Inverse magnetization problem in 2D

Laurent Baratchart, Juliette Leblond, Dmitry Ponomarev

1 Formulation of the problem

It is of physical interest to recover magnetization **M** of a planar sample from the measurements of normal components of magnetic-flux density available above and below it [3, 4]. We consider a toy version of this is a problem on a plane where the sample is placed on a line.

Introducing scalar magnetic potential Φ such that the magnetic field is $\mathbf{H} = -\nabla \Phi$ (which is possible due to $\nabla \times \mathbf{H} = 0$). With the choice of system of units where the vacuum permeability constant is normalized to one, the magnetic flux density then reads $\mathbf{B} = -\nabla \Phi + \mathbf{M}$. Due to the Maxwell equation $\nabla \cdot \mathbf{B} = 0$, we thus arrive at

$$\Delta \Phi = \nabla \cdot \mathbf{M}.\tag{1.1}$$

Denote the radius vector $\mathbf{r} = (x, y)$, where the coordinate system is chosen such that the sample is in the middle of the line y = 0, that is,

$$\mathbf{M}(\mathbf{r}) = \mathbf{m}(x) \otimes \delta_0(y), \quad \mathbf{m} = (m_x, m_y),$$

where δ_0 is the Dirac delta function supported at 0, the notation that should not be confused with further instances of use of δ symbol, say δ_F denoting variation of a function F.

The Poisson equation (1.1) on the plane has solution in terms of the logarithmic potential $\frac{1}{2\pi} \log r$ (see, for instance, [6]), where $r = |\mathbf{r}|$,

$$\Phi\left(\mathbf{r}\right) = \frac{1}{2\pi} \int \int_{\mathbb{R}^2} \nabla \cdot \mathbf{M}\left(\mathbf{r}'\right) \log \left|\mathbf{r} - \mathbf{r}'\right| d^2 \mathbf{r}',$$

which upon integration by parts (under the formal decay assumption $\lim_{r\to\infty} |\mathbf{M}(\mathbf{r})| \log r = 0$) becomes

$$\Phi\left(\mathbf{r}\right) = \frac{1}{2\pi} \int \int_{\mathbb{R}^{2}} \mathbf{M}\left(\mathbf{r}'\right) \cdot \frac{\left(\mathbf{r} - \mathbf{r}'\right)}{\left|\mathbf{r} - \mathbf{r}'\right|^{2}} d^{2}\mathbf{r}' = \frac{1}{2\pi} \int_{\mathbb{R}} \frac{m_{x}\left(x'\right)\left(x - x'\right)}{\left(x - x'\right)^{2} + y^{2}} dx' + \frac{1}{2\pi} \int_{\mathbb{R}} \frac{m_{y}\left(x'\right)y}{\left(x - x'\right)^{2} + y^{2}} dx'.$$

Introducing the Poisson kernel $P_y(x) := P(x,y) = \frac{1}{\pi} \frac{y}{x^2 + y^2}$ and the conjugate Poisson kernel $Q_y(x) := Q(x,y) = \frac{1}{\pi} \frac{x}{x^2 + y^2}$, we can write

$$\Phi(x,y) = \begin{cases}
\frac{1}{2} (Q_y \star m_x + P_y \star m_y) &, y > 0, \\
\frac{1}{2} (Q_y \star m_x - P_{-y} \star m_y) &, y < 0,
\end{cases}$$
(1.2)

employing \star as notation for convolution in x variable.

Next, since $P_y(x)$ is an approximate identity for y > 0 (e.g. [7]), we realize that

$$\lim_{y \to 0^{\pm}} \Phi\left(x, y\right) = \frac{1}{2} \mathcal{H}\left[m_x\right] \pm \frac{1}{2} m_y,$$

where \mathcal{H} denotes the Hilbert transform defined as $\mathcal{H}[f] := \lim_{y \to 0} (Q_y \star f)$.

By uniqueness of harmonic extension upward/downward from the boundary, we can then rewrite (1.2) as

$$\Phi(x,y) = \frac{1}{2} P_{|y|} \star (\mathcal{H}[m_x] \pm m_y), \quad y \geqslant 0, \tag{1.3}$$

and hence the normal component of magnetic flux density is given by

$$B_{y}(x,y) = \begin{cases} -\frac{1}{2}\partial_{y}P_{y} \star (\mathcal{H}[m_{x}] + m_{y}) &, y > 0, \\ -\frac{1}{2}\partial_{y}P_{-y} \star (\mathcal{H}[m_{x}] - m_{y}) &, y < 0, \end{cases}$$
(1.4)

where notation $\partial_y P_{-y}$ should be understood in a sense that $\partial_y P_a := (\partial_y P_y)|_{y=a} = \frac{1}{\pi} \frac{x^2 - a^2}{(x^2 + a^2)^2}$, the convention we adopt and will use further.

Advantage of such representation is that we can use the property of Poisson kernels $P_{y_1} \star \partial_y P_{y_2} = \partial_y P_{y_1+y_2}$, which is similar to the known semigroup property $P_{y_1} \star P_{y_2} = P_{y_1+y_2}$ and is evident on the Fourier transform side, given that $\mathcal{F}[P_y](\kappa) = e^{-2\pi y|\kappa|}$, and combine measurements of magnetic flux density on both sides of the sample to separate unknown magnetization components m_x and m_y . Namely, suppose \mathbf{m} is supported on a set $S \subseteq \mathbb{R}$ and $B_y(x, h_1)$, $B_y(x, h_2)$ are known for $x \in I \subseteq \mathbb{R}$, where $h_1 > 0$, $h_2 < 0$, $|h_2| \ge h_1$.

Let S = (-a, a), I = (-b, b) for a, b > 0. For arbitrary $0 < h_0 \le h_1, \gamma \in \mathbb{R}$, consider

$$u_{\gamma,h_0}(x,y) := P_{\gamma-h_1-h_2} \star B_y(x,y+h_1-h_0) - P_{\gamma} \star B_y(x,-y+h_2+h_0), \tag{1.5}$$

$$v_{\gamma,h_0}(x,y) := P_{\gamma-h_1-h_2} \star B_y(x,y+h_1-h_0) + P_{\gamma} \star B_y(x,-y+h_2+h_0). \tag{1.6}$$

Then, if the measurement area is much wider than the sample size, that is, $a \ll b$, the convolution integrals can be truncated and the quantities

$$u_{\gamma,h_0}(x,h_0) = P_{\gamma-h_1-h_2} \star B_v(x,h_1) - P_{\gamma} \star B_v(x,h_2)$$

$$v_{\gamma,h_0}(x,h_0) = P_{\gamma-h_1-h_2} \star B_y(x,h_1) + P_{\gamma} \star B_y(x,h_2)$$

are considered to be approximately known for $x \in S$.

On the other hand, we note that in the expressions (1.5)-(1.6), the second arguments in B_y in the both terms are of constant and opposite signs when y > 0, so due to (1.4) and the mentioned property of Poisson kernels, we obtain

$$u_{\gamma,h_0}(x,y) := -\partial_y P_{y-h_2-h_0+\gamma} \star m_y, \quad v_{\gamma,h_0}(x,y) := -\partial_y P_{y-h_2-h_0+\gamma} \star \mathcal{H}[m_x],$$

which are harmonic functions in the upper halfplane providing that $\gamma \geq h_0 + h_2$. The choice $\gamma = h_0 + h_2$ leads to

$$u(x,y) := u_{h_0}(x,y) = -\partial_y \phi(x,y), \quad v(x,y) := v_{h_0}(x,y) = -\partial_y \tilde{\psi}(x,y),$$
 (1.7)

where ϕ , $\tilde{\psi}$ are harmonic functions in the upper half-plane such that $\phi(x,0) = m_y$, $\tilde{\psi}(x,0) = \mathcal{H}[m_x]$.

Alternatively, we may consider a more realistic physical setup corresponding to I = S where, however, we shall restrict to the situation with $h_1 = -h_2$. In this case, we set $h_0 = h_1$, $\gamma = 0$ to simply work with the expressions

$$u(x,y) = B_{y}(x,y) - B_{y}(x,-y), \quad v(x,y) = B_{y}(x,y) + B_{y}(x,-y),$$

which are exactly known for $x \in S$, $y = h_0$ and, on the other hand, can be represented in terms of ϕ , $\tilde{\psi}$ precisely as in (1.7). Introduce, for y > 0,

$$f(z) := \phi(x, y) + i\tilde{\phi}(x, y), \quad g(z) := \psi(x, y) + i\tilde{\psi}(x, y), \tag{1.8}$$

where $\tilde{\phi}(x,y) := Q_y \star m_y$ and $\psi(x,y) := -Q_y \star \mathcal{H}[m_x]$. Then, the expressions in (1.8) define analytic functions in the upper half-plane. Moreover, $\lim_{y\to 0^+} \phi(x,y) = m_y$, $\lim_{y\to 0^+} \psi(x,y) = m_x$, and hence the real parts of f(z) and g(z) on y=0 inherit the magnetization support S. If S is bounded, we can construct analytic continuations through $\{(x,0): x\in \mathbb{R}\}\setminus S$ downwards defining

$$F(z) := \begin{cases} f(z), & y > 0, \\ -\overline{f(\overline{z})}, & y < 0, \end{cases} \qquad G(z) := \begin{cases} g(z), & y > 0, \\ -\overline{g(\overline{z})}, & y < 0. \end{cases}$$
(1.9)

Without loss of generality, we proceed further working with F alone, situation with G is absolutely the same.

Note that here and onwards we identify the complex plane $\mathbb C$ with $\mathbb R^2$ and abuse notation referring to x or y as a real or imaginary part of the variable $z=x+iy\in\mathbb C$ or a coordinate of the point $(x,y)\in\mathbb R^2$.

Lemma 1. For $m_y \in L^1_{\mathbb{R}}(\mathbb{R})$ such that $supp m_y \subseteq S$, $|S| < \infty$, the integral

$$F(z) = \frac{1}{\pi i} \int_{S} \frac{m_y(\xi)}{\xi - z} d\xi \tag{1.10}$$

defines an analytic function on $\mathbb{C}\backslash S$ such that $\lim_{y\to 0^{\pm}} F(x+iy) = \pm m_y + i\mathcal{H}[m_y]$.

Proof. Consider the rectangle $V = [-x_0, x_0] \times [-y_0, y_0]$ for some $x_0 > a$ and $y_0 > 0$. Since $S \times \{0\} \subset V$, for $z \in \mathbb{C} \setminus V$, by the Cauchy formula, we have

$$F\left(z\right) = -\frac{1}{2\pi i} \int_{\partial V} \frac{F\left(\xi\right)}{\xi - z} d\xi,$$

where the rectangular contour ∂V is traversed in the counterclockwise direction.

In order to obtain the representation (1.10), we would like to take limit as $y_0 \to 0^+$. First of all, contribution from the vertical segments $\xi \in [-x_0 - iy_0, -x_0 + iy_0]$, $[x_0 - iy_0, x_0 + iy_0]$ is negligible under such limit passage because of the mean-value theorem which applies due to analyticity of F across $\{(x, y) : y = 0\} \setminus S$. Therefore, employing (1.9), since m_y is

real-valued, we obtain

$$F(z) = -\frac{1}{2\pi i} \lim_{y_0 \to 0^+} \left(-\int_{-x_0}^{x_0} \frac{\overline{f(iy_0 + x')}}{-iy_0 + x' - z} dx' + \int_{x_0}^{-x_0} \frac{f(iy_0 + x')}{iy_0 + x' - z} dx' \right) = \frac{1}{2\pi i} \lim_{y_0 \to 0^+} \left(\int_{-x_0}^{x_0} \frac{2\phi(x', y_0)}{x' - z} dx' \right)$$

$$= \frac{1}{\pi i} \int_{\mathcal{S}} \frac{m_y(\xi)}{\xi - z} d\xi,$$

where the limit passage under the integral sign is justified since $m_y \in L^1(S)$ and $z \notin S$.

Lemma 1 shows that magnetization components m_y and m_x uniquely define the functions F and G, respectively, which are analytic in $\mathbb{C}\backslash S$, and in the upper half-plane in particular. Now, because of the Cauchy-Riemann equations,

$$\partial_x \tilde{\phi} = -\partial_y \phi, \quad \partial_x \psi = \partial_y \tilde{\psi},$$

and since the quantities u, v are known on $I_0 := S \times \{h_0\}$ from the measurement data as described above, we can compute

$$W_{\tilde{\phi}}(x) := \int_{-a}^{x} u(x', h_0) dx', \quad W_{\psi}(x) := -\int_{-a}^{x} v(x', h_0) dx', \quad x \in (-a, a),$$
(1.11)

the quantities which, up to constants, give estimates on I_0 for $\tilde{\phi}$, ψ , respectively. Based on this, we attempt to recover analytic functions F, G, and thus magnetization components m_y , m_x , respectively, by casting the following bounded extremal problems

$$\min_{F \in \mathcal{B}_{M_f}} \left\| \operatorname{Im} F - W_{\tilde{\phi}} \right\|_{L^2(I_0)}, \qquad \min_{G \in \mathcal{B}_{M_g}} \left\| \operatorname{Re} G - W_{\psi} + C_0 \right\|_{L^2(I_0)}, \tag{1.12}$$

where

$$\mathcal{B}_M := \left\{ F \in H^2_+ : \operatorname{supp} \left(\operatorname{Re} F \big|_{y=0} \right) \subseteq S, \, \| \operatorname{Re} F \|_{L^2(S)} \le M \right\}, \tag{1.13}$$

$$H_{+}^{2} := \left\{ F \text{ analytic for } y > 0 : \sup_{y > 0} \int_{\mathbb{R}} \left| F\left(x + iy\right) \right|^{2} dx < \infty \right\}, \tag{1.14}$$

 M_f , M_g denote positive constants which a priori bound L^2 -norms of m_y , m_x , accordingly, and C_0 is an integration constant from (1.11) that cannot be absorbed by the definition of \mathcal{B}_{M_g} .

We shortly discuss motivation to formulate such bounded extremal problems. Without loss of generality, let us focus on the first one in (1.12). We have seen in Lemma 1 that given m_y supported on S extends uniquely to an analytic function F. But an analytic function can also be uniquely represented from a subset of a line by means of the Carleman's formula for a half-plane (Ch.1, Th.5.1 in [1]). Applying this to known data on I_0 (real part is zero, imaginary part is an available function from measurements processing), we obtain an analytic function above h_0 which must coincide with restriction of the original function F produced by m_y , and hence the obtained function is, in fact, analytic all the way down to y = 0 where its real part must be exactly m_y . However, not every square-integrable on I_0 function is the restriction of an analytic function (see, for instance, Th.11.2 in [5]), and in practice it is never the case since measurement and numerical processing of data are necessarily prone to errors. Therefore, assuming that the available data $W_{\tilde{\phi}}$ are only $L^2(I_0)$, the minimum is never zero, and as it is approaching, we expect growth on other segments (namely, on $J_0 := (\mathbb{R} \times \{y_0\}) \setminus I_0$) that would blow-up

2 Solution

 H^2 -norm in the spirit of [2]. This growth is, nevertheless, controlled by the imposed requirement in \mathcal{B}_{M_f} . Indeed, one can show (as a consequence of Lemma on p.122 and the top of p.127 in [8]) that $\|\operatorname{Im} F\|_{L^2(\mathbb{R})} = \|\operatorname{Re} F\|_{L^2(S)} \leq M$, and thus $\|F\|_{L^2(J_0)} \leq \|F\|_{H^2_+} := \|F\|_{L^2(\mathbb{R})} \leq 2M$.

2 Solution

Again, for the moment we focus on the first bounded extremal problem in (1.12). Omitting proof of existence and uniqueness (which hinges on demonstration that \mathcal{B}_M is a closed convex subset of H_+^2), we skip to obtaining an integral equation for the magnetization component and further set up a fixed-point argument procedure for its solution.

Given $W_{\tilde{\phi}} \in L^2(I_0)$, we denote

$$\mathcal{J} := \left\| \operatorname{Im} F - W_{\tilde{\phi}} \right\|_{L^{2}(I_{0})}^{2}, \tag{2.1}$$

5

we pursue the idea of Lagrange multipliers [9], and thus require, for $\lambda \in \mathbb{R}$,

$$\delta_{\mathcal{J}} = 2\lambda \left\langle \operatorname{Re}F, \operatorname{Re}\delta_{F} \right\rangle_{L^{2}(S)}, \quad \delta_{\mathcal{J}} = 2 \left\langle \operatorname{Im}F - W_{\tilde{\phi}}, \operatorname{Im}\delta_{F} \right\rangle_{L^{2}(I_{0})},$$

$$(2.2)$$

where, by means of Lemma 1,

$$\delta_F = \frac{1}{\pi i} \int_S \frac{\delta_{m_y}(\xi)}{\xi - z} d\xi \quad \Rightarrow \quad \text{Re}\delta_F = P_y \star \delta_{m_y}, \quad \text{Im}\delta_F = Q_y \star \delta_{m_y}$$

for arbitrary $\delta_{m_y} \in L^2(S)$.

Therefore, (2.2) implies

$$\left\langle Q_{h_0}\star m_y - W_{\tilde{\phi}}, \, Q_{h_0}\star \delta_{m_y} \right\rangle_{L^2(S)} = \lambda \left\langle m_y, \delta_{m_y} \right\rangle_{L^2(S)},$$

that is,

$$\frac{1}{\pi} \int_{S} \left(\frac{1}{\pi} \int_{S} \frac{x - x'}{\left(x - x'\right)^{2} + h_{0}^{2}} m_{y}\left(x'\right) dx' - W_{\bar{\phi}}\left(x\right) \right) \left(\int_{S} \frac{x - x''}{\left(x - x''\right)^{2} + h_{0}^{2}} \delta_{m_{y}}\left(x''\right) dx'' \right) dx = \lambda \int_{S} m_{y}\left(x''\right) \delta_{m_{y}}\left(x''\right) dx''.$$

Using Fubini theorem to interchange the order of integration in x and x'' in the left-hand side, we have

$$\int_{S} \left[\frac{1}{\pi} \int_{S} \frac{x - x''}{(x - x'')^{2} + h_{0}^{2}} \left(Q_{h_{0}} \star m_{y} - W_{\tilde{\phi}} \right) (x) dx - \lambda m_{y} (x'') \right] \delta_{m_{y}} (x'') dx'' = 0,$$

or equivalently,

$$\left\langle -Q_{h_0} \star Q_{h_0} \star m_y + Q_{h_0} \star W_{\tilde{\phi}} - \lambda m_y, \, \delta_{m_y} \right\rangle_{L^2(S)} = 0,$$

and hence, by arbitrariness of δ_{m_y} , we conclude

$$-Q_{h_0} \star (\chi_S (Q_{h_0} \star m_y)) + Q_{h_0} \star \left(\chi_S W_{\tilde{\phi}}\right) = \lambda m_y, \tag{2.3}$$

where χ_S is a characteristic function of the set S.

2 Solution 6

We, therefore, have deduced the following

Theorem 1. If solution to the bounded extremal problem (1.12) for F exists, $m_y = \lim_{y \to 0^+} ReF(x+iy)$ must satisfy (2.3), where the parameter λ has to be chosen such that the inequality constraint in \mathcal{B}_{M_f} is fulfilled.

We will now show that the Fredholm integral equation of the second kind arising in the problem has the unique solution which can be constructed by the Banach fixed-point theorem once we rewrite (2.3) in the operator form $m_y = T_{\lambda} [m_y]$ and prove

Proposition 1. The operator

$$\begin{split} T_{\lambda}:\,L^{2}\left(S\right) &\;\; \rightarrow \;\; L^{2}\left(S\right) \\ f &\;\; \mapsto \;\; T_{\lambda}\left[f\right]:=\frac{1}{\lambda}\left(Q_{h_{0}}\star\left(\chi_{S}\left(Q_{h_{0}}\star f\right)\right)+Q_{h_{0}}\star\left(\chi_{S}W_{\tilde{\phi}}\right)\right) \end{split}$$

is a contraction for $|\lambda| > \left[\frac{1}{2\pi}\log\left(1 + \frac{4a^2}{h_0^2}\right)\right]^2$.

Proof. Since T_{λ} is affine, we need to show that

$$\left\| \frac{1}{\lambda} \left(Q_{h_0} \star \left(\chi_S \left(Q_{h_0} \star f \right) \right) \right) \right\|_{L^2(S)} \le q \| f \|_{L^2(S)}$$
(2.4)

for some 0 < q < 1.

First, writing $Q_{h_0} = Q_{h_0}^{1/2} Q_{h_0}^{1/2}$, we employ the Cauchy-Schwarz inequality to estimate

$$|(Q_{h_0} \star f)(x)| \leq \frac{1}{\pi} \left(\int_S \frac{x - x'}{(x - x')^2 + h_0^2} |f(x')|^2 dx' \right)^{1/2} \left(\int_S \frac{x - x'}{(x - x')^2 + h_0^2} dx' \right)^{1/2}$$

$$\leq \frac{r^{1/2}}{\pi} \left(\int_S \frac{x - x'}{(x - x')^2 + h_0^2} |f(x')|^2 dx' \right)^{1/2},$$

where

$$r := \sup_{x \in S} \left(\int_{S} \frac{x - x'}{\left(x - x'\right)^{2} + h_{0}^{2}} dx' \right) = \frac{1}{2} \sup_{x \in (-a, a)} \left[\log \frac{\left(x - a\right)^{2} + h_{0}^{2}}{\left(x + a\right)^{2} + h_{0}^{2}} \right] = \frac{1}{2} \log \left(1 + \frac{4a^{2}}{h_{0}^{2}} \right)$$

since $\log \left(1 - \frac{4ax}{(x+a)^2 + h_0^2}\right)$ is a monotonically decreasing function on $x \in [-a, a]$.

Therefore

$$||P_{h_0} \star f||_{L^2(S)} \le \frac{r}{\pi} ||f||_{L^2(S)} \le \frac{1}{2\pi} \log \left(1 + \frac{4a^2}{h_0^2}\right) ||f||_{L^2(S)},$$

and hence (2.4) holds with
$$q = \frac{1}{|\lambda|} \left[\frac{1}{2\pi} \log \left(1 + \frac{4a^2}{h_0^2} \right) \right]^2$$
 for $|\lambda| > \left[\frac{1}{2\pi} \log \left(1 + \frac{4a^2}{h_0^2} \right) \right]^2$.

2 Solution 7

References

- [1] L. Aizenberg, "Carleman's Formulas in Complex Analysis", Kluwer Academic Publishers, 1993.
- [2] L. Baratchart, J. Leblond, "Hardy approximation to L^p functions on subsets of the circle with $1 \le p < \infty$ ", Constructive Approximation, 14, 41-56, 1998.
- [3] L. Baratchart, D. P. Hardin, E. A. Lima, E. B. Saff and B. P. Weiss, "Characterizing kernels of operators related to thin-plate magnetizations via generalizations of Hodge decompositions", Inverse Problems, 29(1), 2013.
- [4] L. Baratchart, D. P. Hardin, E. A. Lima, E. B. Saff and B. P. Weiss, "Fast Inversion of Unidirectional Planar Magnetization Distributions in Geological Samples", to appear, 2013.
- [5] P. L. Duren, "Theory of H^p Spaces", Academic Press, 1970.
- [6] G. B. Folland, "Introduction to Partial Differential Equation", Princeton University Press, 1995.
- [7] J. B. Garnett, "Bounded Analytic Functions", Academic Press, 1981.
- [8] P. Koosis, "Introduction to H^p spaces", Cambridge University Press, 2008.
- [9] P. Varaia, "Notes on Optimization", Van Nostrand Reinhold, New York, 1972.