Kelvin transform of b, (21, z2,h) on S
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1 Reflexion and Kelvin transform

Let R be the reflexion map from the half-space R} = {z = (21,79, 73) € R®, 23 > h} to the unit ball B.
With S = (0,0, —1) the south pole of B, it is given by:
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The reflexion R maps the (boundary) plane R?* x {h} = {x = (x1,29,h)} (z3 = h) of R} to the unit

sphere S = 0B: R(x1,22,h) € S. Tt also maps oo (in any of the x1, x5 or z3 directions) on the south pole

S, as can be easily checked from the above definition. Conversely, because R? is equal to the identity,

then R~ = R maps £ € B into x = R(§) € R}, and S into the plane x3 = h. For £ = (&1, &, &3) € B:
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The associated Kelvin transform K* applies to a function f defined in R} and is a function K*[f] defined

in B by:
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The Kelvin transform preserves harmonicity and is its own inverse: K*[K*[f]] = f [1, Ch. 7].

K*[f](€) = 2"/ F(R(E)) - (3)

2 Kelvin transform of the normal magnetic field

Let Q@ C R? x {0} C R? denote the support of the R* valued magnetization M = (M, My, M3).
Recall the expression of the measured x3 (normal) component of the magnetic field b,, at * = (x1, 22, x3) €

R? with x3 > 0:
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where we put t = (t1,%3,0). In particular, at points = (1, 9, h) in the measurement plane z3 = h, we

have: . dt
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Lemma 1. At £ = (£,%,&3) € S, we have
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Proof. Let R(£);, i = 1,2,3 denote the components of R({). Rewriting the expression (2) of R(&) for
¢ €S, using that & + & + &5 = 1 there, we obtain:
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From the expression (4) of b,, and the definition (3) of the Kelvin transform, we get that, at £ =
(§1a§27€3) = R($1,$27 h’) € Sa
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For the expression involved in the above denominator of K* [b,,], we get for t = (1, t2,0):
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R(&) = R(&)s =h.
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Alternatively, note that |R(£) — t|? = (R(£)1 — t1)* + (R(§)2 — t2)? + h%. Next, for the factor of M3 in
the numerator of K* [b,,], we use that, for £ € S:
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= 1i£3 [(I+&)E+t3+1-30") —2(1+h) (& + &+ & —h)] .
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An expression of K* [b,,] in terms of 7 = (71,72, 73) = R(t1,t2,0) € R(Q) C Sy, the sphere of center
(0,0, h) and radius 1+h, is given by the next result. Let d oo(7) be the (non normalized) Lebesgue measure
on Sy (note that Sy is contained in R? \ B has also S as its south pole) and N;(7) = M;(R(7)) = M;(t),
forv=1,2,3.

Lemma 2. At ¢ = (£1,6,&3) €S, we have
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Proof. First, let us check that (see also [1, Ch. 7]):
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Indeed, for x = (x1, 9, 23) € R}, let 9,, R(z) denote the partial derivative of R w.r.t. x;. We compute
from the definition (1) of R that at such a:
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If A is the curl between to vectors in R3, we thus get (after computations) at z = (21, 29, 73) € R3:
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In particular, at x = ¢, because x; = t;,x9 = to, 23 = 0, we obtain (or directly from 0,, R(t)):
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at 7 = (11,72, 13) = R(t) = R(t1,12,0) € R(Q) C Sp, using the correspondance:
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Together with the relation doo(7) = |0,, R(t) A 0., R(t)| dty dts, this establishes the above claim.
Besides, for 7 € Sy we also have:
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Lemma 1 thus implies that

K* [bs,] (€) = ?ﬂlﬂg// doo(7)
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Finally, we use that, for £ € S and 7 € Sy:

TP =P+ 1-2(r,6) =2 [14+h(1+73) — (& + 7+ 138)] .
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