2}\left(1+\xi_{3}\right)\left(1+\tau_{3}\right)-(1+h)|\tau-\xi|^{2}\right) N_{3}(\tau)\right] .
\end{gathered}
$$

Finally, we use that, for $\xi \in \mathbb{S}$ and $\tau \in S_{0}$:

$$
|\tau-\xi|^{2}=|\tau|^{2}+1-2\langle\tau, \xi\rangle=2\left[1+h\left(1+\tau_{3}\right)-\left(\tau_{1} \xi_{1}+\tau_{2} \xi_{2}+\tau_{3} \xi_{3}\right)\right] .
$$

References

[1] Axler Bourdon Ramey, Harmonic Function Theory, Springer-Verlag, 2001.

