Kelvin transform of $b_{x_3}(x_1, x_2, h)$ on \mathbb{S}

November 20, 2014

1 Reflexion and Kelvin transform

Let R be the reflexion map from the half-space $\mathbb{R}^3_h = \{x = (x_1, x_2, x_3) \in \mathbb{R}^3, x_3 \geq h\}$ to the unit ball \mathbb{B} . With S = (0, 0, -1) the south pole of \mathbb{B} , it is given by:

$$R(x) = 2(1+h)\frac{x-S}{|x-S|^2} + S$$

$$= \begin{pmatrix} \frac{2(1+h)x_1}{x_1^2 + x_2^2 + (x_3+1)^2} \\ \frac{2(1+h)x_2}{x_1^2 + x_2^2 + (x_3+1)^2} \\ \frac{2(1+h)(x_3+1)}{x_1^2 + x_2^2 + (x_3+1)^2} - 1 \end{pmatrix} = \begin{pmatrix} \frac{2(1+h)x_1}{x_1^2 + x_2^2 + (x_3+1)^2} \\ \frac{2(1+h)x_2}{x_1^2 + x_2^2 + (x_3+1)^2} \\ -\frac{x_1^2 + x_2^2 + (x_3+1)(x_3+1-2(1+h))}{x_1^2 + x_2^2 + (x_3+1)^2} \end{pmatrix}.$$
(1)

The reflexion R maps the (boundary) plane $\mathbb{R}^2 \times \{h\} = \{x = (x_1, x_2, h)\}$ $(x_3 = h)$ of \mathbb{R}^3_h to the unit sphere $\mathbb{S} = \partial \mathbb{B}$: $R(x_1, x_2, h) \in \mathbb{S}$. It also maps ∞ (in any of the x_1, x_2 or x_3 directions) on the south pole S, as can be easily checked from the above definition. Conversely, because R^2 is equal to the identity, then $R^{-1} = R$ maps $\xi \in \mathbb{B}$ into $x = R(\xi) \in \mathbb{R}^3_h$, and \mathbb{S} into the plane $x_3 = h$. For $\xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{B}$:

$$R(\xi) = x = \begin{pmatrix} \frac{2(1+h)\xi_1}{\xi_1^2 + \xi_2^2 + (\xi_3 + 1)^2} \\ \frac{2(1+h)\xi_2}{\xi_1^2 + \xi_2^2 + (\xi_3 + 1)^2} \\ \frac{2(1+h)(\xi_3 + 1)}{\xi_1^2 + \xi_2^2 + (\xi_3 + 1)^2} - 1 \end{pmatrix} \in \mathbb{R}_h^3.$$
 (2)

The associated Kelvin transform K^* applies to a function f defined in \mathbb{R}^3_h and is a function $K^*[f]$ defined in \mathbb{B} by:

$$K^*[f](\xi) = 2^{1/2} \frac{1}{|\xi - S|} f(R(\xi)). \tag{3}$$

The Kelvin transform preserves harmonicity and is its own inverse: $K^*[K^*[f]] = f$ [1, Ch. 7].

2 Kelvin transform of the normal magnetic field

Let $Q \subset \mathbb{R}^2 \times \{0\} \subset \mathbb{R}^3$ denote the support of the \mathbb{R}^3 -valued magnetization $M = (M_1, M_2, M_3)$. Recall the expression of the measured x_3 (normal) component of the magnetic field b_{x_3} at $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ with $x_3 > 0$:

$$b_{x_3}(x) = -\iint_Q \frac{dt_1 dt_2}{|x - t|^5} \times \left[3(x_1 - t_1) x_3 M_1(t) + 3(x_2 - t_2) x_3 M_2(t) + (3x_3^2 - |x - t|^2) M_3(t) \right] ,$$

where we put $t = (t_1, t_2, 0)$. In particular, at points $x = (x_1, x_2, h)$ in the measurement plane $x_3 = h$, we have:

$$b_{x_3}(x_1, x_2, h) = -\iint_Q \frac{dt_1 dt_2}{|x - t|^5} \times$$

$$\left[3(x_1 - t_1) h M_1(t) + 3(x_2 - t_2) h M_2(t) + (3h^2 - |x - t|^2) M_3(t) \right]$$

$$= -\iint_Q \frac{dt_1 dt_2}{|(x_1 - t_1)^2 + (x_2 - t_2)^2 + h^2|^{5/2}} \times$$

$$\left[3(x_1 - t_1) h M_1(t) + 3(x_2 - t_2) h M_2(t) - ((x_1 - t_1)^2 + (x_2 - t_2)^2 - 2h^2) M_3(t) \right].$$

$$(4)$$

Lemma 1. At $\xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{S}$, we have

$$K^* [b_{x_3}] (\xi) = -(1 + \xi_3) \iint_Q \frac{dt_1 dt_2}{\left[(1 + \xi_3) (t_1^2 + t_2^2 + 1) - 2 (1 + h) (t_1 \xi_1 + t_2 \xi_2 + \xi_3 - h) \right]^{5/2}} \times \left[3h ((1 + h) \xi_1 - (1 + \xi_3) t_1) M_1(t) + 3h ((1 + h) \xi_2 - (1 + \xi_3) t_2) M_2(t) + ((1 + \xi_3) (t_1^2 + t_2^2 + 1 - 3h^2) - 2 (1 + h) (t_1 \xi_1 + t_2 \xi_2 + \xi_3 - h) M_3(t) \right].$$

Proof. Let $R(\xi)_i$, i = 1, 2, 3 denote the components of $R(\xi)$. Rewriting the expression (2) of $R(\xi)$ for $\xi \in \mathbb{S}$, using that $\xi_1^2 + \xi_2^2 + \xi_3^2 = 1$ there, we obtain:

$$R(\xi)_1 = \frac{(1+h)\,\xi_1}{1+\xi_3}\,,\ R(\xi)_2 = \frac{(1+h)\,\xi_2}{1+\xi_3}\,,\ R(\xi)_3 = h\,.$$

From the expression (4) of b_{x_3} and the definition (3) of the Kelvin transform, we get that, at $\xi = (\xi_1, \xi_2, \xi_3) = R(x_1, x_2, h) \in \mathbb{S}$,

$$\begin{split} K^* \left[b_{x_3} \right] (\xi) &= \frac{2^{1/2} \, b_{x_3} (R(\xi))}{|\xi - S|} = -\frac{1}{(1 + \xi_3)^{1/2}} \, \iint_Q \frac{dt_1 \, dt_2}{|R(\xi) - t|^5} \times \\ & \left[3 \, h \, \left(\frac{(1 + h) \, \xi_1}{1 + \xi_3} - t_1 \right) \, M_1(t) + 3 \, h \, \left(\frac{(1 + h) \, \xi_2}{1 + \xi_3} - t_2 \right) \, M_2(t) \right. \\ & \left. + \left(3 \, h^2 - |R(\xi) - t|^2 \right) \, M_3(t) \right] \, . \end{split}$$

For the expression involved in the above denominator of $K^*[b_{x_3}]$, we get for $t = (t_1, t_2, 0)$:

$$|R(\xi) - t|^2 = |R(\xi)|^2 - 2\langle t, R(\xi) \rangle + |t|^2$$

$$= \frac{1}{1 + \xi_3} \left[(1 + \xi_3) (t_1^2 + t_2^2 + 1) - 2 (1 + h) (t_1 \xi_1 + t_2 \xi_2 + \xi_3 - h) \right]$$

Alternatively, note that $|R(\xi) - t|^2 = (R(\xi)_1 - t_1)^2 + (R(\xi)_2 - t_2)^2 + h^2$. Next, for the factor of M_3 in the numerator of $K^*[b_{x_3}]$, we use that, for $\xi \in \mathbb{S}$:

$$|R(\xi) - t|^2 - 3h^2$$

$$= \frac{1}{1 + \xi_3} \left[(1 + \xi_3) \left(t_1^2 + t_2^2 + 1 - 3h^2 \right) - 2(1 + h) \left(t_1 \xi_1 + t_2 \xi_2 + \xi_3 - h \right) \right].$$

An expression of $K^*[b_{x_3}]$ in terms of $\tau = (\tau_1, \tau_2, \tau_3) = R(t_1, t_2, 0) \in R(Q) \subset S_0$, the sphere of center (0, 0, h) and radius 1+h, is given by the next result. Let $d\sigma_0(\tau)$ be the (non normalized) Lebesgue measure on S_0 (note that S_0 is contained in $\mathbb{R}^3 \setminus \mathbb{B}$ has also S as its south pole) and $N_i(\tau) = M_i(R(\tau)) = M_i(t)$, for i = 1, 2, 3.

Lemma 2. At $\xi = (\xi_1, \xi_2, \xi_3) \in \mathbb{S}$, we have

$$K^* [b_{x_3}] (\xi) = -(1+\xi_3) \iint_{R(Q)} \frac{d\sigma_0(\tau)}{(1+\tau_3)^{1/2} \left[(1+h(1+\tau_3) - (\tau_1 \xi_1 + \tau_2 \xi_2 + \tau_3 \xi_3) \right]^{5/2}} \times \left[3h \left((1+h)(1+\tau_3) \xi_1 - (1+\xi_3) \tau_1 \right) N_1(\tau) + 3h \left((1+h)(1+\tau_3) \xi_2 - (1+\xi_3) \tau_2 \right) N_2(\tau) + \left(3h^2 (1+\xi_3) (1+\tau_3) - 2(1+h)(1+h(1+\tau_3) - (\tau_1 \xi_1 + \tau_2 \xi_2 + \tau_3 \xi_3)) \right) N_3(\tau) \right].$$

Proof. First, let us check that (see also [1, Ch. 7]):

$$dt_1 dt_2 = \frac{d \sigma_0(\tau)}{(1+\tau_3)^2}.$$

Indeed, for $x = (x_1, x_2, x_3) \in \mathbb{R}^3_h$, let $\partial_{x_i} R(x)$ denote the partial derivative of R w.r.t. x_i . We compute from the definition (1) of R that at such x:

$$\partial_{x_1} R(x) = \left[\frac{2(1+h)(-x_1^2 + x_2^2 + (x_3+1)^2)}{x_1^2 + x_2^2 + (x_3+1)^2}; \frac{-4(1+h)x_1x_2}{x_1^2 + x_2^2 + (x_3+1)^2}; \frac{-4(1+h)x_1(x_3+1)}{x_1^2 + x_2^2 + (x_3+1)^2} \right],$$

and

$$\partial_{x_2} R(x) = \left[\frac{-4(1+h)x_1x_2}{x_1^2 + x_2^2 + (x_3+1)^2}; \frac{2(1+h)(x_1^2 - x_2^2 + (x_3+1)^2)}{x_1^2 + x_2^2 + (x_3+1)^2}; \frac{-4(1+h)x_2(x_3+1)}{x_1^2 + x_2^2 + (x_3+1)^2} \right].$$

If \wedge is the curl between to vectors in \mathbb{R}^3 , we thus get (after computations) at $x=(x_1,x_2,x_3)\in\mathbb{R}^3_h$:

$$|\partial_{x_1} R(x) \wedge \partial_{x_2} R(x)| = \frac{4(1+h)^2}{(x_1^2 + x_2^2 + (x_3+1)^2)^2}.$$

In particular, at x = t, because $x_1 = t_1, x_2 = t_2, x_3 = 0$, we obtain (or directly from $\partial_{x_i} R(t)$):

$$|\partial_{x_1} R(t) \wedge \partial_{x_2} R(t)| = \frac{4(1+h)^2}{(t_1^2 + t_2^2 + 1)^2} = (\tau_3 + 1)^2,$$

at $\tau = (\tau_1, \tau_2, \tau_3) = R(t) = R(t_1, t_2, 0) \in R(Q) \subset S_0$, using the correspondence:

$$\tau_3 + 1 = \frac{2(1+h)}{t_1^2 + t_2^2 + 1}.$$

Together with the relation $d\sigma_0(\tau) = |\partial_{x_1} R(t) \wedge \partial_{x_2} R(t)| dt_1 dt_2$, this establishes the above claim. Besides, for $\tau \in S_0$ we also have:

$$\tau_1^2 + \tau_2^2 + (\tau_3 - h)^2 = (1 + h)^2 \Rightarrow \tau_1^2 + \tau_2^2 + (\tau_3 + 1)^2 = 2(1 + h) \Rightarrow t_1 = \frac{\tau_1}{1 + \tau_3}, \ t_2 = \frac{\tau_2}{1 + \tau_3}.$$

Lemma 1 thus implies that

$$\begin{split} K^* \left[b_{x_3} \right] (\xi) &= -2^{5/2} \left(1 + \xi_3 \right) \, \iint_{R(Q)} \frac{d \, \sigma_0(\tau)}{(1 + \tau_3)^{1/2} \, |\tau - \xi|^5} \times \\ \left[3 \, h \, \left((1 + h) \, (1 + \tau_3) \, \xi_1 - (1 + \xi_3) \, \tau_1 \right) \, N_1(\tau) + 3 \, h \, \left((1 + h) \, (1 + \tau_3) \, \xi_2 - (1 + \xi_3) \tau_2 \right) \, N_2(\tau) \right. \\ & \left. + \left(3 \, h^2 \, (1 + \xi_3) \, (1 + \tau_3) \, - (1 + h) \, |\tau - \xi|^2 \right) \, N_3(\tau) \right] \, . \end{split}$$

Finally, we use that, for $\xi \in \mathbb{S}$ and $\tau \in S_0$:

$$|\tau - \xi|^2 = |\tau|^2 + 1 - 2\langle \tau, \xi \rangle = 2 \left[1 + h \left(1 + \tau_3 \right) - \left(\tau_1 \, \xi_1 + \tau_2 \, \xi_2 + \tau_3 \, \xi_3 \right) \right].$$

References

[1] Axler Bourdon Ramey, Harmonic Function Theory, Springer-Verlag, 2001.