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1 Introduction

Estimating the net moment of a magnetization distribution is a fundamental issue in magneto-
statics and a basic step of most magnetometric studies, be it in geosciences, medical imaging,
material sciences and so on. Classical magnetometers infer the net moment from a set of
measurements of the magnetic field taken at some distance from the sample, by comparing
the latter to a dipole in which case simple and explicit formulas connect the moment with the
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field [4]. This is of course an approximation of the ideal situation where the magnetometer lies
at infinity, a position from which the sample could indeed be regarded as a pointwise dipole.

While such an approximation is certainly valid if the field is measured with sufficient accuracy
far enough from the support of the magnetization, it is not satisfactory when dealing with weakly
magnetized objects whose field gets easily blurred by spurious magnetic sources away from the
sample. Still, analyzing weak magnetization distributions is of considerable interest, e.g., in
paleomagnetism. To this effect, scanning magnetic microscopes were developed in recent years
which are capable of measuring very weak fields at submillimetric distance from an object. Such
advances generate a need to develop alternative techniques to estimate the net moment.

From a mathematical viewpoint, the problem is to recover the mean of a compactly supported
vector field from knowledge of the gradient of the potential of its divergence in some region
near the support. Indeed, it follows from Maxwell’s equations in the magnetostatic case [5, Ch.
5] that the field and the magnetization distribution are connected through an elliptic partial
differential equation of Poisson type. More precisely, the magnetic field is the gradient of a scalar
magnetic potential whose Laplacian is the divergence of the magnetization.

The main feature of this inverse problem is the geometry of the measurement set. In the
present paper, we consider the case where measurements are taken on a plane which does not
intersect the support of the magnetization. For instance this setup is typical of experiments
conducted with a superconducting interference device (SQUID) when studying rock samples, see
[11, 6]. In practice, two extra-features complicate the situation further. The first is that only
a single component of the field can be measured, namely the one which is orthogonal to the
measurement plane. This is because the proximity to the sample and the necessary precision of
calibration make it difficult to rotate the SQUID. The second is that measurements can only be
performed on a finite portion of the measurement plane, close enough to the sample.

In analogy with the expansion of a dipolar field at infinity, which underpins classical
magnetometry, the first and most basic issue here is perhaps to get hold of formulas connecting
the normal component of the magnetic field on a plane to the moment of the magnetization that
generates the field, in such a way that knowledge of this component on part of that plane yields
approximate formulas for the moment. Surprisingly perhaps, no such formulas seem readily
available in the literature and the goal of the present paper is to provide one with some.

We point out that net moment estimation embeds in the larger inverse problem of full
magnetization recovery from field measurements. The latter is ill-posed, not even injective. For
thin supports (that can be identified with planar sets), non-uniqueness issues are analyzed in [1]
and some recovery schemes are considered in [7] for unidirectional magnetizations. In contrast,
net moment recovery is well-posed in that magnetizations producing the same normal component
for the magnetic field on an open set of a plane must have the same moment (see [2]). Besides,
the net moment furnishes valuable information on the magnetization which may be used in
full recovery schemes. This motivates investigating recovery schemes for the moment of the
magnetization.

Up to a rotation, we may assume for the ease of discussion that the measurement plane
is horizontal and that the magnetization is located below this plane. The questions we face
are thus: how can the vertical component of the magnetic field on a portion of horizontal plane
buy us an approximation of the moment of the magnetization generating that field? And how
does the error decay when that portion of horizontal plane growths large? In this connection, we
mention that such asymptotics for the net moment were taken up in [9, Part III, Sec. 5, 6] for
circular measurement areas, using Fourier techniques and tools from harmonic analysis. As we
will see, formulas of a similar type can be obtained using elementary properties of homogeneous
polynomials and Taylor expansions for rectangular measurement sets. In the present work, we
carry out in detail the corresponding computations when the measurement set is a square.
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The overview is as follows. The problem is set up in Section 2 and the main approximation
results are stated in Section 3. Their proofs are given in Sections 4, 5 and in the Appendix. We
discuss in Section 6 how these results can be combined to improve the precision of the moment’s
estimates. Finally, concluding remarks are provided in Section 7.

2 Notations, problem setting

Given s , r > 0, we consider a parallelepiped A = [−s, s]2 × [0, r] ⊂ R3 to contain the volume of
the sample. Arbitrary points of R3 will be denoted as x = (x1, x2, x3), while t = (t1, t2, t3) will
represent an arbitrary point of A.
For i = 1, 2, 3, we suppose we are given a real-valued function mi ∈ L1(A), the Lebesgue space
of summable functions on A. We denote by m the magnetization vector field (m1,m2,m3) of
components mi. A volumetric magnetization compactly supported on the slab A is modeled by
the vector field on R3, x 7→ m̃(x) where, for i = 1, 2, 3, m̃i denotes the function mi extended
by 0 outside A, i.e., m̃i(x) = mi(x) if x ∈ A and m̃i(x) = 0 otherwise. For any m ∈ L1(A), we
denote by 〈m〉 the net moment given by the mean value of m:

〈m〉 =
∫∫∫

A
m(t) dt.

More generally, the net moment of m is its 0-th order moment, while the 1-st order moments
are the quantities 〈t1m〉, 〈t2m〉, and 〈t3m〉, the 2-nd order moments are the quantities 〈ti tjm〉
(with arbitrary i and j in {1, 2, 3}), etc.

As recalled in [1], the magnetic field produced by the magnetized slab (A,m) is B = −µ0∇φ,
where µ0 = 4π × 10−7 and φ is the scalar magnetic potential defined at each point x 6∈ A by

φ(x) = 1
4π

∫∫∫
A

〈m(t),x− t〉
‖x− t‖3

dt , (1)

with ‖x‖ =
√
x2

1 + x2
2 + x2

3 to designate the Euclidean norm and 〈x,y〉 = x1y1 + x2y2 + x3y3
the Euclidean scalar product.

In the following, we will assume that we have measurements of the vertical component B3
of B at a given height x3 =z > r. This defines a function on the plane and we denote by
B3[m, z](x1, x2) = B3(x1, x2, z) its value at a point (x1, x2) ∈ R2. Observe now that for x 6∈ A:

−4π
µ0

B3[m, x3](x1, x2) = ∂x1(P3 ? m̃1 − P1 ? m̃3)(x) + ∂x2(P3 ? m̃2 − P2 ? m̃3)(x) , (2)

where Pi denotes the function x 7→ xi
‖x‖3 , for i = 1, 2, 3, and ? is the convolution product

between functions defined on R3. Indeed, that identity is easily checked by a direct computation,
explicitly performing the differentiation both in the left-hand side (using that B3[m, x3](x1, x2) =
−µ0∂x3φ(x) together with Equation (1)) and in the right-hand side. Another, deeper but more
involved, way of seeing Equation (2) consists in observing that

φ(x) = 1
4π (P1 ? m̃1 + P2 ? m̃2 + P3 ? m̃3) (x)

and in recognizing Poisson and Riesz transforms (see [2, 10] for instance, where this is done in
the case of a 2D slab).

Finally, for R > 0, we introduce the planar measurement areas QR = [−R,R]2 (square),
SR = {(x1, x2) ∈ R2, |x1|+ |x2| ≤ R} (diamond) and AR = {(x1, x2) ∈ R2, x2

1 + x2
2 ≤ R2} (disk)

as illustrated in Figure 1.
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Figure 1: Shapes of QR, SR, AR.

3 Main results

Our main result is summed up with the following theorem that provides asymptotic expansions
(as R goes large) of simple integrals involving B3[m, z], in terms of the successive moments of
the magnetization m.

Theorem 1. Let notation and assumptions be as above. On the square QR, it holds that:∫∫
QR

x1B3[m, z](x1, x2) dx1dx2 = µ0
2 〈m1〉+ 3µ0

πR
√

2
(〈t1m3〉+ 〈t3m1〉 − z〈m1〉) +O

( 1
R3

)
, (3)∫∫

QR

x2B3[m, z](x1, x2) dx1dx2 = µ0
2 〈m2〉+ 3µ0

πR
√

2
(〈t2m3〉+ 〈t3m2〉 − z〈m2〉) +O

( 1
R3

)
, (4)∫∫

QR

RB3[m, z](x1, x2) dx1dx2 = 2µ0

π
√

2
〈m3〉

+ 5µ0

4πR2
√

2

(
− 2z2〈m3〉+ 2z (2〈t3m3〉 − 〈t1m1〉 − 〈t2m2〉)

+ 〈t21m3〉+ 〈t22m3〉 − 2〈t23m3〉+ 2〈t1t3m1〉+ 2〈t2t3m2〉
)

+O
( 1
R3

)
, (5)

On the diamond SR, it holds that:∫∫
SR

x1B3[m, z](x1, x2) dx1dx2 = µ0
2 〈m1〉+ 3µ0

πR
(〈t1m3〉+ 〈t3m1〉 − z〈m1〉) +O

( 1
R3

)
, (6)∫∫

SR

x2B3[m, z](x1, x2) dx1dx2 = µ0
2 〈m2〉+ 3µ0

πR
(〈t2m3〉+ 〈t3m2〉 − z〈m2〉) +O

( 1
R3

)
, (7)∫∫

SR

RB3[m, z](x1, x2) dx1dx2 = 2µ0
π
〈m3〉

+ 5µ0
2πR2

(
− 2z2〈m3〉+ 2z (2〈t3m3〉 − 〈t1m1〉 − 〈t2m2〉)

+ 〈t21m3〉+ 〈t22m3〉 − 2〈t23m3〉+ 2〈t1t3m1〉+ 2〈t2t3m2〉
)

+O
( 1
R3

)
. (8)

The forthcoming Section 4 will establish Equations (3) and (5). We shall deduce all the
other equations from the latter by means of appropriate changes of variable. This is performed
in the dedicated Section 5.
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The right hand sides of the above formulas furnish expansions in powers of 1/R of the
first order moments of the measurements which are both of theoretical and practical value, see
Remarks 1 and 2. They are of particular interest asymptotically, because when the size of the
measurement area increases their accuracies at the first order increases as well. More precisely, as
R increases, they furnish more and more accurate approximations of the magnetization moments
〈mi〉 (i = 1, 2, 3) in terms of the first orders moments of B3[m, z] (restricted to the considered
area), since the higher order terms in 1/Rk in the expansions decrease for k ≥ 1. To turn this
into a net moment recovery scheme, it is thus important to reach a trade-off between precision
and robustness as these formulas can only be applied experimentally or numerically for fixed R
(quantifying the size of the measurement area). Though these issues will be further discussed in
Section 6, observe already that these formula depend on the geometry of the measurement area
only through multiplicative factors in front of the magnetization moments, as is the case also for
other planar domains like the disk AR centered at 0 and of radius R (see [9, Part III, Sec. 3.5,
3.6]). Indeed, on the disk AR:∫∫

AR

x1B3[m, z](x1, x2) dx1dx2 = µ0
2 〈m1〉+ 3µ0

4R (〈t1m3〉+ 〈t3m1〉 − z〈m1〉) +O
( 1
R3

)
, (9)∫∫

AR

x2B3[m, z](x1, x2) dx1dx2 = µ0
2 〈m2〉+ 3µ0

4R (〈t2m3〉+ 〈t3m2〉 − z〈m2〉) +O
( 1
R3

)
, (10)∫∫

AR

RB3[m, z](x1, x2) dx1dx2 = µ0
2 〈m3〉

+ 3µ0
2R2

(
− 2z2〈m3〉+ 2z (2〈t3m3〉 − 〈t1m1〉 − 〈t2m2〉)

+ 〈t21m3〉+ 〈t22m3〉 − 2〈t23m3〉+ 2〈t1t3m1〉+ 2〈t2t3m2〉
)

+O
( 1
R4

)
. (11)

This follows from [9, Part III, Sec. 3.5, (3.75)] and the related formula [9, Part III, Sec. 3.6, p.
146], taking into account the 3-D character of the slab (A,m).

4 Proofs of Equations (3) and (5)

4.1 Preliminary results

Before going to the actual proof of Equations (3) and (5) we define functions and establish
results that will be of constant use in what follows.

Definition 1. We define the R-valued functions f , g, k and ` for x ∈ R3 with x3 > 0 by:

f(x) = x2
x2

1 + x2
3
· 1
‖x‖

,

g(x) = −1
‖x‖

,

k(x) = 1
x3

arctan
(
x1 x2
x3 ‖x‖

)
,

`(x) = − arcsinh
(

x2
(x2

1 + x2
3)1/2

)
.

These functions are indefinite integrals of expressions that will naturally come up when
rewriting the left hand sides of Equations (3) and (5). This is capsulized in the following
proposition whose proof reduces to straightforward computations. Below, the symbol ∂xi stands
for the partial derivative with respect to the coordinate xi (i = 1, 2, 3) while ∂2

x1x2 = ∂x1 ∂x2 .
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Proposition 1. For any x ∈ R3 with x3 > 0, we have

∂x2 f(x) = 1/‖x‖3 ,
∂x1 g(x) = x1/‖x‖3 ,

∂2
x1x2 k(x) = 1/‖x‖3 ,
∂2
x1x2 `(x) = x1/‖x‖3 .

We will need asymptotic expansions of expressions of the form f(R − t1, R − t2, z − t3),
f(−R− t1, R− t2, z − t3), etc., when R goes large. To this effect, it is convenient to introduce
companion functions to f , g, k and ` as follows.

Definition 2. Let t = (t1, t2, t3) ∈ A. We define Ft, Gt, Kt and Lt from R to R by

Ft(R) = f(R− t1, R− t2, z − t3), Gt(R) = g(R− t1, R− t2, z − t3),
Kt(R) = k(R− t1, R− t2, z − t3), and Lt(R) = `(R− t1, R− t2, z − t3).

One easily checks the following proposition.

Proposition 2. For any (t1, t2) ∈ [−s, s]2, any t3 > 0 and any R ∈ R,

f(−R− t1, R− t2, z − t3) = F(−t1,t2,t3)(R), g(−R− t1, R− t2, z − t3) = G(−t1,t2,t3)(R),
f(−R− t1,−R− t2, z − t3) = −F(−t1,−t2,t3)(R), g(−R− t1,−R− t2, z − t3) = G(−t1,−t2,t3(R),
f(R− t1,−R− t2, z − t3) = −F(t1,−t2,t3)(R); g(R− t1,−R− t2, z − t3) = G(t1,−t2,t3)(R);
k(−R− t1, R− t2, z − t3) = −K(−t1,t2,t3)(R), `(−R− t1, R− t2, z − t3) = L(−t1,t2,t3)(R),
k(−R− t1,−R− t2, z − t3) = K(−t1,−t2,t3)(R), `(−R− t1,−R− t2, z − t3) = −L(−t1,−t2,t3)(R),
k(R− t1,−R− t2, z − t3) = −K(t1,−t2,t3)(R); `(R− t1,−R− t2, z − t3) = −L(t1,−t2,t3)(R).

The essential ingredient for the proof of Equations (3) and (5) is to get asymptotic expansions
of the functions Ft, Gt, Kt, Lt (with respect to powers of 1/R), with explicit error bounds.
The important point is that these error bounds are uniform with respect to the variable t ∈ A,
allowing us to integrate them on A. Such expansions are given in Lemma 1 below. Before
stating it, we need to introduce more notations and to recall some properties of homogeneous
polynomials.

We fix once and for all two positive constants ωs and ωz such that ωs < 1, and we pose

C = max
{
s

ωs
,
z

ωz

}
, (12)

hence s
C ≤ ωs < 1 and z

C ≤ ωz. From now on, we assume that R ≥ C with C given by Equation
(12).

Remark 1. Introducing the rescaling quantities ωs and ωz is a means to assume that R ≥ C
whatever the dimensions s and r of A and the height z of the measurement area (on can simply
take ωz = z/R and ωs = s/R, if R > s). The assumption R ≥ C reflects of course the asymptotic
character of the present study. Moreover, the quantities ωs and ωz conveniently allow us to
specify how large R should be relative to s and z for the error estimates in the expansions below
to hold true (see Lemmas to come and Remark 2 at the end of the Appendix).

Let γ = (γ1, γ2, γ3)∈ R3. If an(γ) is a homogeneous polynomial of degree n with real
coefficients, i.e.,

an(γ) =
n∑
i=0

n−i∑
j=0

αi,j γ
i
1 γ

j
2 γ

n−i−j
3 ,
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where αi,j ∈ R, we define the associated homogeneous polynomial An(s, z) in the variables s
and z by:

An(s, z) =
n∑
i=0

n−i∑
j=0
|αi,j | si+j zn−(i+j). (13)

Observe that whenever γ ∈ [−s, s]2 × (0, z], we have |an(γ)| ≤ An(s, z). In particular (recall
from Section 2 that A = [−s, s]2 × [0, r] and z > r),

∀t ∈ A, |an(t1, t2, z − t3)| ≤ An(s, z). (14)

Moreover, if

Δn(s, z) =
n∑
k=0

bk s
k zn−k

is a homogeneous polynomial of degree n in s and z with bk ∈ R, we define another associated
homogeneous polynomial Δn,1(s, z) of degree n− 1 by

Δn,1(s, z) = (|b0|ωz)zn−1 +
n∑
k=1

(|bk|ωs) sk−1zn−k. (15)

Notice that for any ξ ∈ [0, 1/C] we have |zξ| ≤ ωz and |sξ| ≤ ωs by Equation (12); therefore
|Δn(s, z) ξn| ≤ Δn,1(s, z) ξn−1. We denote by Δn,2(s, z) the polynomial obtained by applying the
same process to Δn,1(s, z), i.e., Δn,2(s, z) = Δn,1,1(s, z), and more generally we put Δn,p+1(s, z) =
Δn,p,1(s, z). By simple induction, we see that Δn,p(s, z) is a homogeneous polynomial of degree
n− p and

∀ξ ∈ [0, 1/C], |Δn(s, z) ξn| ≤ Δn,p(s, z) ξn−p. (16)
As a particular case, observe that Δn,n(s, z) is in fact a constant and satifies |Δn(s, z)ξn| ≤ Δn,n.

We can now state our first lemma. We postpone its proof to the appendix at the end of this
document.

Lemma 1. For any t ∈ A and any R ≥ C, where C is defined by Equation (12), it holds

Ft(R) = 1√
2
· 1
R2 + 5t1 − t2

2
√

2
· 1
R3 + 33t21 − 3t22 − 6t1t2 − 10t23 + 20zt3 − 10z2

8
√

2
· 1
R4 + δ1(t, z, R)

R5

Gt(R) = −1√
2
· 1
R
− t1 + t2

2
√

2
· 1
R2 −

t21 + t22 + 6t1t2 − 2t23 + 4zt3 − 2z2

8
√

2
· 1
R3 + δ2(t, z, R)

R4

Kt(R) = π

2(z − t3) −
√

2 1
R
−
√

2(t1 + t2)
2 · 1

R2 + δ3(t, z, R)
R3 ,

Lt(R) = − arcsinh(1) + t2 − t1√
2
· 1
R
− 3t21 − t22 − 2t1t2 − 2t23 + 4zt3 − 2z2

4
√

2
· 1
R2 + δ4(t, z, R)

R3 ,

where |δ1(t, z, R)| ≤ Δ(1)
3 (s, z), |δ2(t, z, R)| ≤ Δ(2)

3 (s, z), |δ3(t, z, R)| ≤ Δ(3)
2 (s, z) and |δ4(t, z, R)| ≤

Δ(4)
3 (s, z) for some homogeneous polynomials Δ(i)

n in the variables s and z, of degree n.

Corollary 1. Under the same hypotheses as in Lemma 1, it holds

Ft(R) = 1√
2
· 1
R2 + 5t1 − t2

2
√

2
· 1
R3 + δ5(t, z, R)

R4 ,

Gt(R) = −1√
2
· 1
R
− t1 + t2

2
√

2
· 1
R2 + δ6(t, z, R)

R3 ,
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where |δ5(t, z, R)| ≤ Δ(5)
2 (s, z) and |δ6(t, z, R)| ≤ Δ(6)

2 (s, z), for some homogeneous polynomials
Δ(5)

2 and Δ(6)
2 in the variables s and z, of degree 2.

Proof. From Lemma 1 we get

|δ5(t, z, R)| =
∣∣∣∣∣33t21 − 3t22 − 6t1t2 − 10(z − t3)2

8
√

2
+ δ1(t, z, R)

R

∣∣∣∣∣ ≤ 42s2 + 10z2

8
√

2
+ Δ(1)

3 (s, z)
R

.

Now, since 1/R ∈ [0, 1/C], Equation (16) implies that |Δ(1)
3 (s, z)·1/R| ≤ Δ(1)

3,1(s, z). Consequently,
|δ5(t, z, R)| ≤ Δ(5)

2 (s, z) where Δ(5)
2 (s, z) = 42s2+10z2

8
√

2 + Δ(1)
3,1(s, z) is a homogeneous polynomial

of degree 2. The result for Gt(R) is obtained similarly.

4.2 Proof of Equation (3)

From Equation (2), we get on integrating the term x1∂x1by parts that :

−4π
µ0

∫∫
QR

x1B3[m, x3](x1, x2) dx1dx2 =
∫ R

−R

[
x1 (P3 ? m̃1 − P1 ? m̃3) (x)

]R
x1=−R

dx2

+
∫ R

−R

[
x1 (P3 ? m̃2 − P2 ? m̃3) (x)

]R
x2=−R

dx1

−
∫∫

QR

P3 ? m̃1(x) dx1dx2

+
∫∫

QR

P1 ? m̃3(x) dx1dx2.

Now, replacing P1, P2 and P3 by their expressions and using Fubini’s theorem to interchange
the integration on QR and the integration on A arising from the convolution, we get in view of
Proposition 1 that∫∫

QR

x1B3[m, x3](x1, x2) dx1dx2 = − µ0
4π

∫∫∫
A

(
I1(t) + I2(t) + I3(t) + I4(t)

)
dt, (17)

where, for t ∈ A:

I1(t) =
[[

(x1(x3 − t3) m1(t)− x1(x1 − t1) m3(t)) f(x− t)
]R
x1=−R

]R
x2=−R

,

I2(t) =
[
((x3 − t3) m2(t)− (x2 − t2) m3(t))

∫ R

−R

x1
‖x− t‖3

dx1
]R
x2=−R

,

I3(t) = −(x3 − t3)m1(t)
[[
k(x− t)

]R
x1=−R

]R
x2=−R

,

I4(t) = m3(t)
[[
`(x− t)

]R
x1=−R

]R
x2=−R

.

To simplify I2(t) further, we can rewrite x1 as (x1 − t1) + t1 and ‖x− t‖ as ‖(x2 − t2, x1 −
t1, x3 − t3)‖, which leads us to∫ R

−R

x1
‖x− t‖3

dx1 =
[
g(x− t) + t1f(x2 − t2, x1 − t1, x3 − t3)

]R
x1=−R

.

Now, grouping terms according to the parity of the powers of x1 and x2, we obtain the following
expressions for I1(t) and I2(t):
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I1(t) = ((x3 − t3) m1(t) + t1 m3(t))
[[
x1f(x− t)

]R
x1=−R

]R
x2=−R

−m3(t)
[[
x2

1 f(x− t)
]R
x1=−R

]R
x2=−R

,

I2(t) = ((x3 − t3) m2(t) + t2 m3(t))
[[
g(x− t)

]R
x1=−R

]R
x2=−R

+ t1((x3 − t3) m2(t) + t2 m3(t))
[[
f(x2 − t2, x1 − t1, x3 − t3)

]R
x1=−R

]R
x2=−R

− m3(t)
[[
x2g(x− t)

]R
x1=−R

]R
x2=−R

− t1m3
[[
x2f(x2 − t2, x1 − t1, x3 − t3)

]R
x1=−R

]R
x2=−R

.

From now on, we assume that x3 is fixed and equal to z and that the hypotheses of Lemma 1
are satisfied.

Asymptotic expansion of I1. Using Proposition 2 and Lemma 1, we get[[
x1f(x− t)|x3=z

]R
x1=−R

]R
x2=−R

= R
(
Ft(R) + F(−t1,t2,t3)(R) + F(t1,−t2,t3)(R) + F(−t1,−t2,t3)(R)

)
= 4√

2
· 1
R

+ δ7(t, z, R)
R3 ,

[[
x2

1 f(x− t)|x3=z
]R
x1=−R

]R
x2=−R

= R2
[[
f(x− t)|x3=z

]R
x1=−R

]R
x2=−R

= R2
(
Ft(R)− F(−t1,t2,t3)(R) + F(t1,−t2,t3)(R)− F(−t1,−t2,t3)(R)

)
= 10t1√

2
· 1
R

+ δ8(t, z, R)
R3 ,

where |δ7(t, z, R)| ≤ 4Δ(5)
2 (s, z) and |δ8(t, z, R)| ≤ 4Δ(1)

3 (s, z). Therefore,

I1(t) = 4(z − t3) m1(t)− 6t1 m3(t)
R
√

2
+ δ9(t, z, R)

R3 (18)

where |δ9(t, z, R)| ≤ 4z|m1(t)|Δ(5)
2 (s, z) + 4|m3(t)|(sΔ(5)

2 (s, z) + Δ(1)
3 (s, z)).

Asymptotic expansion of I2. A simple interchange between variables x1 and x2 and between
variables t1 and t2 in the computations of the previous paragraph shows that

[[
f(x2 − t2, x1 − t1, z − t3)

]R
x1=−R

]R
x2=−R

= 10t2√
2
· 1
R3 + δ8((t2, t1, t3), z, R)

R5 ,

= δ10(t, z, R)
R3 ,

[[
x2f(x2 − t2, x1 − t1, z − t3)

]R
x1=−R

]R
x2=−R

= 4√
2
· 1
R

+ δ7((t2, t1, t3), z, R)
R3 ,

where |δ10(t, z, R)| ≤ 10s√
2 + 4Δ(1)

3 (s, z) 1
R2 . Now, observing that 1/R ∈ [0, 1/C], we obtain

|δ10(t, z, R)| ≤ Δ(10)
1 (s, z) where Δ(10)

1 (s, z) is the homogeneous polynomial of degree 1 defined

9



by Δ(10)
1 (s, z) = 10s√

2 + 4Δ(1)
3,2(s, z). Here, Δ(1)

3,2 is the polynomial constructed from Δ(1)
3 by two

successive applications of the process defined by Equation (15).
Moreover, using Proposition 2 and Lemma 1 on gt, we get

[[
g(x− t)|x3=z

]R
x1=−R

]R
x2=−R

= Gt(R)−G(−t1,t2,t3)(R)−G(t1,−t2,t3)(R) +G(−t1,−t2,t3)(R)

= δ11(t, z, R)
R3 ,

[[
x2g(x− t)|x3=z

]R
x1=−R

]R
x2=−R

= R
(
Gt(R)−G(−t1,t2,t3)(R) +G(t1,−t2,t3)(R)−G(−t1,−t2,t3)(R)

)
= −2t1√

2
· 1
R

+ δ12(t, z, R)
R3 ,

where |δ11(t, z, R)| ≤ 4Δ(6)
2 (s, z) and |δ12(t, z, R)| ≤ 4Δ(2)

3 (s, z). Therefore,

I2(t) = −2t1 m3(t)
R
√

2
+ δ13(t, z, R)

R3 (19)

where

|δ13(t, z, R)| ≤ (4Δ(6)
2 (s, z) + sΔ(10)

1 (s, z)) z|m2(t)|
+ (4sΔ(6)

2 (s, z) + 4Δ(2)
3 (s, z) + 4sΔ(5)

2 (s, z) + s2Δ(10)
1 (s, z))m3(t)

Asymptotic expansions of I3 and I4. Following the same line of argument as we used for
I1 and I2, we get
[[
k(x− t)|x3=z

]R
x1=−R

]R
x2=−R

= Kt(R) +K(−t1,t2,t3)(R) +K(t1,−t2,t3)(R) +K(−t1,−t2,t3)(R)

= 2π
z − t3

− 4
√

2 1
R

+ δ14(t, z, R)
R3 ,

[[
`(x− t)|x3=z

]R
x1=−R

]R
x2=−R

= Lt(R)− L(−t1,t2,t3)(R) + L(t1,−t2,t3)(R)− L(−t1,−t2,t3)(R)

= −4t1√
2
· 1
R

+ δ15(t, z, R)
R3 ,

where |δ14(t, z, R)| ≤ 4Δ(3)
2 (s, z) and |δ15(t, z, R)| ≤ 4Δ(4)

3 (s, z). Therefore,

I3(t) = −2πm1(t) + 4(z − t3)
√

2 m1(t)
R

+ δ16(t, z, R)
R3 , (20)

I4(t) = −4t1m3(t)
R
√

2
+ δ17(t, z, R)

R3 , (21)

where |δ16(t, z, R)| ≤ 4Δ(3)
2 (s, z)z|m1(t)| and |δ17(t, z, R)| ≤ 4Δ(4)

3 (s, z)|m3(t)|.

Final step. Plugging Equations (18), (19), (20) and (21) into Equation (17), we finally get∫∫
QR

x1B3[m, z](x1, x2) dx1dx2 = µ0
2 〈m1〉+ 3µ0

πR
√

2
(〈t1m3〉+ 〈t3m1〉 − z〈m1〉) + δ18(s, z,R)

R3 ,
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where δ18(s, z,R) = −µ0
4π

∫∫∫
A

(
δ9(t, z, R) + δ13(t, z, R) + δ16(t, z, R) + δ17(t, z, R)

)
dt. From the

inequalities obtained in the previous paragraphs, we see that, for any R ≥ C, where C is the
constant given by Equation (12),

|δ18(s, z,R)| ≤ µ0
4π
(

4
(
Δ(5)

2 (s, z) + Δ(3)
2 (s, z)

)
z〈|m1|〉

+
(
4Δ(6)

2 (s, z) + sΔ(10)
1 (s, z)

)
z〈|m2|〉

+
(
4(Δ(1)

3 (s, z) + Δ(2)
3 (s, z) + Δ(4)

3 (s, z))

+ 4s(2Δ(5)
2 (s, z) + Δ(6)

2 (s, z)) + s2Δ(10)
1 (s, z)

)
〈|m3|〉

)
This shows that δ18 is bounded by a quantity that depends only on s and z but not on R.

4.3 Proof of Equation (5)

We follow the path that led us to Equation (3): starting from Equation (2) we get

− 2
µ0

∫∫
QR

RB3[m, x3](x1, x2) dx1dx2 =
∫ R

−R
R
[

(P3 ? m̃1 − P1 ? m̃3) (x)
]R
x1=−R

dx2

+
∫ R

−R
R
[

(P3 ? m̃2 − P2 ? m̃3) (x)
]R
x2=−R

dx1.

Now, replacing P1, P2 and P3 by their expressions and using Fubini, we obtain∫∫
QR

RB3[m, x3](x1, x2) dx1dx2 = − µ0
4π

∫∫∫
A

(
I5(t) + I6(t)

)
dt, (22)

where:

I5(t) = R
[[

((x3 − t3) m1(t)− (x1 − t1) m3(t)) f(x− t)
]R
x1=−R

]R
x2=−R

= R((x3 − t3) m1(t) + t1 m3(t))
[[
f(x− t)

]R
x1=−R

]R
x2=−R

−R m3(t)
[[
x1f(x− t)

]R
x1=−R

]R
x2=−R

,

I6(t) = R
[
((x3 − t3) m2(t)− (x2 − t2) m3(t))

∫ R

−R

1
‖x− t‖

dx1
]R
x2=−R

= R
[[

((x3 − t3) m2(t)− (x2 − t2) m3(t)) f(x2 − t2, x1 − t1, x3 − t3)
]R
x1=−R

]R
x2=−R

= R((x3 − t3) m2(t) + t2 m3(t))
[[
f(x2 − t2, x1 − t1, x3 − t3)

]R
x1=−R

]R
x2=−R

−R m3(t)
[[
x2f(x2 − t2, x1 − t1, x3 − t3)

]R
x1=−R

]R
x2=−R

.

Now, using the same arguments as in Section 4.2, and assuming as before that x3 is fixed
and equal to z and that the hypotheses of Lemma 1 are satisfied, we see that

R
[[
f(x− t)|x3=z

]R
x1=−R

]R
x2=−R

= 10t1√
2
· 1
R2 + δ19(t, z, R)

R3 ,

R
[[
x1f(x− t)|x3=z

]R
x1=−R

]R
x2=−R

= 4√
2

+ 33t21 − 3t22 − 10(z − t3)2

2
√

2
· 1
R2 + δ20(t, z, R)

R3 ,
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where |δ19(t, z, R)| ≤ 4Δ(1)
3 (s, z) 1

R and δ20(t, z, R) ≤ 4Δ(1)
3 (s, z). Therefore,

I5(t) = −4m3(t)√
2

+ 20(z − t3)t1m1(t)− 13t21m3(t) + 3t22m3(t) + 10(z − t3)2m3(t)
2R2
√

2
+ δ21(t, z, R)

R3 ,

where |δ21(t, z, R)| ≤ 4Δ(1)
3 (s, z)

(
|m3(t)|(1 + s

R) + |m1(t)| zR
)

and therefore, when R ≥ C,

|δ21(t, z, R)| ≤ 4Δ(1)
3 (s, z)

(
|m3(t)|(1 + ωs) + |m1(t)|ωz

)
by Equation (12).

Accordingly,

I6(t) = −4m3(t)√
2

+ 20(z − t3)t2m2(t)− 13t22m3(t) + 3t21m3(t) + 10(z − t3)2m3(t)
2R2
√

2
+ δ22(t, z, R)

R3 ,

where |δ22(t, z, R)| ≤ 4Δ(1)
3 (s, z)

(
|m3(t)|(1 + ωs) + |m2(t)|ωz

)
.

Putting these last two equations together we finally get∫∫
QR

RB3[m, z](x1, x2) dx1dx2 = 2µ0

π
√

2
〈m3〉

+ 5µ0

4πR2
√

2

(
− 2z2〈m3〉+ z (4〈t3m3〉 − 2〈t1m1〉 − 2〈t2m2〉)

+ 〈t21m3〉+ 〈t22m3〉 − 2〈t23m3〉+ 2〈t1t3m1〉+ 2〈t2t3m2〉
)

+ δ23(s, z,R)
R3 ,

where δ23(s, z,R) = −µ0
4π

∫∫∫
A

(
δ21(t, z, R) + δ22(t, z, R)

)
dt. Now, δ23 is bounded when R goes

to infinity, since for any R ≥ C (where C is the constant given by Equation (12)) we have

|δ23(s, z,R)| ≤ µ0
π

Δ(1)
3 (s, z)

(
2〈|m3|〉(1 + ωs) + 〈|m1|〉ωz + 〈|m2|〉ωz

)
.

5 Proofs of the remaining equations

5.1 Generalities

Consider a linear isometry Ψ of R2 and define the linear isometry Ψ̄ of R3 by Ψ̄(x1, x2, x3) =
(Ψ(x1, x2), x3). We define Q′R = Ψ(QR). Denoting by Ψi the i-th component of Ψ (where
i ∈ {1, 2}), we have, by the change of variable (x′1, x′2) = Ψ(x1, x2),∫∫

Q′R

x′iB3[m, z](x′1, x′2) dx′1dx′2 =
∫∫

QR

Ψi(x)B3[m, z](Ψ(x1, x2)) dx1dx2. (23)

Moreover, according to Equation (1), we have, for any x ∈ R3 such that x3 > r,

B3[m, x3](Ψ(x1, x2)) = −µ0
4π ∂x3

(∫∫∫
R3

〈m̃(t′), Ψ̄(x)− t′〉
‖Ψ̄(x)− t′‖3

dt′
)
.

Then, using the change of variable t′ = Ψ̄(t) and the fact that Ψ̄ is a linear isometry (and hence
preserves the inner product and the norm), the above expression becomes

−µ0
4π ∂x3

(∫∫∫
R3

〈Ψ̄−1(m̃(Ψ̄(t))
)
, x− t〉

‖x− t‖3
dt
)
.

Finally, defining M1, M2 and M3 by M(t) = Ψ̄−1(m̃(Ψ̄(t))
)
, we observe that

B3[m, x3](Ψ(x1, x2)) = B3[M , x3](x1, x2). (24)
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Now, putting together Equations (23) and (24) and using the linearity of Ψ1 and Ψ2, we conclude
that 

∫∫
Q′R

x′1B3[m, z](x′1, x′2) dx′1dx′2∫∫
Q′R

x′2B3[m, z](x′1, x′2) dx′1dx′2

 = Ψ


∫∫

QR

x1B3[M , z](x1, x2) dx1dx2∫∫
QR

x2B3[M , z](x1, x2) dx1dx2

 . (25)

Accordingly, ∫∫
Q′R

RB3[m, z](x′1, x′2) dx′1dx′2 =
∫∫

QR

RB3[M , z](x1, x2) dx1dx2. (26)

We now express certain moments of M1, M2 and M3. Let i ∈ {1, 2, 3} and let us denote by
Ψ̄−1
i the i-th component of Ψ̄−1. Also, we consider an arbitrary bounded function θ : R→ R.

Using successively the definition of Mi, the change of variable t′ = Ψ̄(t) together with the fact
that Ψ̄ is a linear isometry, the fact that Ψ̄−1

3 (t′) = t′3 and the linearity of Ψ̄−1
i , we get

〈θ(t3)Mi〉 =
∫∫∫

R3
θ(t3) Ψ̄−1

i (m̃(Ψ̄(t))) dt =
∫∫∫

R3
θ(Ψ̄−1

3 (t′)) Ψ̄−1
i (m̃(t′)) dt′ = Ψ̄−1

i

〈θ(t3)m1〉
〈θ(t3)m2〉
〈θ(t3)m3〉

 .
Observing that, for any x ∈ R3, Ψ̄−1(x) = (Ψ−1(x1, x2), x3), we thus obtain:(

〈θ(t3)M1〉
〈θ(t3)M2〉

)
= Ψ−1

(
〈θ(t3)m1〉
〈θ(t3)m2〉

)
and 〈θ(t3)M3〉 = 〈θ(t3)m3〉. (27)

Accordingly, we obtain 〈ti θ(t3)M3〉 =
∫∫∫

R3
Ψ̄−1
i (t′) θ(t′3) m̃3(t′) dt′ = Ψ̄−1

i

〈t1 θ(t3)m3〉
〈t2 θ(t3)m3〉
〈t3 θ(t3)m3〉

, whence

(
〈t1 θ(t3)M3〉
〈t2 θ(t3)M3〉

)
= Ψ−1

(
〈t1 θ(t3)m3〉
〈t2 θ(t3)m3〉

)
and 〈t3 θ(t3)M3〉 = 〈t3 θ(t3)m3〉. (28)

5.2 Proof of Equation (4)

To prove Equation (4), we define Ψ : x 7→ (x2, x1). It is a linear involutive isometry, hence
Equation (25) gives in this context∫∫

Q′R

x′2B3[m, z](x′1, x′2) dx′1dx′2 =
∫∫

QR

x1B3[M , z](x1, x2) dx1dx2.

Now, observing that Q′R = QR and applying Equation (3) we get∫∫
QR

x2B3[m, z](x1, x2) dx1dx2 = µ0
2 〈M1〉+ 3µ0

πR
√

2
(〈t1M3〉+ 〈t3M1〉 − z〈M1〉) +O

( 1
R3

)
.

We conclude by remarking that 〈M1〉 = 〈m2〉, 〈t1M3〉 = 〈t2m3〉 and 〈t3M1〉 = 〈t3m2〉 thanks
to Equations (27), (28) with θ(t3) = 1 and Equation (27) with θ(t3) = t3 · χ[0,z](t3).
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5.3 Proofs of Equations (6), (7) and (8)

We define Ψ as the rotation of angle π/4 and we apply Equation (25) to Q√2
2 R

, so that Q′√2
2 R

= SR.

In this context, and according to Equations (3) and (4), Equation (25) becomes
∫∫

SR

x1B3[m, z](x1, x2) dx1dx2∫∫
SR

x2B3[m, z](x1, x2) dx1dx2

 = Ψ


µ0
2 〈M1〉+ 3µ0

πR
(〈t1M3〉+ 〈t3M1〉 − z〈M1〉) +O

( 1
R3

)
µ0
2 〈M2〉+ 3µ0

πR
(〈t2M3〉+ 〈t3M2〉 − z〈M2〉) +O

( 1
R3

)
 .

Using the linearity of Ψ, the right hand side of the above expression becomes

µ0
2 Ψ

(
〈M1〉
〈M2〉

)
+ 3µ0
πR

(
Ψ
(
〈t1M3〉
〈t2M3〉

)
+ Ψ

(
〈t3M1〉
〈t3M2〉

)
− zΨ

(
〈M1〉
〈M2〉

))
+O

( 1
R3

)
,

which directly gives Equations (6) and (7) thanks to Equations (27) and (28) with θ(t3) = 1 and
Equation (27) with θ(t3) = t3 · χ[0,s](t3).

Now, together with Equation (5), Equation (26) gives us∫∫
SR

RB3[m, z](x1, x2) dx1dx2 = 2µ0
π
〈M3〉

+ 5µ0
2πR2 (−2z2〈M3〉+ z (4〈t3M3〉 − 2〈t1M1〉 − 2〈t2M2〉)

+ 〈t21M3〉+ 〈t22M3〉 − 2〈t23M3〉+ 2〈t1t3M1〉+ 2〈t2t3M2〉) +O
( 1
R3

)
.

Notice that (using again the change of variable t = Ψ̄−1(t′) and the fact that Ψ̄ is a linear
isometry)

〈t21M3〉+ 〈t22M3〉+ 〈t23M3〉 = 〈(t21 + t22 + t23)M3〉

=
∫∫∫

R3
‖t‖2 m̃3(Ψ̄(t)) dt

=
∫∫∫

R3
‖Ψ̄−1(t′)‖2 m̃3(t′) dt′

=
∫∫∫

R3
‖t′‖2 m̃3(t′) dt′ = 〈t21m3〉+ 〈t22m3〉+ 〈t23m3〉.

Combining this with Equation (27) where we set θ(t3) = t23 · χ[0,s](t3), we get

〈t21M3〉+ 〈t22M3〉 − 2〈t23M3〉 = 〈t21m3〉+ 〈t22m3〉 − 2〈t23m3〉.

Also, if we denote by A the matrix of Ψ−1 in the canonical basis and by CM (resp. Cm) the
3× 3 matrix whose element (i, j) is 〈ti θ(t3)Mj〉 (resp. 〈ti θ(t3)mj〉), we observe that

CM = ACmA
T . (29)

Indeed, if i and j belong to {1, 2, 3}, then upon using the same change of variable we get that

〈ti θ(t3)Mj〉 =
∫∫∫

R3
ti θ(t3) Ψ̄−1

j (m̃(Ψ̄(t))) dt =
∫∫∫

R3
Ψ̄−1
i (t′) θ(t′3) Ψ̄−1

j (m̃(t′)) dt′,

Denoting by Ai and Aj the i-th and j-th row of A respectively, we see that

Ψ̄−1
i (t′) Ψ̄−1

j (m̃(t′)) = (Ai t′)(Aj m̃(t′)) = (Ai t′)(Aj m̃(t′))T = Ai (t′ m̃(t′)T )ATj .
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Therefore, 〈ti θ(t3)Mj〉 = AiCmA
T
j whence Equation (29) holds. Now, Ψ−1 being an isometry

we have AT = A−1, and therefore

〈t1 θ(t3)M1〉+ 〈t2 θ(t3)M2〉+ 〈t3 θ(t3)M3〉 = tr (ACmAT )
= tr (ATACm)
= tr (Cm)
= 〈t1 θ(t3)m1〉+ 〈t2 θ(t3)m2〉+ 〈t3 θ(t3)m3〉.

Together with Equation (28), this shows that 〈t1 θ(t3)M1〉 + 〈t2 θ(t3)M2〉 = 〈t1 θ(t3)m1〉 +
〈t2 θ(t3)m2〉. We conclude the proof, using that last result with θ(t3) = 1 and θ(t3) = t3 χ[0,s](t3).

6 Comments, discussion
The main results (3) to (8) of Section 3 can be restated on the measurement area MR ∈ {QR, SR}
as: ∫∫

MR

xiB3[m, z](x1, x2) dx1dx2 = c
(1)
0,i (MR) 〈mi〉+

c
(1)
1,i (MR)
R

(〈tim3〉+ 〈(t3 − z)mi〉) +O
( 1
R3

)
,

for i = 1, 2 and:

∫∫
MR

B3[m, z](x1, x2) dx1dx2 =
c

(0)
1,3(MR)
R

〈m3〉

+
c

(0)
3,3(MR)
R3

(
〈(t21 + t22 − 2 (t3 − z)2)m3〉 − 2 〈(t3 − z) (t1m1 + t2m2)〉

)
+O

( 1
R4

)
,

with
c

(1)
0,i (SR) = µ0

2 , c
(1)
1,i (SR) = 3µ0

π
, c

(0)
1,3(SR) = 2µ0

π
, c

(0)
3,3(SR) = 5µ0

2π ,

and, for j = 0, 1,

c
(j)
k,i(QR) =

c
(j)
k,i(SR)
2k/2 =

c
(j)
k,i(SR)
√

2k
(while c(1)

2,i (MR) = c
(0)
0,3(MR) = c

(0)
2,3(MR) = 0) .

Actually,
√

2 appears here because it is the ratio between the perimeters of the measurements
areas QR and SR. Similar properties appear to be true for circular shapes as well [9, Part III],
and most probably also for more general geometries. Recall that B3[m, z] has vanishing mean
value on R2 by Green’s theorem, which is consistent with the last equality above and with
Equations (5) and (8).

This allows one to algebraically combine between the two families of expressions obtained
for two different shapes in order to refine the estimates of 〈mi〉 that could be obtained using a
single shape. For instance, we get for i = 1, 2:

(
√

2− 1)µ0
2 〈mi〉 =

√
2
∫∫

QR

xiB3[m, z](x1, x2) dx1dx2 −
∫∫

SR

xiB3[m, z](x1, x2) dx1dx2 +O
( 1
R3

)
,

2µ0
π R
〈m3〉 = 2

√
2
∫∫

QR

B3[m, z](x1, x2) dx1dx2 −
∫∫

SR

B3[m, z](x1, x2) dx1dx2 +O
( 1
R4

)
.

Whenever R is such that QR and SR are subsets of the actual measurement area, these furnish
constructive approximations of 〈mi〉. The precision of these estimations is driven by the size R
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of the measurement area, but also by the heights s, r, z. Indeed, the error terms decrease to
0 not only when R increases but also when s, r, z (and r − z) decrease, as the analysis of the
bounds in the preceding section and in the appendix shows.

7 Conclusion

We took in this paper a few steps towards developing a “numerical magnetometer” which is
adapted to planar normal field measurements as obtained in scanning magnetic macroscopy.
Several issues of course remain to be addressed. For instance, the fact that measurements consist
of pointwise values leads one to approximate the integrals in Equations (3), (4), (5), (6), (7), and
(8) by Riemann sums which makes for another approximation step. Moreover, the measurements
themselves are corrupted with noise whose effect has to be analyzed somewhat systematically.
For instance, it should be observed that our estimates of 〈m1〉, 〈m2〉 are unbiased, while it is
the linear combination of equations proposed in Section 6 that can gets us rid of the bias in
our estimates of 〈m3〉. Nevertheless, we feel the formulas that we derived are a necesary step in
magnetometric studies and lie at the basis of net moment estimation for planar measurement
geometries.

Appendix: proof of Lemma 1

We first establish three lemmas about Taylor expansions of order 2 that will be used for the
proof of Lemma 1.

As before in Section 4, we consider two positive constants ωs and ωz such that ωs < 1 and
we define C as in Equation (12). In the sequel, we will extensively use the notations defined in
Equations (13) and (15), together with their practical properties, as given by Equations (14)
and (16).

Put D = D(s, z, C) = [−s, s]2 × (0, z]× [0, 1/C]. The assumption (γ, ξ) ∈ D actually means
γ ∈ [−s, s]2 × (0, z], ξ ∈ [0, 1/C].

The following lemma explains how to compose Taylor expansions of order 2 with rigorous
bounds.

Lemma 2. We consider an interval I, a function v : I → R and a function u : D → I and we
suppose that they are of the form v(y) = b0 + b1y + b2y

2 + εv(y) with ∀y ∈ I, |εv(y)| ≤ B3 |y|3,

u(γ, ξ) = a1(γ)ξ + a2(γ)ξ2 + εu(γ, ξ)
with ∀(γ, ξ) ∈ D, |εu(γ, ξ)| ≤ A3(s, z)ξ3,

where b0, b1, b2, B3 ∈ R, and a1(γ), a2(γ), A3(s, z) are homogeneous polynomials of degree 1, 2,
3, respectively.

Then, we have (v ◦ u)(γ, ξ) = c0 + c1(γ)ξ + c2(γ)ξ2 + ε(γ, ξ) with ∀(γ, ξ) ∈ D, |ε(γ, ξ)| ≤
C3(s, z)ξ3, where c0 = b0, c1(γ) = b1a1(γ), c2(γ) = b1a2(γ) + b2a

2
1(γ), and C3(s, z) is a

homogeneous polynomial of degree 3.
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Proof. Let (γ, ξ) ∈ D. From the definitions of u and v, we get

ε(γ, ξ) = b1 εu(γ, ξ) + b2
(
2a1(γ)ξ + a2(γ)ξ2 + εu(γ, ξ)

)(
a2(γ)ξ2 + εu(γ, ξ)

)
+ εv(u(γ, ξ)).

The bound then follows from the triangle inequality, with

C3(s, z) = |b1|A3(s, z) + |b2|
(
2A1(s, z) +A2,1(s, z) +A3,2(s, z)

)(
A2(s, z) +A3,1(s, z)

)
+B3

(
A1(s, z) +A2,1(s, z) +A3,2(s, z)

)3
,

and the definitions of A1, A2, A2,1, A3,1, and A3,2 from a1(γ), a2(γ), and A3(s, z), by means of
Equations (13) and (15), together with the corresponding properties expressed in Equations (14)
and (16).

In particular, notice that c1(γ), c2(γ) are homogeneous polynomials of degree 1 and 2,
respectively, as in the following lemma which, in the same spirit, shows how to multiply Taylor
expansions of order 2 with rigorous bounds.

Lemma 3. We consider two functions u and v : D → R and we suppose that they are of the
form  u(γ, ξ) = 1 + a1(γ)ξ + a2(γ)ξ2 + εu(γ, ξ)

v(γ, ξ) = 1 + b1(γ)ξ + b2(γ)ξ2 + εv(γ, ξ)

with ∀(γ, ξ) ∈ D, |εu(γ, ξ)| ≤ A3(s, z)ξ3 and |εv(γ, ξ)| ≤ B3(s, z)ξ3, where a1(γ), b1(γ), a2(γ),
b2(γ), and A3(s, z), B3(s, z) are homogeneous polynomials of degree 1, 2, and 3, respectively.

Then, we have
u(γ, ξ)v(γ, ξ) = 1 + c1(γ)ξ + c2(γ)ξ2 + ε(γ, ξ)

with ∀(γ, ξ) ∈ D, |ε(γ, ξ)| ≤ C3(s, z)ξ3, where c1(γ) = a1(γ) + b1(γ), c2(γ) = a1(γ)b1(γ) +
a2(γ) + b2(γ), and C3(s, z) is a homogeneous polynomial of degree 3.

Proof. Let (γ, ξ) ∈ D. From the definitions of u and v, we get

ε(γ, ξ) = εu(γ, ξ) + εv(γ, ξ)
+
(
a1(γ)ξ + 1

2 a2(γ)ξ2 + 1
2 εu(γ, ξ)

)(
b2(γ)ξ2 + εv(γ, ξ)

)
+
(
b1(γ)ξ + 1

2 b2(γ)ξ2 + 1
2 εv(γ, ξ)

)(
a2(γ)ξ2 + εu(γ, ξ)

)
.

The bound then again follows from the triangle inequality, with

C3(s, z) = A3(s, z) +B3(s, z)
+
(
A1(s, z) + 1

2 A2,1(s, z) + 1
2 A3,2(s, z)

)(
B2(s, z) +B3,1(s, z)

)
+
(
B1(s, z) + 1

2 B2,1(s, z) + 1
2 B3,2(s, z)

)(
A2(s, z) +A3,1(s, z)

)
,

and the definitions of A1, A2, A2,1, A3,1, A3,2, B1, B2, B2,1, B3,1, and B3,2 from a1(γ), a2(γ),
A3(s, z), b1(γ), b2(γ), and B3(s, z), by means of Equations (13) and (15), together with the
corresponding properties expressed in Equations (14) and (16).

The following lemma collects some Taylor expansions with controlled bounds on their
remainders. They will be used in the proof of Lemma 1.
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Lemma 4. We define the functions v1 to v5 by v1(y) = 1√
1+y , v2(y) = 1

1+y , v3(y) =
√

1 + y,
v4(y) = arctan(y) and v5(y) = arcsinh(1 + y). There exist constants B(1), · · · , B(5), depending
on ωs and ωz only, such that

∀y ∈ [−1 + (1− ωs)2, 2ωs + ω2
s + ω2

z ],

v1(y) = 1− y

2 + 3y2

8 + ε1(y) with |ε1(y)| ≤ B(1)|y|3, (30)

v2(y) = 1− y + y2 + ε2(y) with |ε2(y)| ≤ B(2)|y|3, (31)

v3(y) = 1 + y

2 −
y2

8 + ε3(y) with |ε3(y)| ≤ B(3)|y|3, (32)

∀y ∈ R,
v4(y) = y + ε4(y) with |ε4(y)| ≤ B(4)|y|3, (33)

v5(y) = arcsinh(1) + y√
2
− y2

4
√

2
+ ε5(y) with |ε5(y)| ≤ B(5)|y|3. (34)

Proof. If i ∈ {1, 2, 3}, since ωs < 1, the function vi is infinitely differentiable on the given
interval and the existence of B(i) simply follows from Taylor’s theorem at 0. If i ∈ {4, 5}, the
same argument applied on the interval [−1, 1] ensures the existence of a constant B′(i) such
that Equations (33) and (34) hold true for y ∈ [−1, 1]. Besides, we observe that the function
y 7→ εi(y)/y3 is continuous on (−∞,−1] ∪ [1,+∞) and tends to 0 at ±∞. Therefore, there
exists a constant B′′(i) such that Equations (33) and (34) hold true for y ∈ (−∞,−1] ∪ [1,+∞).
Then B(i) = max{B′(i), B′′(i)} satisfies the requirement.

Proof of Lemma 1. Let us define

u1(γ, ξ) = −(γ1 + γ2)ξ + γ2
1 + γ2

2 + γ2
3

2 ξ2 = −1 + γ2
3ξ

2

2 + (1− γ1ξ)2

2 + (1− γ2ξ)2

2 .

According to Equation (12), observe that for (γ, ξ) ∈ D, γ1ξ ≤ |γ1ξ| ≤ sξ ≤ s/C ≤ ωs < 1.
Therefore (1−γ1ξ) ≥ (1−ωs) > 0, hence (1−γ1ξ)2 ≥ (1−ωs)2. Similarly, (1−γ2ξ)2 ≥ (1−ωs)2.
This shows that

u1(γ, ξ) ≥ −1 + γ2
3ξ

2

2 + (1− ωs)2 ≥ −1 + (1− ωs)2. (35)

Besides, from the definition of u1, the triangle inequality and Equation (12) we obtain

u1(γ, ξ) ≤ |u1(γ, ξ)| ≤ 2s
C

+ 2s2 + z2

2C2 ≤ 2ωs + ω2
s + ω2

z

2 . (36)

We also define

u2(γ, ξ) = −2γ1ξ + (γ2
1 + γ2

3)ξ2 = −1 + γ2
3ξ

2 + (1− γ1ξ)2.

Reasoning as we did for u1, we see that for (γ, ξ) ∈ D,

u2(γ, ξ) ≥ −1 + (1− ωs)2, (37)
u2(γ, ξ) ≤ |u2(γ, ξ)| ≤ 2ωs + ω2

s + ω2
z . (38)

Finally, we define u3(γ, ξ) = −(γ1+γ2)ξ+γ1γ2ξ
2 = −1+(1−γ1ξ)(1−γ2ξ), for which, accordingly,

u3(γ, ξ) ≥ −1 + (1− ωs)2, (39)
u3(γ, ξ) ≤ |u3(γ, ξ)| ≤ 2ωs + ω2

s . (40)
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Now, for any t ∈ A and any R ≥ C, we have

(R− t1)2 + (R− t2)2 + (z − t3)2 = 2R2 (1 + u1(γ, ξ)),
(R− t1)2 + (z − t3)2 = R2 (1 + u2(γ, ξ)),

(R− t1)(R− t2) = R2 (1 + u3(γ, ξ)),

where γ = (t1, t2, (z − t3)) and ξ = 1/R. Therefore, the functions Ft, Gt, Kt, and Lt can be
expressed by means of v1 to v5 and u1 to u3. Namely (for Kt we use the identity arctan(α) =
π
2 − arctan(1/α) which holds for α > 0):

Ft(R) = ξ2
√

2
(1− γ2ξ) v2(u2(γ, ξ)) v1(u1(γ, ξ)),

Gt(R) = −ξ√
2
v1(u1(γ, ξ)),

Kt(R) = π

2γ3
− 1
γ3
v4
(
γ3ξ
√

2 v3(u1(γ, ξ)) v2(u3(γ, ξ))
)
,

Lt(R) = −v5 (−1 + (1− γ2ξ) v1(u2(γ, ξ))) .

Let us recall the statement that we wish to prove, namely that for any R ≥ C and t ∈ A we
ave:

Ft(R) = 1√
2
· 1
R2 + 5t1 − t2

2
√

2
· 1
R3 + 33t21 − 3t22 − 6t1t2 − 10t23 + 20zt3 − 10z2

8
√

2
· 1
R4 + δ1(t, z, R)

R5 ,

Gt(R) = −1√
2
· 1
R
− t1 + t2

2
√

2
· 1
R2 −

t21 + t22 + 6t1t2 − 2t23 + 4zt3 − 2z2

8
√

2
· 1
R3 + δ2(t, z, R)

R4 ,

Kt(R) = π

2(z − t3) −
√

2 1
R
−
√

2(t1 + t2)
2 · 1

R2 + δ3(t, z, R)
R3 ,

Lt(R) = − arcsinh(1) + t2 − t1√
2
· 1
R
− 3t21 − t22 − 2t1t2 − 2t23 + 4zt3 − 2z2

4
√

2
· 1
R2 + δ4(t, z, R)

R3 ,

where |δ1(t, z, R)| ≤ Δ(1)
3 (s, z), |δ2(t, z, R)| ≤ Δ(2)

3 (s, z), |δ3(t, z, R)| ≤ Δ(3)
2 (s, z), and

|δ4(t, z, R)| ≤ Δ(4)
3 (s, z), for some homogeneous polynomials Δ(1)

3 , Δ(2)
3 , Δ(3)

2 , and Δ(4)
3 , of

degrees 3, 3, 2, and 3, respectively. Except for Kt (which requires some explanation), the
statement is easily deduced from our previous results, using Lemma 2 with I = [−1 + (1 −
ωs)2, 2ωs + ω2

s + ω2
z ] for the compositions involving v1, v2, and v3, and I = (−∞,+∞) for the

compositions involving v4 and v5, together with Lemmas 3 and 4.
In the case of Kt a difficulty arises from the division by γ3 = z − t3 which casts doubt on

whether Δ(3)
2 (s, z) can be chosen as a polynomial. Let us put d(γ, ξ) =

√
2 v3(u1(γ, ξ)) v2(u3(γ, ξ))

whence Kt(R) = π
2γ3
− 1

γ3
v4(γ3 ξ d(γ, ξ)). Thanks to our lemmas, we easily obtain that

d(γ, ξ) =
√

2 + d1(γ)ξ + d2(γ)ξ2 + εd(γ, ξ),

where d1 and d2 are homogeneous polynomials of degree 1 and 2 respectively, and |εd(γ, ξ)| ≤
D3(s, z)ξ3 where D3 is a homogeneous polynomial of degree 3. Now, from Equation (33) we see
that Kt has the prescribed form with the remainder δ3(t, z, R)/R3 being given by

d2(γ)ξ3 + εd(γ, ξ)ξ + 1
γ3
ε4(γ3 ξ d(γ, ξ)),
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with, as before, γ = (t1, t2, (z − t3)) and ξ = 1/R. Now, observe that |d2(γ)ξ3| ≤ D2(s, z)ξ3,
|εd(γ, ξ)ξ| ≤ D3,1(s, z)ξ3 and∣∣∣ 1

γ3
ε4(γ3 ξ d(γ, ξ))

∣∣∣ ≤ 1
|γ3|

B(4)|γ3|3 |ξ|3 d(γ, ξ)3 ≤ B(4) z2 (
√

2 +D1,1 +D2,2 +D3,3)3

which proves the claim.

Remark 2. For the purpose of proving our result in the most general framework, we introduced
the constants ωs and ωz, so as to determine the constants usually hidden behind the O notation
and make these constants explicit as functions depending only on s and z but not on t and R.
This allows us to integrate these bounds with respect to variable t and obtain upper bounds for
δ18 and δ23 (at the end of Sections 4.2, 4.3, respectively), therefore proving rigorous asymptotic
formulas that give approximate identities more and more accurate as R goes large.

However, the practice is usually completely different from this situation. One generally does
not actually let R tends to +∞, but one rather has some measurements on a square QR with
a given value R and one would like to get an approximation of the moments 〈mi〉 (i = 1, 2, 3)
using the asymptotic formulas, together with an estimate of the error contained in the remainder.
In order to obtain a small bound for the remainder, it is clearly desirable to choose ωs and ωz
as small as possible, so one practically chooses ωs = s/R and ωz = z/R (as soon as R > s).
Therefore Equation (12) defines the constant C as being equal to R, see also Remark 1.

Furthermore, instead of using the interval [−1 + (1− ωs)2, 2ωs + ω2
s + ω2

z ] in Lemma 4, one
can use slightly tighter intervals since all the constants are known. For instance, Equations (35)
and (36) can be reworked to show that u1(t1, t2, (z − t3), 1/R) indeed ranges in the interval
[−1 + (z−r)2

2R2 + (1− s
R)2, 2s

R + 2s2+z2

2R2 ] for any t ∈ A. Also, notice that explicit tight and rigorous
constants B(1) to B(5) for Lemma 4 can be automatically computed on demand for a given
interval using rigorous arithmetic tools such as Taylor models [8]. Together with the present
article, we provide a Maple script that explicitly computes all the presented bounds, for given
values s, z and R. For the computation of the bounds of Lemma 4, we rest on a script run with
the Sollya software tool [3] that provides rigorous and proven results, accounting for all possible
roundoff errors in numeric computations.
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