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1 Formulation of the problem

It is of physical interest to recover magnetization M of a planar sample from the measurements of normal components of

magnetic-�ux density available above and below it [3, 4]. We consider a toy version of this is a problem on a plane where the

sample is placed on a line.

Introducing scalar magnetic potential Φ such that the magnetic �eld is H = −∇Φ (which is possible due to ∇×H = 0).

With the choice of system of units where the vacuum permeability constant is normalized to one, the magnetic �ux density

then reads B = −∇Φ + M. Due to the Maxwell equation ∇ ·B = 0, we thus arrive at

∆Φ = ∇ ·M. (1.1)

Denote the radius vector r = (x, y), where the coordinate system is chosen such that the sample is in the middle of the

line y = 0, that is,

M (r) = m (x)⊗ δ0 (y) , m = (mx,my) ,

where δ0 is the Dirac delta function supported at 0, the notation that should not be confused with further instances of use

of δ symbol, say δF denoting variation of a function F .

The Poisson equation (1.1) on the plane has solution in terms of the logarithmic potential 1
2π log r (see, for instance, [6]),

where r = |r|,

Φ (r) =
1

2π

ˆ ˆ
R2

∇ ·M (r′) log |r− r′| d2r′,

which upon integration by parts (under the formal decay assumption lim
r→∞

|M (r)| log r = 0) becomes

Φ (r) =
1

2π

ˆ ˆ
R2

M (r′) · (r− r′)

|r− r′|2
d2r′ =

1

2π

ˆ
R

mx (x′) (x− x′)
(x− x′)2 + y2

dx′ +
1

2π

ˆ
R

my (x′) y

(x− x′)2 + y2
dx′.

Introducing the Poisson kernel Py (x) := P (x, y) =
1

π

y

x2 + y2
and the conjugate Poisson kernel Qy (x) := Q (x, y) =

1

π

x

x2 + y2
, we can write

Φ (x, y) =


1
2 (Qy ? mx + Py ? my) , y > 0,

1
2 (Qy ? mx − P−y ? my) , y < 0,

(1.2)

employing ? as notation for convolution in x variable.
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Next, since Py (x) is an approximate identity for y > 0 (e.g. [7]), we realize that

lim
y→0±

Φ (x, y) =
1

2
H [mx]± 1

2
my,

where H denotes the Hilbert transform de�ned as H [f ] := lim
y→0

(Qy ? f).

By uniqueness of harmonic extension upward/downward from the boundary, we can then rewrite (1.2) as

Φ (x, y) =
1

2
P|y| ? (H [mx]±my) , y ≷ 0, (1.3)

and hence the normal component of magnetic �ux density is given by

By (x, y) =


− 1

2∂yPy ? (H [mx] +my) , y > 0,

− 1
2∂yP−y ? (H [mx]−my) , y < 0,

(1.4)

where notation ∂yP−y should be understood in a sense that ∂yPa := (∂yPy)|y=a =
1

π

x2 − a2

(x2 + a2)
2 , the convention we adopt

and will use further.

Advantage of such representation is that we can use the property of Poisson kernels Py1 ? ∂yPy2 = ∂yPy1+y2 , which

is similar to the known semigroup property Py1 ? Py2 = Py1+y2 and is evident on the Fourier transform side, given that

F [Py] (κ) = e−2πy|κ|, and combine measurements of magnetic �ux density on both sides of the sample to separate unknown

magnetization components mx and my. Namely, suppose m is supported on a set S ⊆ R and By (x, h1), By (x, h2) are known

for x ∈ I ⊆ R, where h1 > 0, h2 < 0, |h2| ≥ h1.

Let S = (−a, a), I = (−b, b) for a, b > 0. For arbitrary 0 < h0 ≤ h1, γ ∈ R, consider

uγ,h0
(x, y) := Pγ−h1−h2

? By (x, y + h1 − h0)− Pγ ? By (x,−y + h2 + h0) , (1.5)

vγ,h0 (x, y) := Pγ−h1−h2 ? By (x, y + h1 − h0) + Pγ ? By (x,−y + h2 + h0) . (1.6)

Then, if the measurement area is much wider than the sample size, that is, a� b, the convolution integrals can be truncated

and the quantities

uγ,h0
(x, h0) = Pγ−h1−h2

? By (x, h1)− Pγ ? By (x, h2) ,

vγ,h0
(x, h0) = Pγ−h1−h2

? By (x, h1) + Pγ ? By (x, h2)

are considered to be approximately known for x ∈ S.

On the other hand, we note that in the expressions (1.5)-(1.6), the second arguments in By in the both terms are of

constant and opposite signs when y > 0, so due to (1.4) and the mentioned property of Poisson kernels, we obtain

uγ,h0
(x, y) := −∂yPy−h2−h0+γ ? my, vγ,h0

(x, y) := −∂yPy−h2−h0+γ ?H [mx] ,
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which are harmonic functions in the upper halfplane providing that γ ≥ h0 + h2. The choice γ = h0 + h2 leads to

u (x, y) := uh0
(x, y) = −∂yφ (x, y) , v (x, y) := vh0

(x, y) = −∂yψ̃ (x, y) , (1.7)

where φ, ψ̃ are harmonic functions in the upper half-plane such that φ (x, 0) = my, ψ̃ (x, 0) = H [mx].

Alternatively, we may consider a more realistic physical setup corresponding to I = S where, however, we shall restrict

to the situation with h1 = −h2. In this case, we set h0 = h1, γ = 0 to simply work with the expressions

u (x, y) = By (x, y)−By (x,−y) , v (x, y) = By (x, y) +By (x,−y) ,

which are exactly known for x ∈ S, y = h0 and, on the other hand, can be represented in terms of φ, ψ̃ precisely as in (1.7).

Introduce, for y > 0,

f (z) := φ (x, y) + iφ̃ (x, y) , g (z) := ψ (x, y) + iψ̃ (x, y) , (1.8)

where φ̃ (x, y) := Qy ?my and ψ (x, y) := −Qy ?H [mx]. Then, the expressions in (1.8) de�ne analytic functions in the upper

half-plane. Moreover, lim
y→0+

φ (x, y) = my, lim
y→0+

ψ (x, y) = mx, and hence the real parts of f (z) and g (z) on y = 0 inherit the

magnetization support S. If S is bounded, we can construct analytic continuations through {(x, 0) : x ∈ R} \S downwards

de�ning

F (z) :=


f (z) , y > 0,

−f (z̄), y < 0,

G (z) :=


g (z) , y > 0,

−g (z̄), y < 0.

(1.9)

Without loss of generality, we proceed further working with F alone, situation with G is absolutely the same.

Note that here and onwards we identify the complex plane C with R2 and abuse notation referring to x or y as a real or

imaginary part of the variable z = x+ iy ∈ C or a coordinate of the point (x, y) ∈ R2.

Lemma 1. For my ∈ L1
R (R) such that suppmy ⊆ S, |S| <∞, the integral

F (z) =
1

πi

ˆ
S

my (ξ)

ξ − z
dξ (1.10)

de�nes an analytic function on C\S such that lim
y→0±

F (x+ iy) = ±my + iH [my].

Proof. Consider the rectangle V = [−x0, x0]× [−y0, y0] for some x0 > a and y0 > 0. Since S × {0} ⊂ V , for z ∈ C\V , by the

Cauchy formula, we have

F (z) = − 1

2πi

ˆ
∂V

F (ξ)

ξ − z
dξ,

where the rectangular contour ∂V is traversed in the counterclockwise direction.

In order to obtain the representation (1.10), we would like to take limit as y0 → 0+. First of all, contribution from

the vertical segments ξ ∈ [−x0 − iy0,−x0 + iy0], [x0 − iy0, x0 + iy0] is negligible under such limit passage because of the

mean-value theorem which applies due to analyticity of F across {(x, y) : y = 0} \S. Therefore, employing (1.9), since my is



1 Formulation of the problem 4

real-valued, we obtain

F (z) = − 1

2πi
lim

y0→0+

(
−
ˆ x0

−x0

f (iy0 + x′)

−iy0 + x′ − z
dx′ +

ˆ −x0

x0

f (iy0 + x′)

iy0 + x′ − z
dx′

)
=

1

2πi
lim

y0→0+

(ˆ x0

−x0

2φ (x′, y0)

x′ − z
dx′
)

=
1

πi

ˆ
S

my (ξ)

ξ − z
dξ,

where the limit passage under the integral sign is justi�ed since my ∈ L1 (S) and z /∈ S.

Lemma 1 shows that magnetization components my and mx uniquely de�ne the functions F and G, respectively, which

are analytic in C\S, and in the upper half-plane in particular. Now, because of the Cauchy-Riemann equations,

∂xφ̃ = −∂yφ, ∂xψ = ∂yψ̃,

and since the quantities u, v are known on I0 := S × {h0} from the measurement data as described above, we can compute

Wφ̃ (x) :=

ˆ x

−a
u (x′, h0) dx′, Wψ (x) := −

ˆ x

−a
v (x′, h0) dx′, x ∈ (−a, a) , (1.11)

the quantities which, up to constants, give estimates on I0 for φ̃, ψ, respectively. Based on this, we attempt to recover analytic

functions F , G, and thus magnetization componentsmy,mx, respectively, by casting the following bounded extremal problems

min
F∈BMf

∥∥∥ImF −Wφ̃

∥∥∥
L2(I0)

, min
G∈BMg

C0∈R

∥∥∥ReG−Wψ + C0

∥∥∥
L2(I0)

, (1.12)

where

BM :=
{
F ∈ H2

+ : supp
(
ReF |y=0

)
⊆ S, ‖ReF‖L2(S) ≤M

}
, (1.13)

H2
+ :=

{
F analytic for y > 0 : sup

y>0

ˆ
R
|F (x+ iy)|2 dx <∞

}
, (1.14)

Mf , Mg denote positive constants which a priori bound L2-norms of my, mx, accordingly, and C0 is an integration constant

from (1.11) that cannot be absorbed by the de�nition of BMg
.

We shortly discuss motivation to formulate such bounded extremal problems. Without loss of generality, let us focus on

the �rst one in (1.12). We have seen in Lemma 1 that given my supported on S extends uniquely to an analytic function

F . But an analytic function can also be uniquely represented from a subset of a line by means of the Carleman's formula

for a half-plane (Ch.1, Th.5.1 in [1]). Applying this to known data on I0 (real part is zero, imaginary part is an available

function from measurements processing), we obtain an analytic function above h0 which must coincide with restriction of

the original function F produced by my, and hence the obtained function is, in fact, analytic all the way down to y = 0

where its real part must be exactly my. However, not every square-integrable on I0 function is the restriction of an analytic

function (see, for instance, Th.11.2 in [5]), and in practice it is never the case since measurement and numerical processing of

data are necessarily prone to errors. Therefore, assuming that the available data Wφ̃ are only L2 (I0), the minimum is never

zero, and as it is approaching, we expect growth on other segments (namely, on J0 := (R× {y0}) \I0) that would blow-up
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H2-norm in the spirit of [2]. This growth is, nevertheless, controlled by the imposed requirement in BMf
. Indeed, one can

show (as a consequence of Lemma on p.122 and the top of p.127 in [8]) that ‖ImF‖L2(R) = ‖ReF‖L2(S) ≤ M , and thus

‖F‖L2(J0)
≤ ‖F‖H2

+
:= ‖F‖L2(R) ≤ 2M .

2 Solution

Again, for the moment we focus on the �rst bounded extremal problem in (1.12). Omitting proof of existence and uniqueness

(which hinges on demonstration that BM is a closed convex subset of H2
+), we skip to obtaining an integral equation for the

magnetization component and further set up a �xed-point argument procedure for its solution.

Given Wφ̃ ∈ L2 (I0), we denote

J :=
∥∥∥ImF −Wφ̃

∥∥∥2
L2(I0)

, (2.1)

we pursue the idea of Lagrange multipliers [9], and thus require, for λ ∈ R,

δJ = 2λ 〈ReF,ReδF 〉L2(S) , δJ = 2
〈
ImF −Wφ̃, ImδF

〉
L2(I0)

, (2.2)

where, by means of Lemma 1,

δF =
1

πi

ˆ
S

δmy
(ξ)

ξ − z
dξ ⇒ ReδF = Py ? δmy

, ImδF = Qy ? δmy

for arbitrary δmy
∈ L2 (S).

Therefore, (2.2) implies 〈
Qh0

? my −Wφ̃, Qh0
? δmy

〉
L2(S)

= λ
〈
my, δmy

〉
L2(S)

,

that is,

1

π

ˆ
S

(
1

π

ˆ
S

x− x′

(x− x′)2 + h20
my (x′) dx′ −Wφ̃ (x)

)(ˆ
S

x− x′′

(x− x′′)2 + h20
δmy

(x′′) dx′′

)
dx = λ

ˆ
S

my (x′′) δmy
(x′′) dx′′.

Using Fubini theorem to interchange the order of integration in x and x′′ in the left-hand side, we have

ˆ
S

[
1

π

ˆ
S

x− x′′

(x− x′′)2 + h20

(
Qh0 ? my −Wφ̃

)
(x) dx− λmy (x′′)

]
δmy (x′′) dx′′ = 0,

or equivalently, 〈
−Qh0

? Qh0
? my +Qh0

? Wφ̃ − λmy, δmy

〉
L2(S)

= 0,

and hence, by arbitrariness of δmy
, we conclude

−Qh0
? (χS (Qh0

? my)) +Qh0
?
(
χSWφ̃

)
= λmy, (2.3)

where χS is a characteristic function of the set S.
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We, therefore, have deduced the following

Theorem 1. If solution to the bounded extremal problem (1.12) for F exists, my = lim
y→0+

ReF (x+ iy) must satisfy (2.3),

where the parameter λ has to be chosen such that the inequality constraint in BMf
is ful�lled.

We will now show that the Fredholm integral equation of the second kind arising in the problem has the unique solution

which can be constructed by the Banach �xed-point theorem once we rewrite (2.3) in the operator form my = Tλ [my] and

prove

Proposition 1. The operator

Tλ : L2 (S) → L2 (S)

f 7→ Tλ [f ] :=
1

λ

(
Qh0

? (χS (Qh0
? f)) +Qh0

?
(
χSWφ̃

))

is a contraction for |λ| >
[

1

2π
log

(
1 +

4a2

h20

)]2
.

Proof. Since Tλ is a�ne, we need to show that

∥∥∥∥ 1

λ
(Qh0

? (χS (Qh0
? f)))

∥∥∥∥
L2(S)

≤ q ‖f‖L2(S) (2.4)

for some 0 < q < 1.

First, writing Qh0
= Q

1/2
h0
Q

1/2
h0

, we employ the Cauchy-Schwarz inequality to estimate

|(Qh0
? f) (x)| ≤ 1

π

(ˆ
S

x− x′

(x− x′)2 + h20
|f (x′)|2 dx′

)1/2(ˆ
S

x− x′

(x− x′)2 + h20
dx′

)1/2

≤ r1/2

π

(ˆ
S

x− x′

(x− x′)2 + h20
|f (x′)|2 dx′

)1/2

,

where

r := sup
x∈S

(ˆ
S

x− x′

(x− x′)2 + h20
dx′

)
=

1

2
sup

x∈(−a,a)

[
log

(x− a)
2

+ h20

(x+ a)
2

+ h20

]
=

1

2
log

(
1 +

4a2

h20

)

since log

(
1− 4ax

(x+ a)
2

+ h20

)
is a monotonically decreasing function on x ∈ [−a, a].

Therefore

‖Ph0
? f‖L2(S) ≤

r

π
‖f‖L2(S) ≤

1

2π
log

(
1 +

4a2

h20

)
‖f‖L2(S) ,

and hence (2.4) holds with q =
1

|λ|

[
1

2π
log

(
1 +

4a2

h20

)]2
for |λ| >

[
1

2π
log

(
1 +

4a2

h20

)]2
.
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