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1 Introduction

The present study concerns situations where, for Lipschitz-smooth connected bounded
open sets S , Q ⊂ R2 and h > 0:
- the unknown magnetization distribution m (with values in R3) is supported on S×{0} ⊂
R2 × {0} ⊂ R3, m ∈ [L2(S)]3.
- values b3 [m] (with values in R) of the normal component of the magnetic field produced
by m are available on Q× {h} ⊂ R2 × {h} ⊂ R3

+, and b3 [m] ∈ L2(Q),
and we want to recover the net moment 〈m〉 of m (in R3) which is given by its mean
value on S.

Or higher order moments as well.
The present work is a sequel to [2] and [3], where silent sources and magnetizations which
are equivalent to a given one are studied for thin plates.
Approx. pb et BEP, see [2, Conclu.].

2 Notations, preliminaries, framework

2.1 Notations

Notations and definitions are as in [2, Sec. 2].
Lipschitz-smooth connected bounded open sets Ω ⊂ R2.
Hilbert-Sobolev spaces W 1,2(Ω), W 1,2

0 (Ω). In Section 4: W 3/2,2(Ω), W β,2(Ω) for 1/2 <
β < 3/2, [6] (or within the proof...). Spaces of Hölder continous functions Cα(Ω), 0 ≤
α < 1, [6].

2.2 Preliminary properties

Properties of Poisson and Riesz operators are discussed [2, Sec. 2], [3, Sec. 2] along with
orthogonal Hodge decompositions of vector fields.
Preliminary properties in view of moment recovery are discussed in [2, Sec. 4].

2.3 Related operators

The operator m → b3 [m] and it’s adjoint are studied in [2, Sec. 3]. We precise below
those among their main properties that will be used in the sequel, see also [2, Sec. 4.3].
Let m = (m1,m2,m3) ∈ [L2(S)]

3
and m̃ = m ∨ 0 ∈ [L2(R2)]3. The operator b3 :

[L2(S)]
3 → L2(Q) is defined by, see [2, Sec. 3]:

b3[m] = −µ0

2
[∂x3Px3 ? (R1 m̃1 +R2 m̃2 + m̃3)]|Q×{h} ,

and can also be written as:

b3[m] = −µ0

2

(
∂x1 Ph ? m̃1 + ∂x2 Ph ? m̃2 + [∂x3Px3 ? m̃3]|x3=h

)
|Q
,

using properties of Poisson and Riesz operators, see [2, Sec. 2].

2



Say a bit more about Poisson/Riesz, see what properties are actually used.
These are to the effect that b3 is continuous and can be rewritten as:

b3[m] = −µ0

2

(
∇2 ·

(
Ph ? m̃1 −R1 (Ph ? m̃3)
Ph ? m̃2 −R2 (Ph ? m̃3)

))
|Q
. (1)

The adjoint operator b∗3 : L2(Q) → [L2(S)]
3

of b3 acts on φ ∈ L2(Q), with φ̃ = φ ∨ 0 ∈
L2(R2), as, see [2, Sec. 4.3]:

b∗3[φ] =

µ0

2

 R1

R2

−I

 [
∂x3Px3 ? φ̃

]
|x3=h


|S

=
µ0

2

 ∂x1 Ph ? φ̃

∂x2 Ph ? φ̃

−[∂x3Px3 ? φ̃]|x3=h


|S

.

It is continuous (because so is b3), and the following bound is available in [2, Sec. 3.3]:

‖b∗3‖ ≤ b with b =
µ0

2

4
√

2

33/2h
, (2)

which implies that b∗3 is injective ([2, Lem. 1]) whence b3 has a dense range in L2(Q).

For φ ∈ W 1,2
0 (Q), with φ̃ = φ ∨ 0 ∈ W 1,2(R2), note that:

b∗3[φ] =
µ0

2

 Ph ? ∂x1 φ̃

Ph ? ∂x2 φ̃

Ph ?
(
R1 ∂x1 φ̃+R2 ∂x2 φ̃

)

|S

.

From [2, Prop. 1 & Lem. 2], the following properties hold true for the kernel of b3 and
the range of b∗3 in [L2(S)]3. If we set DS = Ker b3 then DS =

{
(−∂x2 ψ, ∂x1 ψ, 0) , ψ ∈ W 1,2

0 (S)
}
⊂ [L2(S)]3 and

D⊥S = Ran b∗3 = ∇2W
1,2(S)× L2(S) ⊂ [L2(S)]3 ,

(3)

where D⊥S stands for the orthogonal space to DS in [L2(S)]3. Also, since we have
in [L2(Q)]2 (see [2, Rmk 1]):[

∇2W
1,2
0 (Q)

]⊥
=
{

(−∂x2 ψ, ∂x1 ψ) , ψ ∈ W 1,2(Q)
}
⊂ [L2(Q)]2 , (4)

we see that vector fields in
[
∇2W

1,2
0 (Q)

]⊥
are divergence free in R2.

2.4 A density result

Moment recovery issues (define ei, see [2]):
Given b3 [m]... recover 〈m〉 = (〈m1〉, 〈m2〉, 〈m3〉), through the scalar product of b3[m] by
φ:

〈mi〉 = 〈m , ei〉[L2(S)]3 , 〈b3[m] , φ〉L2(Q) = 〈m , b∗3[φ]〉[L2(S)]3 ...

such that b∗3[φ] ' ei..., see Rmk 1.
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Because Q is bounded, Poincaré inequality [5, Cor. IX.19] is to the effect that there exists
a constant C > 0 (depending on Q) such that

‖φ‖L2(Q) ≤ C ‖∇2 φ‖[L2(Q)]2 , ∀φ ∈ W
1,2
0 (Q) . (5)

It implies that ‖·‖W 1,2(Q) and ‖∇2 [·]‖[L2(Q)]2 are equivalent norms on W 1,2
0 (Q).

From this property and [2, Lem. 4], we get the following density and unstability proper-
ties. For e ∈ Ran b∗3 ⊂ [L2(S)]

3
,

inf
φ∈W 1,2

0 (Q)
‖b∗3 [φ]− e‖[L2(S)]3 = 0 .

Whenever φn ∈ W 1,2
0 (Q) is such that ‖b∗3 [φn]− e‖[L2(S)]3 → 0 as n → ∞, then either

e ∈ b∗3
[
W 1,2

0 (Q)
]

or ‖∇φn‖[L2(Q)]2 → ∞. Note that e ∈ b∗3
[
W 1,2

0 (Q)
]

is the only case
where the above inf is reached.

Comment about constraint on φ ∈ W 1,2
0 (Q) and ‖∇φ‖[L2(Q)]2 rather than constraint on

‖φ‖L∞(Q) and φ ∈ C0(Q) which we indeed need (for constructive reasons, a vanishing
boundary condition being used for solving Dirichlet problems, see Section 4, and the
continuity property of φ will be ensured from further results, see Proposition 3).
Comment about situations with e ∈ [L2(S)]3, e 6∈ Ran b∗3: the best we can do is to
approximate the orthogonal projection PD⊥

S
e ∈ Ran b∗3.

Comment moments recovery, ei ∈ Ran b∗3; discuss (state?) [2, Lem. 7] for ei (and other
interesting functions towards higher order moments estimation).

Remark 1 From the above density result (see also [2, Sec. 4.3]), the quantity:∣∣∣〈b3 [m] , φ〉L2(Q) − 〈m , ei〉[L2(S)]3

∣∣∣ ≤ ‖b∗3 [φ]− ei‖[L2(S)]3 ‖m‖[L2(S)]3 .

can be made arbitrarily small, at the expense of an unbounded ‖∇2 φ‖[L2(Q)]2.
Note that the left hand side of the above inequality vanishes if and only if m ∈ DS (m is
a silent sources). Indeed, we have

〈b3 [m] , φ〉L2(Q) − 〈m , ei〉[L2(S)]3 = 〈b∗3 [φ]− ei , m〉[L2(S)]3 .

Moreover, from [2, Lem. 7], ei ∈ D⊥S , hence b∗3 [φ]−ei ∈ D⊥S , using (3). Therefore, if m ∈
DS, then the above quantity vanishes. Conversely, assume that 〈b∗3 [φ]−ei , m〉[L2(S)]3 = 0.
From [2, Lem. 7] again, ei 6∈ Ran b∗3, whence b∗3 [φ] − ei cannot identically vanish and
must be orthogonal to m in [L2(S)]

3
. This implies that m ∈ DS.

For m ∈ [L2(S)]
3
, the solution φ = φo to (BEP) below will furnish a trade-off between

the error ‖b∗3 [φ]− ei‖[L2(S)]3 and of the constraint M on ‖∇2 φ‖[L2(Q)]2.

3 Bounded extremal problems (BEP)

Consider the following bounded extremal problem (BEP, or norm constrained best ap-
proximation issue), for e ∈ Ran b∗3 ⊂ [L2(S)]3 (see the comment above for e ∈ [L2(S)]3)
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and M > 0:

(BEP) Find φo ∈ W 1,2
0 (Q), ‖∇2 φo‖[L2(Q)]2 ≤M such that

min
φ∈W 1,2

0 (Q), ‖∇2 φ‖[L2(Q)]2
≤M
‖b∗3 [φ]− e‖[L2(S)]3 = ‖b∗3 [φo]− e‖[L2(S)]3 .

3.1 Well posedness

Proposition 1 There exists a unique solution φo to (BEP); whenever e 6∈ b∗3
[
W 1,2

0 (Q)
]
,

the constraint is saturated: ‖∇2 φo‖[L2(Q)]2 = M , for any M > 0.

Note that some constraints M > 0 would be saturated as well if e ∈ b∗3
[
W 1,2

0 (Q)
]

with

e = b∗3 [φ] for some φ ∈ W 1,2
0 (Q) with ‖∇2φ‖[L2(Q)]2 ≥M .

Proof: First, because of the equivalence of the norms already mentionned in Section 2.4,
the convex set

{φ ∈ W 1,2
0 (Q) , ‖∇2 φo‖[L2(Q)]2 ≤M}

is closed in the Hilbert space W 1,2
0 (Q) thus in W 1,2(Q) (for W 1,2

0 (Q) is closed in W 1,2(Q)).
Then, since b∗3 is linear and continuous, the set of approximants

A = b∗3

[
{φ ∈ W 1,2

0 (Q) , ‖∇2 φo‖[L2(Q)]2 ≤M}
]

is convex and closed in [L2(S)]3. This implies that there exists a best approximation
projection from [L2(S)]3 ontoA and ensures both existence and uniqueness of the solution
φo ∈ A.
Next, assume that ‖∇2 φo‖[L2(Q)]2 < M . In this case, the minimum value of the criterion
is achieved by φo interior to the approximation set. We then get by differentiating the
square ‖b∗3 [φo]− e‖2[L2(S)]3 of the criterion with respect to φo that for every δφ ∈ W 1,2

0 (Q),

〈b∗3 [φo]− e , b∗3[δφ]〉[L2(S)]3 = 〈b3 b∗3 [φo]− b3 [e] , δφ〉L2(Q) = 0 .

Hence, b3 b
∗
3 [φo] − b3 [e] is orthogonal to W 1,2

0 (Q) in L2(Q) and, by density of W 1,2
0 (Q)

in L2(Q), we must have b3 b
∗
3 [φo]− b3 [e] = 0. Thus, b∗3 [φo]− e belongs to DS = Ker b3.

However, both b∗3 [φo] and e belong to D⊥S , so does their difference. Hence b∗3 [φo]−e = 0,
which implies that e = b∗3 [φo] ∈ b∗3

[
W 1,2

0 (Q)
]
. �

3.2 Critical point equation (CPE)

Proposition 2 Let e ∈ Ran b∗3 \ b∗3
[
W 1,2

0 (Q)
]
⊂ [L2(S)]

3
and M > 0. The solution φo

to (BEP) satisfies the following critical point equation (CPE) on Q. More precisely there
exists a unique λ > 0 such that ‖∇2 φo‖[L2(Q)]2 = M and

b3 b
∗
3 [φo]− λ∆2 φo = b3 [e] . (6)
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Proof: By differentiating with respect to φo the square of the criterion as above and also
that of the constraint ‖∇2 φo‖2[L2(Q)]2 = M2 achieved in (BEP), we obtain that there exists

a unique value of the Lagrange parameter λ ∈ R such that for every δφ ∈ W 1,2
0 (Q),

〈b∗3 [φo]− e , b∗3 [δφ]〉[L2(S)]3 + λ〈∇2 φo , ∇2 δφ〉[L2(Q)]2 = 0 . (7)

Thus, for every δφ ∈ W 1,2
0 (Q), because δφ vanishes on the boundary of Q,

〈b3 b∗3 [φo]− b3 [e]− λ∇2 · ∇2 φo , δφ〉L2(Q) = 0 .

Therefore, b3 b
∗
3 [φo]− b3 [e]−λ∆2φo is orthogonal to W 1,2

0 (Q) in L2(Q) whence to L2(Q)
itself, since W 1,2

0 (Q) is dense in L2(Q). This establishes (6) with λ ∈ R.
Finally, that λ ≥ 0 can be seen as follows. We get from (7) that ∀φ ∈ W 1,2

0 (Q):

〈b∗3 [φo]− e , b∗3 [φo]〉[L2(S)]3 = −λ ‖∇2 φo‖2[L2(Q)]2 = −λM2 . (8)

Because φo achieves a minimum, the above quantity is negative as detailed in the proof
of [5, Thm V.2 (3)]. Thus λ ≥ 0. That λ 6= 0 is finally ensured by assumption on e
(namely, e ∈ Ran b∗3 \ b∗3

[
W 1,2

0 (Q)
]
). �

Alternative proofs of Proposition 2 are available. One could directly obtain (CPE) from
the result established in [4, Thm 2.1] and recalled in [1, Prop. 4] which furnishes critical
point equations associated to solutions of quite general extremal problems in Hilbert
spaces.
Observe that (8) links together the Lagrange parameter λ, the constraint M and the
error (criterion) in (BEP) and implies that λ→ 0 as M → +∞. Argument: use density
result of Section 2.4.

4 Critical point equation (CPE): iterative resolution

scheme

For % > 0 and n ≥ 1, write: Precise what λ > 0.

b3 b
∗
3 [φn−1]− λ∆2 φn = b3 [e]− 1

%
(φn − φn−1) ,

or equivalently:

% (b3 b
∗
3 [φn−1]− λ∆2 φn) = % b3 [e]− (φn − φn−1) . (9)

Proposition 3 Let φ0 ∈ W 1,2
0 (Q). Then, for % small enough, (9) defines a sequence (φn)

of functions in W 1,2
0 (Q) that converges in L2(Q) to the unique solution φo ∈ W 1,2

0 (Q) of
the critical point equation (6).
Actually, φn (for n ≥ 1) and φo ∈ Cα(Q) are Hölder continuous functions for 0 ≤ α < 1/2
and (φn) converges to φo in Cα(Q).
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Proof: For n ≥ 1 and φn−1 ∈ W 1,2
0 (Q), we first show that there exists a unique solution

φn ∈ W 1,2
0 (Q) to (9). Indeed, for φ , ψ ∈ W 1,2

0 (Q):

a(φ , ψ) = 〈φ , ψ〉L2(Q) + % λ 〈∇2φ , ∇2ψ〉[L2(Q)]2 .

defines a continuous positive definite (coercive) bilinear form a on [W 1,2
0 (Q)]2. Then, the

scalar product of (9) with any ψ ∈ W 1,2
0 (Q) can be written as:

a(φn , ψ) = 〈(1− % b3 b∗3) φn−1 + % b3 [e] , ψ〉L2(Q) ,

which admits a unique solution φn ∈ W 1,2
0 (Q) from Lax-Milgram theorem [5, Cor. V.8].

Next, substract (9) from (6) to obtain:

−% λ∆2 (φn − φo) + (φn − φo) = −% b3 b∗3 [φn−1 − φo] + (φn−1 − φo) , (10)

and take the scalar product with φn − φo in L2(Q):

% λ ‖∇2 (φn − φo)‖2[L2(Q)]2 + ‖φn − φo‖2L2(Q) = 〈(1− % b3 b∗3) [φn−1 − φo] , φn − φo〉L2(Q)

≤ ‖I − % b3 b∗3‖ ‖φn−1 − φo‖L2(Q) ‖φn − φo‖L2(Q) . (11)

The Poincaré inequality (5) in W 1,2
0 (Q) implies that there exists a constant C > 0 (de-

pending only on Q) such that:

% λ

C2
‖φn − φo‖2L2(Q) ≤ % λ ‖∇2 (φn − φo)‖2[L2(Q)]2 ,

whence, back to (11) and dividing both sides by ‖φn − φo‖L2(Q), we obtain:

‖φn − φo‖L2(Q) ≤
‖I − % b3 b∗3‖

1 + % λ
C2

‖φn−1 − φo‖L2(Q) .

Next, the operator b3 b
∗
3 : L2(Q)→ L2(Q) is positive definite since b∗3 is injective, whence

Cauchy-Shwarz inequality implies that

‖b3 b∗3‖ = sup
φ∈L2(Q)

‖φ‖L2(Q)≤1

〈b3 b∗3 φ, φ〉L2(Q) = sup
φ∈L2(Q)

‖φ‖L2(Q)≤1

‖b∗3 φ‖2L2(Q) = ‖b∗3‖
2 .

Ici, preuve pédestre de ‖b3b∗3‖ = ‖b∗3‖
2 et ci-dessous pour ‖I − % b3 b∗3‖ =... ; références

bouquins opérateurs [Kato, Chap. I, Section 6.4, (6.25)]1.
Together with (2) this ensures that 0 < ‖b3 b∗3‖ = ‖b∗3‖

2 ≤ b2 for b > 0. In particular, if
1 − ρ b2 > 0 (if 0 < ρ < 1/b2), the operator I − % b3 b∗3 is also positive definite on L2(Q)
and again

0 < ‖I − % b3 b∗3‖ = sup
φ∈L2(Q)

‖φ‖L2(Q)≤1

〈(I − % b3 b∗3)φ, φ〉L2(Q) ≤ 1 .

1Ou comme corollaire d’Hahn-Banach car b∗3 continu, voir e.g. cours M2 d’Emmanuel Fricain, Analyse
fonctionelle et théorie des opérateurs, math.univ-lille1.fr/$\sim$fricain/cours-M2-2009-2010.

pdf.
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Therefore, we obtain

‖φn − φo‖L2(Q) ≤ κ ‖φn−1 − φo‖L2(Q) , with κ =
1

1 + % λ
C2

< 1 ,

which establishes that ‖φn − φo‖L2(Q) decreases to 0 as n→∞.

Next, since b3 b
∗
3 : L2(Q)→ L2(Q) is continuous, it then holds that ‖b3 b∗3[φn − φo]‖L2(Q) →

0. Further, we see from (6) and (9) that ∆2 φo and ∆2 φn belong to L2(Q), for n ≥ 1.
Because Q is bounded and Lipschitz-smooth, we use [7, Thm B, 2.] which implies that
φo and φn belong to W 3/2,2(Q), whence in particular to W β,2(Q) for 0 ≤ β < 3/2. Now,
(10) implies that ‖∆2 (φn − φo)‖L2(Q) → 0. As a consequence of [7, Thm 0.5, (b)] it then

holds that φn − φo → 0 in W β,2(Q) for 1/2 < β < 3/2. Finally, if 1 < β, the continuous
embedding of Sobolev spaces W β,2(Q) into spaces of Hölder continous functions Cβ−1(Q),
see [6, Thm 4.53], ensure that φo − φn → 0 in Cβ−1(Q). �

Remark that in Proposition 3, it atually holds that φn (for n ≥ 1) and φo ∈ Cα(Q̄), since
Q is Lipschitz-smooth [6]?.

5 Conclusion

- Related spectral issues, Dmitry: about eigenfunctions of Poisson 2D and conjugate,
and of b3 b

∗
3. Their use in order to compute solutions to moments recovery issue and to

(BEP)?
- Consider other (non zero) extensions of b3[m] outside Q (like by dipolar field, see notes
[Dmitry]) to be used as constraints? Or / and other extensions of m outside S?
- Comment about Hardy spaces of gradients of harmonic functions, express b∗3 and solu-
tions to (BEP) in terms of projections on Hardy space, see [1, 3].

6 To be considered

6.1 More about b3 and b∗3

Remark 2 Utile ?
From Section 2.3, for φ ∈ W 1,2

0 (Q): attention, up to ×± µ0
2

.

−b3 b∗3 [φ] =

(
∇2 ·

(
Ph ? χS

(
Ph ?∇2 φ̃

)
−
(
R1

R2

)
Ph ? χS

(
Ph ? (R1∂x1 +R2∂x2) φ̃

)))
|Q

=

(
∇2 ·

(
Ph ? χS

(
Ph ?∇2 φ̃

))
−
[
∂x3 Px3 ? χS

(
∂x3 Px3 ? φ̃

)]
|x3=h

)
|Q

=

(
2∇2 ·

(
Ph ? χS

(
Ph ?∇2 φ̃

))
−
[
∇3 · Px3 ? χS

[
∇3

(
Px3 ? φ̃

)]]
|x3=h

)
|Q
.

Similarly, note that for Φ ∈ W 1,2(R2), using harmonicity at x3 = 2h of Px3 ? Φ:

[∇3 · Px3 ?∇3 (Px3 ? Φ)]|x3=h
= [∆3 (Px3 ? Φ)]|x3=2h

= 0 .

Thus, if S = R2, the above expression for b3 b
∗
3[φ] would coincide with −2P2h ?∆2φ̃.
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- Characterize b∗3
[
W 1,2

0 (Q)
]

and b∗3 [L2(Q)].
- Continue analysis of b3 b

∗
3. Operator b3 b

∗
3 : L2(Q) → L2(Q) compact, since so is

b∗3 : L2 → L2 (add proof) whence also b3.
- Is it true that (for c, c′ > 0) we have:

c ‖φ‖L2(Q) ≤ ‖b
∗
3 φ‖[L2(S)]3 , φ ∈ L

2(Q) ,

c′ ‖∇2 φ‖[L2(Q)]2 ≤ ‖b
∗
3 φ‖[L2(S)]3 , φ ∈ W

1,2
0 (Q) .

Probably not uniformly in general, as discussed with Sylvain, but under additional as-
sumptions? And probably yes from injectivity property if c, c′ could depend on φ?
Discussed with Aline: use thm inversion locale or fonctions implicites?
- Because Ker b∗3 = {0}, orthogonality property see [2] implies that Ker b3 b

∗
3 = {0}! in

this case, Ran b3 b
∗
3 = b3 b

∗
3 [L2(Q)] dense in (W 1,2

0 (Q)? and) L2(Q)?! (b3 b
∗
3

[
W 1,2

0 (Q)
]

and
continuity prop.?)

6.2 For (BEP)

- Discuss error bounds from our estimates in [9].
- Continue analysis of (BEP), study (CPE).

6.3 Operators a, a∗ and (CPE)

Virer ?! Garder ce qu’il faut en termes de b3 et b∗3.

From (1), using commutation relations between convolution with the Poisson kernel and
application of the Riesz transform, we can set:

b3[m] = −µ0

2
∇2 · a[m] ,

with the operator a : [L2(S)]
3 → [L2(Q)]

2
,

a[m] =

(
Ph ? m̃1 − Ph ? (R1 m̃3)
Ph ? m̃2 − Ph ? (R2 m̃3)

)
|Q

=

(
Ph ?

(
m̃1 −R1 m̃3

m̃2 −R2 m̃3

))
|Q
.

The adjoint operator a∗ : [L2(Q)]
2 → [L2(S)]

3
is defined at Φ ∈ [L2(Q)]

2
by

a∗[Φ] = Ph ?

 Φ ∨ 0[
R1

R2

]
· Φ̃

 = Ph ?

 Φ̃1

Φ̃2

R1 Φ̃1 +R2 Φ̃2

 on S .

Indeed, one can check that 〈a∗[Φ] , m〉[L2(S)]3 = 〈Φ , a[m]〉[L2(Q)]2 .

Whenever φ ∈ W 1,2
0 (Q) ⊂ L2(Q), Up to µ0/2, check sign

a∗[∇2φ] = b∗3[φ] = Ph ?

 ∇2φ̃[
R1

R2

]
· ∇2φ̃

 = Ph ?

 ∂x1
∂x2
R1 ∂x1 +R2 ∂x2

 φ̃ on S .
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because for φ ∈ W 1,2
0 (Q), ψ ∈ W 1,2(S):

〈a∗ [∇2φ] , ∇2ψ〉[L2(S)]3 = 〈∇2φ , a [∇2ψ]〉[L2(Q)]2 = −〈φ , ∇2 · a [∇2ψ]〉[L2(Q)]2

= 〈φ , b3 [∇2ψ]〉[L2(Q)]2 = 〈b∗3 [φ] , ∇2ψ〉[L2(S)]3 .

Working with a, a∗ rather than with b3, b
∗
3 could simplify. Discuss kernels, ranges, and

others, of a, a∗ from similar considerations for b3, b
∗
3.

Observe that a could be added a silent for b3 term d, ∇2 · d = 0 (divergence free).

6.3.1 Formulations of (BEP), (CPE)

(BEP) can the be stated as: find φo ∈ W 1,2
0 (Q), ‖∇2 φo‖[L2(Q)]2 ≤M such that

min
φ∈W 1,2

0 (Q), ‖∇2 φ‖[L2(Q)]2
≤M
‖a∗ [∇2 φ]− e‖[L2(S)]3 = ‖a∗ [∇2 φo]− e‖[L2(S)]3 .

The above critical point equation (CPE) stated as (6) can then be derived directly under
the following form (on Q), see also [1], for λ > 0:

∇2 · aa∗[∇2φo] + λ∇2 · ∇2φo = ∇2 · [aa∗ + λ I] [∇2φo] = −∇2 · a [e] .

Hence, using (3), see also Remark 2:

∇2 · ([aa∗ + λ I] [∇2φo] + a [e]) = 0 (12)

⇔ [aa∗ + λ I] [∇2φo] + a [e] ⊥ ∇2W
1,2
0 (Q) in

[
L2(Q)

]2
.

6.3.2 Computation of a [ei], b3 [ei]

Consider now the functions t 7→ ei ∈ [L2(S)]
3

introduced in Section 2.4 for i = 1, 2, 3.

New Installer avant, continuer...
On Q,

b3 [e1] = −µ0

2
∂x1 Ph ? (1 ∨ 0) .

For x ∈ Q,

∂x1 Ph ? (1 ∨ 0)(x) =
h

2π
∂x1

∫∫
S

d t

dh(x− t)3
d t ,

∂x1

∫∫
S

d t

dh(x− t)3
d t =

∫∫
S

∂x1
d t

dh(x− t)3
d t = −

∫∫
S

∂t1
d t

dh(x− t)3
d t

= −
∫ s

−s

[ 1

dh(x− t)3

]s
t1=−s

d t2 = −
[ ∫ s

−s

d t2
dh(x− t)3

]s
t1=−s

=
[[
ft(x)

]s
t2=−s

]s
t1=−s

,

from [9, Prop. 1].

Continue... check:

b3[e1](x) =
µ0 h s

2π

[
1

(x1 − s)2 + h2
+

1

(x1 + s)2 + h2

]
,

comment b3[e2], compute:

b3[e3](x) ;
[[

((x1 − t1) + (x2 − t2)) ft(x)
]s
t2=−s

]s
t1=−s

.
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Ex Voir...
Recall from Section 6.3 that ∇2 · a [ei] = −b3 [ei], we have on Q:

a[e1] = Ph ?

(
1 ∨ 0

0

)
, a[e2] = Ph ?

(
0

1 ∨ 0

)
, a[e3] = −Ph ?

(
R1 [1 ∨ 0]
R2 [1 ∨ 0]

)
.

We make use below of results in [9, Sec. 3] concerning the functions kt, `t : R2 → R,
defined for t ∈ R2 by:

kt(x) =
1

h
arctan

(
(x1 − t1)(x2 − t2)

h dh(x− t)

)
,

`t(x) = −argsinh

(
x2 − t2

((x1 − t1)2 + h2)1/2

)
.

Because kt(x) = kx(t) and `t(x) = −`x(t), we have from [9, Prop. 1]:

∂t1t2 kx(t) = 1/dh(x− t)3,

∂t1t2 `x(t) = −(x1 − t1)/dh(x− t)3.

Consider first at x ∈ Q,

Ph ? (1 ∨ 0) (x) =
h

2π

∫∫
S

d t

dh(x− t)3
.

From [9, Prop. 1] we have:

Ph ? (1 ∨ 0) (x) =
h

2 π

∫∫
S

∂t1t2kx(t) d t =
h

2 π

[[
kx(t)

]s
t1=−s

]s
t2=−s

.

Therefore,

a[e1](x) =
h

2 π

[[
kx(t)

]s
t1=−s

]s
t2=−s

(
1
0

)
, a[e2](x) =

h

2 π

[[
kx(t)

]s
t1=−s

]s
t2=−s

(
0
1

)
.

[[
kx(t)

]s
t1=−s

]s
t2=−s

= kx(s, s)− kx(−s, s)− kx(s,−s) + kx(−s,−s) .

Use of [9, Prop. 2, Lem. 1]? Ou formule de sommation des arctan?
Next, in order to compute a[e3] at x ∈ Q,

Ph ? Ri [1 ∨ 0] (x) =
1

2π

∫∫
S

xi − ti
dh(x− t)3

d t .

From [9, Prop. 1] we have:

Ph ? R1 [1 ∨ 0] (x) = − 1

2 π

∫∫
S

∂t1t2`x(t) d t = − 1

2π

[[
`x(t)

]s
t1=−s

]s
t2=−s

,

and

Ph ? R2 [1 ∨ 0] (x) = − 1

2 π

[[
`(x2,x1)(t)

]s
t2=−s

]s
t1=−s

.

11



Therefore,

a[e3](x) = − 1

2 π


[[
`x(t)

]s
t1=−s

]s
t2=−s[[

`(x2,x1)(t)
]s
t2=−s

]s
t1=−s

 = − 1

2 π

[[( `x(t)
`(x2,x1)(t)

)]s
t1=−s

]s
t2=−s

.

Continue computations.
We also see from the above computations that for ψ ∈ W 1,2

0 (Q), i = 1, 2,

−〈b3 [ei] , ψ〉L2(Q) = 〈a [ei] , ∇2 ψ〉[L2(Q)]2

=
h

π

∫∫
Q

∂xiψ(x)

∫∫
S

d t

dh(x− t)3
dx = −h

π

∫∫
S

∫∫
Q

ψ(x) ∂xi
1

dh(x− t)3
dx d t

=


−h
π

∫∫
S

∫∫
Q
ψ(x) f(t2,t1)(x2, x1) dx d t , i = 1 ,

−h
π

∫∫
S

∫∫
Q
ψ(x) ft(x) dx d t , i = 2 .

check signs · · · , do i = 3
; functions ft, gt, ft(x) = −fx(t), gt(x) = gx(t); links between ft(x) and ∂x1 kt(x),
gt(x) and ∂x2 `t(x) from:

∂x2 ft(x) = ∂x1x2 kt(x) , ∂x1 gt(x) = ∂x1x2 `t(x) .

6.3.3 Other possibility to solve (CPE)

Remettre en b3 et b∗3, use Fourier basis.

From (12) together with the use of a suitable (complete) family of test functions like,
with Q = [−R,R]2:

Ψ(x) = (x21 −R2) (x22 −R2)ψ(x) ∈ W 1,2
0 (Q) ,

for ψ ∈ W 1,2(Q) polynomials? See [9] and related computations (use Sylvain’s Maple
primitives-utiles.mw).
Indeed, for such Ψ, we get

〈[aa∗ + λ I] [∇2φo] + a [e] , ∇2Ψ〉[L2(Q)]2 = 0

whence

(1 + λ) 〈∇2φo , aa
∗[∇2Ψ]〉[L2(Q)]2 = −〈a [e] , ∇2Ψ〉[L2(Q)]2 = −〈e , a∗ [∇2Ψ]〉[L2(S)]3 (13)

for the unique λ > 0 such that

‖∇2φo‖[L2(Q)]2 = M .

Section 6.3.2 for a[e].
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6.4 About m and other extremal problem

Comment about dual roles of Q and S.

• Tests for unidirectionality: what is specific about unidirectional mu? Do they
belong to Ran b∗3?

• Tests for m = mE with (restricted) compact support in E ⊂ S? Recovery of
partial moments?

• What is special in Sections 2.4, 2.3, 3 whenever:

- m ∈ Ran b∗3 = D⊥S ? m ∈ Ran b∗3? m ∈ b∗3
[
W 1,2

0 (Q)
]
? Consider mu, mE, action

of b3 b
∗
3 (or of aa∗).

- m smooth (for instance extended from mE if E smooth): m ∈
[
W 1,2

0 (S)
]3

?

• Links with dual bounded extremal problem on magnetization (see work by Doug
and Michael): minimize ∥∥b3[m]− bd3

∥∥
L2(Q)

among constrained m ∈ [L2(S)]
3
, or mixed problem? Look at b∗3 b3 or a∗ a.

Complete bibliography below; see [2].
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