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1 Notations

Let A = [−s, s]2 ⊂ R2. Let (m1,m2,m3), such that for i = 1, 2, 3, mi ∈ L1(A) has planar
support included in A × {0}. For any m defined on A, we denote by 〈m〉 the moment
of m:

〈m〉 =

∫∫
A
m(t1, t2) dt1 dt2.

In the following, we will denote by QR the square [−R,R]2. The height h of the measure-
ment plane is set once and for all. We will denote by dh(x, y) the quantity

√
x2 + y2 + h2.

Most of the time, since h is fixed, we will simply write d(x, y).
We recall that B = −µ0∇φ where µ0 = 4π × 10−7 and φ is defined at any point (x, y, h)
with h 6= 0 by

φ(x, y, h) =
1

4π

∫∫
A

m1(t1, t2)(x− t1)
dh(x− t1, y − t2)3

+
m2(t1, t2)(y − t2)
dh(x− t1, y − t2)3

+
m3(t1, t2)h

dh(x− t1, y − t2)3
dt1 dt2.

We can also write φ by means of Poisson kernel and Riesz transforms, namely,

φ =
1

2
(Ph ? R1(m1) + Ph ? R2(m2) + Ph ? m3) ,

where Ph(x, y) = 1
2π
· h
dh(x,y)3

.

2 Results

The following properties hold:∫∫
QR

xBz(x, y, h) dx dy =
µ0

2
〈m1〉+

3µ0

πR
√

2
(〈t1m3〉 − h〈m1〉) +O(1/R3), (1)∫∫

QR

y Bz(x, y, h) dx dy =
µ0

2
〈m2〉+

3µ0

πR
√

2
(〈t2m3〉 − h〈m2〉) +O(1/R3), (2)∫∫

QR

RBz(x, y, h) dx dy =
2µ0

π
√

2
〈m3〉+O(1/R2). (3)

For the proof, we need the following Lemma.

1



Lemma 1. For any i = 1, 2, 3 and j = 1, 2 the following equations hold:∫∫
QR

x ∂x (Ph ? mi) (x, y) dx dy = −〈mi〉+
6h

πR
√

2
〈mi〉+O(1/R3), (4)∫∫

QR

R∂x (Ph ? mi) (x, y) dx dy =
5h

πR2
√

2
〈t1mi〉+O(1/R4), (5)∫∫

QR

x ∂y (Ph ? mi) (x, y) dx dy =
7h

2πR3
√

2
〈t1 t2mi〉+O(1/R4), (6)∫∫

QR

x ∂x (Ph ? (Rjmi)) (x, y) dx dy =
〈t2mi〉
πR
√

2
+O(1/R3) for j = 2 (7)

=
5〈t1mi〉
πR
√

2
+O(1/R3) for j = 1∫∫

QR

R∂x (Ph ? (R1mi)) (x, y) dx dy =
2〈mi〉
π
√

2
+O(1/R2), (8)∫∫

QR

x ∂y (Ph ? (Rjmi)) (x, y) dx dy =
〈t2mi〉
πR
√

2
+O(1/R3) for j = 1 (9)

=
〈t1mi〉
πR
√

2
+O(1/R3) for j = 2

Proof.
Equation (4): we begin with an integration by parts:∫∫

QR

x ∂x (Ph ? mi) (x, y) dx dy =

∫ R

−R
[x (Ph ? mi) (x, y)]Rx=−R dy

−
∫∫

QR

(Ph ? mi)(x, y) dx dy.

Using Fubini we have∫∫
QR

(Ph ? mi)(x, y) dx dy =

∫∫
R2

mi(t1, t2)

(∫∫
QR

h

2π
· 1

d(x− t1, y − t2)3
dx dy

)
dt1 dt2

=

∫∫
R2

mi(t1, t2)

(
1− 2h

√
2

Rπ
+

h

2π
δ̃4(R, t1, t2)

)
dt1 dt2

=

(
1− 2h

√
2

Rπ

)
〈mi〉+

h

2π

∫∫
R2

mi(t1, t2) δ̃4(R, t1, t2) dt1 dt2.

When R > C, this last term is bounded in absolute value by 100(h2 + s2)h2〈|mi|〉/(πR3).
Regarding the other term, we observe that, using Fubini,∫ R

−R
[x (Ph ? mi) (x, y)]Rx=−R dy =

h

2π

∫∫
A
mi(t1, t2)

[
x

∫ R

−R

dy

d(x− t1, y − t2)3

]R
x=−R

.

=
2h

Rπ
√

2
〈mi〉+

33h〈t21mi〉
4πR3

√
2
− 3h〈t22mi〉

4πR3
√

2
− 10h3〈mi〉

4πR3
√

2
+ ε
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where |ε| ≤ 100(h2 + 10s2)hs〈|mi|〉/(πR4).
Equation (5): we simply observe that∫∫

QR

R∂x (Ph ? mi) (x, y) dx dy = R

∫ R

−R
[(Ph ? mi) (x, y)]Rx=−R dy

and we apply Fubini as in the previous case. Therefore∫∫
QR

R∂x (Ph ? mi) (x, y) dx dy =
5h

πR2
√

2
〈t1mi〉+ ε

where |ε| ≤ 100(h2 + 10s2)hs〈|mi|〉/(πR4).
Equation (6): we integrate first over y and then use Fubini:∫∫

QR

x ∂y (Ph ? mi) (x, y) dx dy =

∫ R

−R
x [(Ph ? mi) (x, y)]Ry=−R dx

=
h

2π

∫∫
A
mi(t1, t2)

(∫ R

−R
x

[
1

d(x− t1, y − t2)3

]R
y=−R

dx

)
dt1 dt2.

We now focus on the inner integral:∫ R

−R
x

[
1

d(x− t1, y − t2)3

]R
y=−R

dx =

[∫ R

−R

x− t1
d(x− t1, y − t2)3

dx

]R
y=−R

+

[∫ R

−R

t1
d(x− t1, y − t2)3

dx

]R
y=−R

.

We use the asymptotic expansions that we already computed, simply swapping the roles
of x and y. So we have∫ R

−R

x

d(x− t1, R− t2)3
dx =

t1√
2
· 1

R2
+

7t1t2

2
√

2
· 1

R3
+O(1/R4)

and ∫ R

−R

x

d(x− t1, R + t2)3
dx =

t1√
2
· 1

R2
− 7t1t2

2
√

2
· 1

R3
+O(1/R4)

Finally we get∫∫
QR

x ∂y (Ph ? mi) (x, y) dx dy =
7h

2πR3
√

2
〈t1 t2mi〉+O(1/R4)

Equation (7): we begin with the case j = 2. Integrating by parts and using Fubini,
we get∫∫

QR

x ∂x (Ph ? (R2mi)) (x, y) dx dy

=
1

2π

∫∫
A
mi(t1, t2)

[
x

∫ R

−R

y − t2
d(x− t1, y − t2)3

dy

]R
x=−R

dt1 dt2

− 1

2π

∫∫
A
mi(t1, t2)

(∫ R

−R

(∫ R

−R

y − t2
d(x− t1, y − t2)3

dy

)
dx

)
dt1 dt2.
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Therefore, ∫∫
QR

x ∂x (Ph ? (R2mi)) (x, y) dx dy =
〈t2mi〉
πR
√

2
+ ε

where |ε| ≤ 200(h2 + 50s2)s〈|mi|〉/(πR3).
Regarding the case j = 1, we begin the same way:∫∫

QR

x ∂x (Ph ? (R1mi)) (x, y) dx dy

=
1

2π

∫∫
A
mi(t1, t2)

[
x(x− t1)

∫ R

−R

1

d(x− t1, y − t2)3
dy

]R
x=−R

dt1 dt2

− 1

2π

∫∫
A
mi(t1, t2)

(∫ R

−R

(∫ R

−R

x− t1
d(x− t1, y − t2)3

dx

)
dy

)
dt1 dt2.

Proceeding as before we get∫∫
QR

x ∂x (Ph ? (R1mi)) (x, y) dx dy =
5〈t1mi〉
πR
√

2
+ ε

where |ε| ≤ 200(h2 + 50s2)s〈|mi|〉/(πR3).
Equation (8): To establish this equation, we integrate first over x:∫∫

QR

R∂x (Ph ? (R1mi)) (x, y) dx dy = R

∫ R

−R
[(Ph ? (R1mi))(x, y)]Rx=−R dy.

Then, we use Fubini and integrate over y:

R

∫ R

−R
[(Ph ? (R1mi))(x, y)]Rx=−R dy

=
1

2π

∫∫
A
mi(t1, t2)

[
R(x− t1)

∫ R

−R

1

d(x− t1, y − t2)3
dy

]R
x=−R

dt1 dt2

=
2〈mi〉
π
√

2
+O(1/R2).

Equation (9): by remarking that ∂y(Ph ? (R1mi)) = ∂x(Ph ? (R2mi)), we observe that
the case j = 1 is actually the same as Equation (7) with j = 2. Regarding the case j = 2,
we first integrate over y and then use Fubini:∫∫

QR

x ∂y (Ph ? (Rjmi)) (x, y) dx dy

=
1

2π

∫∫
A
mi(t1, t2)

(∫ R

−R
x

[
y − t2

d(x− t1, y − t2)3

]R
y=−R

dx

)
dt1 dt2

=
−〈t2mi〉
πR
√

2
+O(1/R3).
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Proof of Equations (1), (2) and (3). First of all, we observe that

− 2

µ0

Bz(x, y, h) = ∂z (Pz ? (R1m1) + Pz ? (R2m2) + Pz ? m3)|z=h
(x, y)

= ∂x(Ph ? m1 − Ph ? (R1m3))(x, y) + ∂y(Ph ? m2 − Ph ? (R2m3))(x, y).

Using Equations (4), (6), (7) and (9), we hence have∫∫
QR

xBz(x, y, h) dx dy =
−µ0

2

(
−〈m1〉+

6

πR
√

2
(h〈m1〉 − 〈t1m3〉)

)
+O(1/R3).

By permutation of variables x and y we get Equation (2). Finally, using (5), (8) and
their symmetrical formulas when variables x and y are permuted, we have∫∫

QR

RBz(x, y, h) dx dy =
2µ0

π
√

2
〈m3〉+O(1/R2).

3 Technical lemmas

This technical lemma explains how to compose Taylor expansions of order 2 with rigorous
bounds. It will be used several times for the proof of Lemma 4.

Lemma 2. Consider a function g whose Taylor expansion at order 2 is given by g(y) =
b0 + b1y + b2y

2 + εg(y). We suppose that ∀y ∈ [−1/2, 1/2], |εg(y)| ≤ B3 |y|3 for some
constant B3. We consider two real numbers a1 and a2 and corresponding bounds A1 and
A2 such that |a1| ≤ A1 and |a2| ≤ A2. Finally, we consider a function εf : R→ R.
For any x ∈ R such that

i) |εf (x)| ≤ A2 |x|2,

ii) |a2x
2 + εf (x)| ≤ A1 |x|,

iii) 2A1|x| ≤ 1/2,

we have g(a1x+ a2x
2 + εf (x)) = b0 + b1a1x+ (b1a2 + b2a

2
1)x

2 + ε(x) where

|ε(x)| ≤ |b1| · |εf (x)|+ (6A1A2|b2|+ 8B3A
3
1) |x|3.

Remark that condition ii) can sometimes conveniently be replaced by 2A2 |x|2 ≤ A1|x|
since that condition together with condition i) imply condition ii).

Proof. Let x be a real number satisfying the three conditions. From the definition of g,
we get

ε(x) = b1εf (x) + b2(2a1x+ a2x
2 + εf (x))(a2x

2 + εf (x)) + εg(a1x+ a2x
2 + εf (x)).

Triangle inequality and point i), we get |a2x
2 + εf (x)| ≤ 2A2|x|2. Moreover, triangle

inequality and point ii) show that |2a1x+ a2x
2 + εf (x)| ≤ 2A1|x|+ A1|x| = 3A1|x|.

The same argument shows that |a1x + a2x
2 + εf (x)| ≤ 2A1|x| which is smaller than 1/2

by point iii). Therefore, |εg(a1x+ a2x
2 + εf (x))| ≤ B3(2A1|x|)3 = 8B3A

3
1|x|3.
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The following lemma recalls some Taylor expansions with rigorous bounds for their re-
minders. They will be used in the proof of Lemma 4.

Lemma 3. The following estimates hold:

∀x ∈ [−1/2, 5/8],
1√

1 + x
= 1− x

2
+

3x2

8
+ ε1(x) with |ε1(x)| ≤ |x|3, (10)

∀x ∈ [−1/2, 1/2],
1

1 + x
= 1− x+ x2 + ε2(x) with |ε2(x)| ≤ 2|x|3. (11)

∀x ∈ [−1/2, 1/2],
√

1 + x = 1 +
x

2
− x2

8
+ ε3(x) with |ε3(x)| ≤ 1

8
|x|3. (12)

∀x ∈ [−1/2, 1/2], arctan(x) = x+ ε4(x) with |ε4(x)| ≤ 1

2
|x|3. (13)

∀x ∈ [−1/2, 1/2], argsinh(1 + x) = argsinh(1) +
x√
2
− x2

4
√

2
+ ε5(x)

with |ε5(x)| ≤ 5

8
√

2
|x|3. (14)

Proof.
Equation (10): observe that, for all x > −1,

ε1(x) =
1−

(
1− x

2
+ 3x2

8

)√
1 + x

√
1 + x

=
1−

(
1− x

2
+ 3x2

8

)2

(1 + x)
√

1 + x
(
1 +

(
1− x

2
+ 3x2

8

)√
1 + x

) ,
whence, after simplification,

ε1(x) =
−40 + 15x− 9x2

√
1 + x+

(
1− x

2
+ 3x2

8

)
(1 + x)

· x
3

64
.

It is easy to see that | − 40 + 15x − 9x2| reaches its maximum over [−1/2, 5/8] at x =
−1/2 where it is equal to 199/4 which we conveniently bound by 50. The polynomial
(1− x

2
+ 3x2

8
)(1 +x) reaches its minimum at x = −1/2 where it is equal to 43/64. Finally,√

1 + x ≥
√

1/2 ≥ 45/64. Altogether we see that |ε1(x)| ≤ 50
88
|x|3 ≤ |x|3.

Equation (11): by definition of ε2, we have

ε2(x) =
1

1 + x
− (1− x+ x2) =

−x3

1 + x
.

We conclude by remarking that |1 + x| ≥ 1/2 when x ∈ [−1/2, 1/2].
Equation (12): by definition of ε3, we have

ε3(x) =
√

1 + x−
(

1 +
x

2
− x2

8

)
=

8− x
√

1 + x+
(
1 + x

2
− x2

8

) · x3

64
.

Moreover, when x ∈ [−1/2, 1/2],
√

1 + x + 1 + x
2
− x2

8
≥
√

1
2

+ 1 − 1
4
− 1

32
≥ 91

64
and

|8− x| ≤ 17
2

, hence |ε3(x)| ≤ 17
182
|x|3 ≤ |x|3

8
.
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Equation (13): we observe that, for any t ∈ [−1/2, 1/2],

1

1 + t2
= 1 + ε̃4(t)

where |ε̃4(t)| = | −t2
1+t2
| ≤ |t|2. Now, for any x ∈ [−1/2, 1/2] we have, by integration

between 0 and x, arctan(x) = x+ ε4(x) where

|ε4(x)| =
∣∣∣∣∫ x

0

ε̃4(t) dt

∣∣∣∣ ≤ 1

3
|x|3 ≤ 1

2
|x|3.

Equation (14): using Equation (10) we get, for any x ∈ [−1/2, 5/8],

1√
1 + x

= 1− x

2
+ ε̃1(x) with |ε̃1(x)| =

∣∣∣∣3x2

8
+ ε1(x)

∣∣∣∣ ≤ |x|2(3

8
+ |x|

)
≤ |x|2.

Now, for any t ∈ [−1/2, 1/2],
√

1 + (1 + t)2 =
√

2
√

1 + t+ t2

2
and t + t2

2
∈ [−3/8, 5/8].

Hence, using the above expansion,

1√
1 + (1 + t)2

=
1√
2

(
1− t

2
− t2

4
+ ε̃1

(
t+

t2

2

))
=

1√
2

(
1− t

2
+ ε̃5(t)

)
where ε̃5(t) = − t2

4
+ ε̃1

(
t+ t2

2

)
. Since |t+ t2/2| ≤ 5|t|/4 for t ∈ [−1/2, 1/2] we see that

|ε̃5(t)| ≤ 29|t|2/16. Integrating between 0 and x, where x ∈ [−1/2, 1/2] we get

argsinh(1 + x)− argsinh(1) =
x√
2
− x2

4
√

2
+ ε5(x)

where |ε5(x)| ≤
∣∣∣ 1√

2

∫ x
0

29
16
t2 dt

∣∣∣ = 29
48
√

2
|x|3 ≤ 5

8
√

2
|x|3. This proves the third equation of

the Lemma.

Lemma 4. There is a constant C that depends only on s such that, for any (t1, t2) ∈ A,

1

d(R− t1, R− t2)
=

1√
2
· 1

R
+
t1 + t2

2
√

2
· 1

R2
+
t21 + t22 + 6t1t2 − 2h2

8
√

2
· 1

R3
+ δ1(R, t1, t2),

R− t2
(R− t1)2 + h2

· 1

d(R− t1, R− t2)
=

1√
2
· 1

R2
+

5t1 − t2
2
√

2
· 1

R3

+
33t21 − 3t22 − 6t1t2 − 10h2

8
√

2
· 1

R4
+ δ2(R, t1, t2),

argsinh

(
R− t1√

(R− t2)2 + h2

)
= argsinh(1) +

t2 − t1√
2
· 1

R
+

3t22 − t21 − 2t1t2 − 2h2

4
√

2
· 1

R2

+ δ3(R, t1, t2),

arctan

(
h
√

(R− t1)2 + (R− t2)2 + h2

(R− t1)(R− t2)

)
= h
√

2
1

R
+
h
√

2(t1 + t2)

2
· 1

R2
+ δ4(R, t1, t2).
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where, for any R ≥ C, |δ1(R, t1, t2)| ≤ (9h2+274s2)s

4
√

2
· 1
R4 , |δ2(R, t1, t2)| ≤ (87h2+954s2)s

4
√

2
· 1
R5 ,

|δ3| ≤ (113h2+1287s2)s

2
√

2
· 1
R3 and |δ4| ≤ (136h2+563s2)h

√
2

16
· 1
R3 .

The bounds for |δ1|, |δ2|, |δ3| and |δ4| are not sharp, so we will conveniently use the

following bounds in the sequel: |δ1| ≤ 50(h2+10s2)s
R4 , |δ2| ≤ 50(h2+10s2)s

R5 , |δ3| ≤ 50(h2+10s2)s
R3

and |δ4| ≤ 50(h2+10s2)h
R3 .

Proof. First, we remark that one may find constants C1, C2, C3, C4, C5, C6, C7, C8, C9,
C10, C11 and C12 that depend only on h and s such that, for any (t1, t2) ∈ A:

∀R ≥ C1,
4s

R
≤ 1

2
(15)

∀R ≥ C2,
h2 + 2s2

2R2
≤ 2s

R
(16)

∀R ≥ C3,
h2 + s2

R2
≤ 2s

R
(17)

∀R ≥ C4,
(9h2 + 274s2)s

4R3
≤ h2 + 4s2

4R2
(18)

∀R ≥ C5,
h2 + 4s2

2R2
≤ s

R
(19)

∀R ≥ C6,
(12h2 + 140s2)s

R3
≤ h2 + 3s2

R2
(20)

∀R ≥ C7,
2h2 + 6s2

R2
≤ s

R
(21)

∀R ≥ C8,
(44h2 + 478s2)s

R3
≤ h2 + 4s2

2R2
(22)

∀R ≥ C9,
h2 + 4s2

R2
≤ 2s

R
(23)

∀R ≥ C10,
(3h2 + 38s2)s

4R3
≤ h2 + 2s2

4R2
, (24)

∀R ≥ C11,
8h2 + 563s2

16R2
≤ s

R
, (25)

∀R ≥ C12,
2h
√

2

R
≤ 1

2
. (26)

We define C as C = max{C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12} and we further
consider an arbitrary R ≥ C and an arbitrary (t1, t2) ∈ A.
Now,

(R− t1)2 + (R− t2)2 + h2 = 2R2

(
1− t1 + t2

R
+
h2 + t21 + t22

2R2

)
,

hence 1
d(R−t1,R−t2)

= 1
R
√

2
g
(
− t1+t2

R
+

h2+t21+t22
2R2

)
where g : y 7→ 1/

√
1 + y. Therefore using

Lemma 2 with Equation (10) (Equations (16) and (15) guarantee that the hypotheses of
the lemma are fulfilled) we get

1

d(R− t1, R− t2)
=

1

R
√

2

(
1 +

t1 + t2
2R

+
t21 + t22 + 6t1t2 − 2h2

8R2

)
+ ε6(R, t1, t2)
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where |ε6(R, t1, t2)| ≤ (9h2+274s2)s
4R3 . This proves the first equation of the lemma.

Besides, let us remark that (R − t1)
2 + h2 = R2

(
1− 2t1

R
+

h2+t21
R2

)
. Therefore, using

Lemma 2 with Equation (11), we get

1

(R− t1)2 + h2
=

1

R2

(
1 +

2t1
R

+
3t21 − h2

R2
+ ε7(R, t1, t2)

)
with |ε7(R, t1, t2)| ≤ (12h2+140s2)s

R3 . The hypotheses of Lemma 2 were satisfied thanks to
Equations (17) and (15).
Altogether, we get

R− t2
(R− t1)2 + h2

· 1

d(R− t1, R− t2)

=
1

R2
√

2

(
1− t2

R

)(
1 +

2t1
R

+
3t21 − h2

R2
+ ε7(R, t1, t2)

)
(

1 +
t1 + t2

2R
+
t21 + t22 + 6t1t2 − 2h2

8R2
+ ε6(R, t1, t2)

)
.

Let us define A1 = 2t1
R

, A2 =
3t21−h2

R2 + ε7(R, t1, t2), B1 = t1+t2
2R

and B2 =
t21+t22+6t1t2−2h2

8R2 +
ε6(R, t1, t2). With these notations, we have

R− t2
(R− t1)2 + h2

· 1

d(R− t1, R− t2)
=

1

R2
√

2

(
1− t2

R

)
(1 + A1 + A2)(1 +B1 +B2)

=
1

R2
√

2

(
1 +

5t1 − t2
2R

+
33t21 − 3t22 − 6t1t2 − 10h2

8R2
+ ε8(R, t1, t2)

)
where ε8(R, t1, t2) = ε6(R, t1, t2) + ε7(R, t1, t2) − t2

R
(A2 + B2) + A1B2 + A2(B1 + B2) −

t2
R

(A1 + A2)(B1 + B2). Now, using Equation (18), we see that |B2| ≤ h2+4s2

2R2 and then,

with Equation (19) we get |B1+B2| ≤ 2s
R

. Similarly, Equation (20) leads to |A2| ≤ 2h2+6s2

R2

and then Equation (21) gives |A1 + A2| ≤ 3s
R

. Collecting all these results we get

|ε8(R, t1, t2)| ≤
(87h2 + 954s2)s

4R3

which proves the second equation of the lemma.

In order to prove the third equation, observe that
√

(R− t2)2 + h2 = R

√
1− 2t2

R
+

t22+h2

R2 ,

whence, using Lemma 2 and Equation (10) (which is legitimate because of Equations (17)
and (15)),

1√
(R− t2)2 + h2

=
1

R

(
1 +

t2
R

+
2t22 − h2

2R2
+ ε9(R, t1, t2)

)
where |ε9(R, t1, t2)| ≤ (9h2+137s2)s

2R3 . Therefore we obtain

R− t1√
(R− t2)2 + h2

= 1 +
t2 − t1
R

+
2t22 − 2t1t2 − h2

2R2
+ ε10(R, t1, t2)

9



where |ε10(R, t1, t2)| =
∣∣∣−2 t22 t1−h2t1

2R3 +
(
1− t1

R

)
ε9(R, t1, t2)

∣∣∣ ≤ (44h2+478s2)s
R3 . To get this

upper bound, we roughly bounded
∣∣1− t1

R

∣∣ by 2 using Equation (15). Finally, using
Lemma 2 and Equation (14) we get

argsinh

(
R− t1√

(R− t2)2 + h2

)
= argsinh(1)+

t2 − t1
R
√

2
+

3t22 − 2t1t2 − t21 − 2h2

4R2
√

2
+ε11(R, t1, t2),

where

|ε11(R, t1, t2)| ≤ argsinh(1)
(44h2 + 478s2)s

R3
+

(3h2 + 92s2)s

2R3
√

2
≤ (113h2 + 1287s2)s

2R3
√

2
.

In order to apply Lemma 2, we bounded |ε10(R, t1, t2)| by h2+4s2

2R2 using Equation (22) and

we bounded 2h
2+4s2

2R2 by 2s
R

using Equation (23). Moreover, we used argsinh(1) ≤ 5
4
√

2
.

To prove the last equation, we first use Lemma 2 with Equation (12) (checking the
hypotheses of the lemma with Equations (16) and (15)) to get√

(R− t1)2 + (R− t2)2 + h2 = R
√

2

(
1− t1 + t2

2R
+
t21 − 2t1t2 + t22 + 2h2

8R2
+ ε12(R, t1, t2)

)
where |ε12(R, t1, t2)| ≤ (3h2+38s2)s

4R3 . We can truncate this expansion as

√
(R− t1)2 + (R− t2)2 + h2 = R

√
2

(
1− t1 + t2

2R
+ ε̃12(R, t1, t2)

)
where |ε̃12(R, t1, t2)| ≤ h2+2s2

2R2 thanks to Equation (24).
On the other hand, using Lemma 2 with Equation (11) (checking the hypotheses of the
lemma by repeated use of Equation (15)) we get

h

(R− t1)(R− t2)
=

h

R2

(
1 +

t1 + t2
R

+
t21 + t1t2 + t22

R2
+ ε13(R, t1, t2)

)
where |ε13(R, t1, t2)| ≤ 140s3

R3 . This expansion can be truncated as

h

(R− t1)(R− t2)
=

h

R2

(
1 +

t1 + t2
R

+ ε̃13(R, t1, t2)

)
where |ε̃13(R, t1, t2)| ≤ 3s2

R2 + 140s2

R2 · sR ≤
41s2

2R2 thanks to Equation (15).
Multiplying both expansions we see that

h
√

(R− t1)2 + (R− t2)2 + h2

(R− t1)(R− t2)
=
h
√

2

R

(
1 +

t1 + t2
2R

+ ε14(R, t1, t2)

)
,

where

ε14(R, t1, t2) = ε̃12(R, t1, t2) + ε̃13(R, t1, t2)

+

(
−t1 + t2

2R
+ ε̃12(R, t1, t2)

)(
t1 + t2
R

+ ε̃13(R, t1, t2)

)
.
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From Equation (16) we see that |ε̃12(R, t1, t2)| ≤ 2s
R

and from Equation (15), |ε̃13(R, t1, t2)| ≤
41s
16R

. Therefore |ε14(R, t1, t2)| ≤ 8h2+563s2

16R2 .
Now, by Equation (13),

arctan

(
h
√

(R− t1)2 + (R− t2)2 + h2

(R− t1)(R− t2)

)
=
h
√

2

R
+

(t1 + t2)h
√

2

2R2
+ ε15(R, t1, t2)

where

ε15(R, t1, t2) =
h
√

2

R
ε14(R, t1, t2) + ε4

(
h
√

2

R

(
1 +

t1 + t2
2R

+ ε14(R, t1, t2)

))
.

Finally, thanks to Equation (25),
∣∣ t1+t2

2R
+ ε14(R, t1, t2)

∣∣ ≤ 2s
R

that we roughly bound by 1
thanks to Equation (15). Now the argument of ε4 is less than 1/2 in absolute value
thanks to Equation (26), so we can use the bound given in Lemma 3. This concludes the
proof.

As a direct corollary of the previous Lemma, we obtain asymptotic expansions of impor-
tant integrals:∫ R

−R

dy

d(R− t1, y − t2)3
=

[
y − t2

(R− t1)2 + h2
· 1

d(R− t1, y − t2)

]R
y=−R

=
R− t2

(R− t1)2 + h2
· 1

d(R− t1, R− t2)
+

R + t2
(R− t1)2 + h2

· 1

d(R− t1, R + t2)

=
2√
2
· 1

R2
+

5t1√
2
· 1

R3
+

33t21 − 3t22 − 10h2

4
√

2
· 1

R4
+ δ̃2(R, t1, t2),

where |δ̃2(R, t1, t2)| ≤ 100(h2 + 10s2)s/R5 for any R ≥ C and any (t1, t2) ∈ A.
By replacing t1 with −t1, we also have∫ R

−R

dy

d(R + t1, y − t2)3
=

2√
2
· 1

R2
− 5t1√

2
· 1

R3
+

33t21 − 3t22 − 10h2

4
√

2
· 1

R4
+ δ̃2(R,−t1, t2).

Accordingly,∫ R

−R

(y − t2)dy
d(R− t1, y − t2)3

=

[
−1

d(R− t1, y − t2)

]R
y=−R

=
1

d(R− t1, R + t2)
− 1

d(R− t1, R− t2)

=
−t2√

2
· 1

R2
− 3t1t2

2
√

2
· 1

R3
+ δ̃1(R, t1, t2)

where |δ̃1(R, t1, t2)| ≤ 100(h2 + 50s2)s/R4 for any R ≥ C and any (t1, t2) ∈ A.
And, by replacing t1 with −t1, we also have∫ R

−R

(y − t2)dy
d(R− t1, y − t2)3

=
−t2√

2
· 1

R2
+

3t1t2

2
√

2
· 1

R3
+ δ̃1(R,−t1, t2).
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Another important integral is
∫ R
−R

∫ R
−R

y−t2
d(x−t1,y−t2)3

dy dx and can be explicitely obtained by

∫ R

−R

∫ R

−R

y − t2
d(x− t1, y − t2)3

dy dx =

∫ R

−R

[
−1

d(x− t1, y − t2)

]R
y=−R

dx

=

 −1

((y − t2)2 + h2)1/2

∫ R

−R

1√(
x−t1

((y−t2)2+h2)1/2

)2

+ 1

dx


R

y=−R

= −
[[

argsinh

(
x− t1

((y − t2)2 + h2)1/2

)]R
x=−R

]R
y=−R

=
−4t2√

2
· 1

R
+ δ̃3(R, t1, t2)

where |δ̃3(R, t1, t2)| ≤ 200(h2 + 50s2)s/R3 for any R ≥ C and any (t1, t2) ∈ A.

Finally, the last important integral is related to Poisson’s kernel:
∫ R
−R

∫ R
−R

1
d(x−t1,y−t2)3

dy dx.
It can be explicitely obtained by∫ R

−R

∫ R

−R

1

d(x− t1, y − t2)3
dy dx =

[∫ R

−R

(y − t2)
(x− t1)2 + h2

· 1

d(x− t1, y − t2)3
dx

]R
y=−R

.

Now, succesively performing the changes of variable tan(t) = x−t1
((y−t2)2+h2)1/2 , u = sin(t)

and v = u(y−t2)
h

we see that∫ R

−R

(y − t2)
(x− t1)2 + h2

· 1

d(x− t1, y − t2)3
dx =

1

h

∫ fy(R)

fy(−R)

dv

1 + v2

where fy(x) = 1
h
· (x−t1)(y−t2)
d(x−t1,y−t2)

. Finally, using the formula arctan(x) = π
2
− arctan(1/x)

that holds for any x > 0, we get∫ R

−R

∫ R

−R

1

d(x− t1, y − t2)3
dy dx =

2π

h
− 4
√

2
1

R
+ δ̃4(R, t1, t2)

where |δ̃4(R, t1, t2)| ≤ 200(h2 + s2)h/R3.
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