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1 Notations

Let A = [—s, s]> C R% Let (my, my, m3), such that for i = 1,2, 3, m; € L'(.A) has planar
support included in A x {0}. For any m defined on A, we denote by (m) the moment

of m: (m) = //A m(ty,to) dty dts.

In the following, we will denote by Qg the square [—R, R]*>. The height h of the measure-
ment plane is set once and for all. We will denote by dj,(z, y) the quantity \/x? + y2 + h2.
Most of the time, since h is fixed, we will simply write d(z,y).

We recall that B = — 1oV where pig = 47 x 1077 and ¢ is defined at any point (z,y, h)
with h # 0 by

i / ma (tl, tg)($ — tl) mg(tl, tg)(y — tg) m3<t1, tg)h

dtq dts.
dm J Jpdp(e =ty —t2)3  dp(z —t,y —12)  dp(e —t,y —t2)? e

P(z,y,h) =

We can also write ¢ by means of Poisson kernel and Riesz transforms, namely,

1
Qb: 5 (Ph*Rl(ml) +Ph*R2(m2) —I—Ph*mg),

1 h

where Py(x,y) = 21 " dp(zy)3”

2 Results

The following properties hold:

//Q e By(r,y by dedy = 0 (my) + 2 (4 ma) — h(ma)) + O(L/RY), (1)

2 TR\V?2
Ho 3o 3
JI vmaray = )+ ZH (rama) —homa)) + O/, )
_ 20 m 2
//QRRBz@,y,h)dxdy = 2% tm) + O(/R?). 3)

For the proof, we need the following Lemma.



Lemma 1. For any i =1,2,3 and j = 1,2 the following equations hold:

J]| w0 Boem) ) dedy = —(m) + m) +OW/R),

J]| R xm) (o) dedy = —Eitim) + O/ )

//QR 20y (P +my) (z,y) da dy = # (t1tym;) + O(1/RY), (6)

//QR 20y (P (Rymy)) (x,y) dedy = ;t;”\}% + O(1/R?) for j =2 (7)
_ 5752”\/? + O(L/R?) for j =1

//R RO, (Py+ (Rymy)) (z,y) do dy = 275'”\2 +O(1/RY), (8)

//R 20, (Py* (Rjm;)) (z,y)dzdy = %—m\/g + O(1/R?) forj =1 (9)
_ :};&% L O(/R) forj =2

Proof.
Equation (4): we begin with an integration by parts:

// 20y (Py+my) (z,y)dedy = /_R [z (P my) (z,9)]_, dy

R R _//CQR(Ph*mi)(x’y) dz dy.

Using Fubini we have

h 1
By, xm;)(x,y)dedy = my;(ty,t — - drdy | dt; dt
//QR( h )( y) Yy /RQ (1 2) (/\/C;RZW d(x—thy—tg)'g y) 1 b2
2hA/2 ~
= / mi(ti, t2) (1 — h2 + N d4(R, 11, t2)> dt; dt,
R2 R7T 27T
B (1 2hy/2

h -
) <m1> + — / mi(tl,tQ) (54(R, tl,tz) dtl dtg.
Rm 2n ) Jg2

When R > C, this last term is bounded in absolute value by 100(h? + s?)h?(|m;|) /(7 R?).
Regarding the other term, we observe that, using Fubini,

R

[rsmemient a2 [ [
—R h 7 7y r=—R y - 27T " i\t1y b2 R d({]} —t17y—t2)3 IZ?R.
__2h (ma) + 33h(timi)  3h(t3m)  10h*(m;)
Rrv2' 4 R3/2 ATR32 AT R32



where |e| < 100(h? + 10s%)hs(|m;|) /(T R*).
Equation (5): we simply observe that

R
// RO, (P *m;) (x,y)dedy = R/ (P, xm;) (x, y)]fsz dy
R -R
and we apply Fubini as in the previous case. Therefore
5h
RO, (P,*xm;) (z,y)dedy = ———=(t1my;) + ¢
[ B Bosm) @ dray = 2

where |e| < 100(h* + 10s%)hs(|m;|) /(T R*).
Equation (6): we integrate first over y and then use Fubini:

/ /Q ) 0y (Bpxm) (z,y) dvdy = /_R 2 [(Purmy) (2, )| da

R

h R 1 R
= — i(t1,1 d dty dis.
27 //Am (11, t2) </—Rx [d(x_tlay_t2)3:|y:—R x) b

We now focus on the inner integral:

R 1 R R xr — tl :|R
T dx = dx
/—R Ll(x —t1,y — t2)3] y=—R |:/—R d(x —t1,y —t2)? =R
R

+ UR h d }
x .
_pd(r—t,y—1t)? y=—R

We use the asymptotic expansions that we already computed, simply swapping the roles
of z and y. So we have

R x 21 1 Tt1ta 1
dr=-L. L b L R
/_Rd(x—tl,R—t2)3 \/5 R? 2\/§ R3 </ )
and 5
x iy 1 Ttita 1 4
de="L. - M2 on/R
/_Rd(x—tl,R—i—tg)?’ * \/§ R? 2\/§ R3 </ )

Finally we get

7h \
//QRxay(Ph*mi) (z,y) dady = m<t1t2mi>+0(1/3)

Equation (7): we begin with the case j = 2. Integrating by parts and using Fubini,
we get

//QR Oy (P (Rymy)) (2, y) da dy

_i//mA(tt)x/R y— b d dty dt
2w S . b _pd(r—t,y—1t)? yx:_R b

! // (t1,ts) /R /R y— b dy | dz ) dt; dt
—_— m; xr .
or JJo R \Jopd(x —t1,y —t)? Y e

3




Therefore,
(t2 m;)

//QRxaw(Ph*(Rgmi))(x,y)dxdy: TRV3 +e

where |g] < 200(h* + 50s2)s(|m;|) /(T R?).
Regarding the case j = 1, we begin the same way:

//Rx&r (P * (Rymy)) (x,y) da dy

R 1 R

1
- At t —t d dt, dt
o [ e [ o] ana

_i//m(t ) /R /R TTh gy dy) dede
2 S TN e Ui dw =ty — 1) v) e

Proceeding as before we get

_ 5<t1mi>
//QRIL‘&E (Pyx (Rymy)) (z,y)dedy = s .

where |e] < 200(h? + 50s%)s(|m;|) /(7T R?).
Equation (8): To establish this equation, we integrate first over x:

R
//Q RO, (Py+ (Rymy)) () drdy = R / [(Box (Rom) ()l dy.

—-R

Then, we use Fubini and integrate over y:

R / [(Box (Rem)) ()" dy

“R
1 R 1 f
S St t ¢ d dt, dt
5 //Am(1 2) [R(x 1)/Rd(:v—t1,y—t2)3 ?JL_R 1dls
_2{my)

=7
Equation (9): by remarking that 0,(P, x (Rim;)) = 0,(P * (Ram;)), we observe that

the case j = 1 is actually the same as Equation (7) with j = 2. Regarding the case j = 2,
we first integrate over y and then use Fubini:

+ O(1/R?).

//QR 2 0y (B x (R my)) (2, y) dz dy

1 R y—to f
= — my(t1,t T dz | dt; dt
2w Jf e (/ Feewerl i ) vl

_ —{tamy)
TR\V?2

+ O(1/R%).



Proof of Equations (1), (2) and (3). First of all, we observe that

2
- Bz(xay7 h) - az (Pz * (Rl ml) + Pz * <R2 m2) + Pz *m3)|z:h (x,y)

Ho
= 83;(Ph * My — Ph* (Rl mg))(x,y) + (9y(Ph * Mo — Ph* (R2 mg))(x,y)

Using Equations (4), (6), (7) and (9), we hence have

//QRsz(x,y, h)dzdy = _T'uo (—(ml) + %ﬂ(mml) —(t m3>)) +O(1/R%.

By permutation of variables z and y we get Equation (2). Finally, using (5), (8) and
their symmetrical formulas when variables z and y are permuted, we have

// RB,(z,y,h)dxdy = j%(mg) + O(1/R?).

3 Technical lemmas

This technical lemma explains how to compose Taylor expansions of order 2 with rigorous
bounds. It will be used several times for the proof of Lemma 4.

Lemma 2. Consider a function g whose Taylor expansion at order 2 is given by g(y) =
bo + by + bay® + €4(y). We suppose that Yy € [—1/2,1/2],|e,(y)| < Bsl|y|* for some
constant Bs. We consider two real numbers a, and as and corresponding bounds Ay and
Ay such that |a1] < Ay and |ag| < Ay. Finally, we consider a function 5 : R — R.

For any x € R such that

) les(@)] < Ag ol
i) |asx® +e4(x)| < Ay |zl
i) 24, |z < 1/2,
we have g(ar1x + asx® + e5(x)) = by + biarx + (bras + beai)a® + e(x) where
le(@)] < 1ba] - lef(x)] + (6A1Azlba] + 883 AY) ||,

Remark that condition i) can sometimes conveniently be replaced by 2As |x]? < Aylz]
since that condition together with condition i) imply condition ii).

Proof. Let x be a real number satisfying the three conditions. From the definition of g,
we get

e(z) = bief(z) + by (2a17 + agz® + e5(x))(agx® + e4(x)) + g4(a1x + agz® + e4(x)).

Triangle inequality and point i), we get |asa® + €f(x)] < 2A4s]x|*. Moreover, triangle
inequality and point ii) show that |2a12 + asz® + 4(2)| < 2A4;|z| + A1|z| = 3A;|z|.

The same argument shows that |ayz + agz?® + ()| < 2A;|z| which is smaller than 1/2
by point iii). Therefore, |e,(a12 + asx? + e¢(x))| < B3(24;]x])® = 8Bz A3z |?. O
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The following lemma recalls some Taylor expansions with rigorous bounds for their re-
minders. They will be used in the proof of Lemma 4.

Lemma 3. The following estimates hold:

1 3
Vo € [~1/2,5/8], T3 @) with | @) < 5, (10)
I+z 2 8
1
Vo € [-1/2,1/2], e 1 — 2+ 2% + ex(x) with |ex(x)| < 2|2]°. (11)
2
1
Veel-1/2,1/2], Vita=1+ g - % + eale) with |eo(a)] < S Jof'. (12)
1
Vo e [-1/2,1/2], arctan(x) = x + e4(x) with |e4(x)] < —|x|3. (13)

2

Vo € [-1/2,1/2], argsinh(1 + z) = argsinh(1) + \/_ \/_

&5()

with |es(x)] < —=|z]>. (14)
\/_
Proof.
Equation (10): observe that, for all x > —1,
z 32 T 322 2
" 1—(1—5+T> T+ 1—(1—§+T (1+2)
e1(x) = = ;
' Vit Vitr (1+(1-2+%)T+a)
whence, after simplification,
—40 + 15z — 922 x3
81(.T) - z 3z2 YR
Vitz+(1-2+3%)(1+z) 64
It is easy to see that | — 40 + 15z — 92| reaches its maximum over [—1/2,5/8] at = =

—1/2 where it is equal to 199/4 which we conveniently bound by 50. The polynomial
(1-5+ %)(1 + ) reaches its minimum at 2z = —1/2 where it is equal to 43/64. Finally,
VI+z>/1/2 > 45/64. Altogether we see that |e1(z)] < 2 |z* < |z,

Equation (11): by definition of 5, we have

1 -3
—(1- 3 = .
1+ (1-z+a7) 1+

go(z) =

We conclude by remarking that |1 4+ x| > 1/2 when x € [-1/2,1/2].
Equation (12): by definition of 3, we have

2 3

r T 8—=x T
63($):V1+l‘—<1+§—§> \/l—l——x—i—(1+———).6_4.

Moreover, when z € [—1/2, 1/2] Vitz+1+2 -2 > \/}rl—i—% > & and

3
8 — x| < I, hence |e3(z)| < 15 |2f* < Ll



Equation (13): we observe that, for any ¢ € [—1/2,1/2],

1 ~
=1 t
1+ ¢2 +&lt)
where |g4(t)| = ’1:::2’ < |t|*. Now, for any z € [—1/2,1/2] we have, by integration

between 0 and x, arctan(x) = x + e4(x) where

lea(2)] =

r 1 1
() dt| < Sz < <2
[ aa < glef < e

Equation (14): using Equation (10) we get, for any = € [—1/2,5/8],

3
<fof (2410l ) < lof

Now, for any t € [~1/2,1/2], /1+ (1 +1)2 = vV24/1+t+ % and t + & € [-3/8,5/8].

Hence, using the above expansion,

322

1
s taw

1+«

—1— g + &1(x) with |&1(z)| =

S S (1 ! t2+~<t+t2)) ! (1 t+~(t))
= —— — —+¢ — = — ——+¢
VIFd+6?2 V2 2 4 2 V2 27
where £5(t) = —% + &1 (t+ %) . Since |t +t%/2] < 5|t|/4 for t € [—1/2,1/2] we see that
|£5(t)] < 29]|t]?/16. Integrating between 0 and z, where z € [—1/2,1/2] we get

T x

V2 42

where |e5( 75 Jo gt dt‘ 48f\a:|3 %]w\g This proves the third equation of
the Lemma O

argsinh(1 + z) — argsinh(1) =

Lemma 4. There is a constant C' that depends only on s such that, for any (t1,ts) € A,

1 1 1 t+ty 1 t3+15+4 661ty — 20> 1
=— =+ C— C— 4+ 61 (R, 1y, ta),
dR—t,,R—1) V2 R 22 R 82 o PO )

R —t, 1 11 +5t1—t2 1
(R—t)2+h2 dR—t,R—t) 2 R? 22 R3
33t2 — 3t2 — Gtyty — 10R* 1

+

8\/§ ﬁ+52(R’t17t2)7

R—1

- ty — 1y 1+3t§—t%—2t1t2—2h2 1
argsin .
S\ VR

V2 R 12 'R?
+ 53<R7 tl) t2)7

hy/(R—t1)2 + (R —t2)2 + h? L 2t +ty) 1
t =hV2— 4+ ———F - — + (R, 11,1
arc an( (R—tl)(R—tg) \/_R+ 5 R2+ (R t1,t2).

) = argsinh(1) +

7



where, for any R > C, |01(R,t1,t2)] < (9h2+274s%)s 1 165(R, t1,12)] < (87h?+954s%)s 1

/2 " RE 2 RS’
(113h241287s%)s 1 (136h2+56352)hvV2 1
6] < GRS L o and [6y] < 50 ..

The bounds for |01], |62|, |03] and |04] are not sharp, so we will conveniently use the

following bounds in the sequel: |d;| < w, |09 < w, |05] < w
2 82

and [04] < 50(h;+)h-

Proof. First, we remark that one may find constants C4, Cy, Cs, Cy, Cs5, Cgs, C7, Cg, Cy,

C1o, C11 and C45 that depend only on h and s such that, for any (¢1,t2) € A:

4s 1
> — < = 1
VR>C, 5 <3 (15)
h? 425> 2s
VR> Gy o < (16)
h?+4+s?  2s
(9h? + 274s%)s _ h? + 4s?
> < 1
YR > Cy, 15 < —Im (18)
h? 4 4s®> s
> —_— < = 1
VR = 057 2R2 = R ( 9)
(12h% + 140s%)s _ h* 4 3s?
2h? + 652 s
VR>Cr o <o (21)
(44h* + 478s%)s _ h* + 4s?
VR > Ck, 7 < SR (22)
h?+4s*>  2s
VR>Cy —pr— <% (23)
(3h? + 38s%)s _ h* +2s*
YR > C, S i (24)
8h? + 56352 s
VR > Cy, T < R’ (25)
2hA/2 1
VR MVl (20

We define C' as C' = maX{Cl, CQ, Cg, 04, 05, 067 07, 087 Cg, 010, 011, Clg} and we further
consider an arbitrary R > C' and an arbitrary (¢,t3) € A.
Now,

ty+ty W2+ t3 +t2
(R—t1)2+(R_t2)2+h2:2R2(1_ 1+ 2_|_ + 17 + 2>’

R 2R?

hence d(thintQ) = Ri/i g (—“Et? + hQ;g;r%) where g : y — 1/4/1 +y. Therefore using
Lemma 2 with Equation (10) (Equations (16) and (15) guarantee that the hypotheses of
the lemma are fulfilled) we get

1 1 t, +t t? 4+ 12 + 6ttty — 2h?
(1+1+2+1+2+ 102

_ th,t
dR—t;,R—t5) RV2 2R 8R2 )+€6(R’ v he)



where |eg(R, t1,12)| < %. This proves the first equation of the lemma.

Besides, let us remark that (R — t;)® + h? = R? (1 — 2% + hQRJ;t%) Therefore, using

Lemma 2 with Equation (11), we get

(R—t)2+h> R?

1 1 2t 32 —h?
(1 El + 1RT+57(R, tl,t2>>

with |e7(R, t1,t2)] < %%82)5. The hypotheses of Lemma 2 were satisfied thanks to

Equations (17) and (15).
Altogether, we get

R—t, 1
(R—t1)2+h dR—t;,R— 1)

1 to 2t; 3t — h?
- (1-2) (1+2 Rt t
RQ\/ﬁ( R)( TR TR Talknt)

ti+to 12+ 1t2 4 6tity — 2R
<1+ L2, T 2 +e6(R, t1,t2) | .

2R 8R?

3t2—h? t24+t2+6t1to—2h>
Let us define A; = 20, Ay = 210 + e7(R, ty,t5), By = 2 and B, = 1522020

e6(R, t1,t2). With these notations, we have

' = 1-=|14+A+A)(1+B+B
(R—1t1)2+h% d(R—1t,R—1t3) R2+2 ( R) (L4 A1+ A2)(1 + Bi + By)

1 , 5t; — to N 33t7 — 3t2 — Gt1ty — 102
R2\/2 2R 8 R2

where 58(R, tl,tQ) = €6<R, tl,tg) + €7(R, tl,tg) — %(AQ + BQ) + AlBQ + AQ(Bl + BQ) —
2 (A1 4+ Ay)(By + By). Now, using Equation (18), we see that |B;| < hZE%SQ and then,
with Equation (19) we get | By 4 By| < 2. Similarly, Equation (20) leads to [As| < %;;2652

and then Equation (21) gives |A; 4+ As| < 32. Collecting all these results we get

+ é\8(R7 tl? tZ))

(87h? + 9545%)s
4R3

les(R, t1,t2)| <

which proves the second equation of the lemma.
t24+h2

In order to prove the third equation, observe that /(R — t)2 + h? = R\/l — 22 4 2
whence, using Lemma 2 and Equation (10) (which is legitimate because of Equations (17)

and (15)),

VEB—t)2+hr2 R

where |eg(R, t1,12)| < %. Therefore we obtain

TR T

1 1 ty  2t2 — h?
(1 2 2 + £':9(}%; t17t2))

R—t to —t 22 — 2tity — h?
1 :1+ 2 1+ 2 122
V(R —t5)2 + h? R 2R

+e10(R, t1, t2)



where |e19(R, t1,12)| = ‘—%—1— (1—%)eo(R, tl,t2)‘ < %. To get this

upper bound, we roughly bounded ’1 — E| by 2 using Equation (15). Finally, using
Lemma 2 and Equation (14) we get

) R—1
argsinh
NN

where

to —t;  3t3 — 2ty — t2 — 2h?

RV?2 4R2\/2

+511(R7 tla t2>7

) = argsinh(1)+

(113h? 4 1287s%)s
2R3\/2

using Equation (22) and

(44h? + 4785%)s N (3h% + 925%)s
R? 2R3\2
h2+4s2
2R?

we bounded 2%}423 by 2 using Equation (23). Moreover, we used argsinh(1) < ﬁi‘

To prove the last equatlon, we first use Lemma 2 with Equation (12) (checking the
hypotheses of the lemma with Equations (16) and (15)) to get

le1n (R, ty,t)] < argsinh(1)

<

In order to apply Lemma 2, we bounded |e19(R, t1,t2)| by

ty + to N t2 — 2tyty + t3 + 2R3
2R 8 R?

VR—1t)2+(R—t)2+h2= R\/_( +512(R,t1,t2)>

where |e12(R, t1,t2)| < % We can truncate this expansion as

b1 + 12
2R

VR—t)2+(R—t)2+h2= R\/_< +51;(R,t1,t2))

where |e12(R, t1,t3)] < hQQE%SQ thanks to Equation (24).

On the other hand, using Lemma 2 with Equation (11) (checking the hypotheses of the
lemma by repeated use of Equation (15)) we get

h h < t1+t2+t§+t1t2+t§

TR R.ty,t
(R—t1)(R—t) R? R R2 +e13(R, t1, 2))

where |e13(R, t1, )] < 19" This expansion can be truncated as

h h tl"‘tz __
=72 (1 R, ty,t
(R—t1)(R—ty) R? ( + R + e3(R, i, 2))

where [55(R, 1,12)| < 35 + 1 5 < B
Multiplying both expansions we see that
h\/(R_t1)2+(R—t2)2+h2 B hy/2 - t 4ty

(15).

+ 814(R, tl, tz)) s

where

514(R7 tl; t2> - é\/IQ(R7 tl) t2) + éf’)(R7 tl; t2)

t1+t __ t1+1t —
+ (— 12R 2 +€12(R,t1,t2)) ( ! 7 2 +€13(R,t1,t2)) .

10



From Equation (16) we see that |e12(R, t1, t2)| < 2% and from Equation (15), |e13(R, t1,t2)| <
féls%‘ Therefore |e14(R, t1,t2)| < %'
Now, by Equation (13),

hy/(R—11)2 + (R — t2)2 + h2 hV2  (t) +ty)h2
arctan = + +e15(R, ty,t
( (R—tl)(R—tg) 15(R, 1, t2)

R 2R?

where

hv/2 hv/2 t+t
e15(R, b, t2) = 0 e1a(R,t1,t2) + &4 ( I ( + 12R 2 +eu(R, tlatQ))> :
Finally, thanks to Equation (25), (R, 4, tg)} < 2 that we roughly bound by 1
thanks to Equation (15). Now the argument of €4 is less than 1/2 in absolute value
thanks to Equation (26), so we can use the bound given in Lemma 3. This concludes the
proof. O]

As a direct corollary of the previous Lemma, we obtain asymptotic expansions of impor-
tant integrals:

/R dy _ y—1 1 "

“rA(R—t1,y — )’ (R—t:1)>+h* dR—t1,y—12)],_ g

 R—t 1 N R+t 1

S (R—t1)2+h? d(R—t,R—ty) (R—1)2+h? dR—1t,R+1)
2 1 5t 1 33 —3t3-10n% 1

V2 2R R NG " R4

where [05(R, t1,t5)| < 100(h2 + 10s2)s/R® for any R > C and any (ty, ) € A.
By replacing t; with —t;, we also have

+(52(R t1,t2),

R 2 2 2

d 2 1 5t 1 33t; — 3t; — 10h* 1 ~

/ d . L P — + 02(R, —t1, ta).
dR+t,y—1)* V2 R 2 R 42 R

Accordingly,

/R (y —to)dy _ [ —1 ]R

R d(R—tl,y—t2)3 d(R—tl,y—tg) y=—R
1 1

d(R—t,,R+ty) d(R—t;,R—1,)

—ty 1 3tqt 1 ~
= '__i'_+61(R7t17t2>

where |01 (R, t1, t2)| < 100(h% + 50s%)s/R* for any R > C and any (t1,1,) € A.
And, by replacing t; with —t;, we also have

/R (y—ta)dy 1 3ty 1
rdR—ty—1) V2 R2 22 R

11

+ 51(37 —t1,12).



Another important integral is [ _RR | _RR m dy dx and can be explicitely obtained by

R

/ / 37_t1_3j2_t2) dyde = /_Z {d(w—;’ly—b)L_R &
((y — t)? +h2 1/2/ \/

dx

1
t h2 1/2) +
((y—t2) + y=—R

= - Hargsinh (((y — Z);ilhz)m) }j:R] :=R

—4ty 1 <~
= 2 '_+53(R7tlyt2)

N

where |05(R, t1,t2)] < 200(h2 + 50s2)s/R® for any R > C and any (ty, ) € .A
Finally, the last important integral is related to Poisson’s kernel: [ _RR | _RR m dy dx.
It can be explicitely obtained by

R R
—t 1
/ / s dydr = [/ y 22) 5 de] .
t1, —t2) -R ($_t1) +h d(m—tl,y—tg) y=—R
Now, succesively performing the changes of variable tan(t) = m, u = sin(t)

@ we see that

/R (y — t2) 1 . /fy<R> dv
R (l’—t1)2+h2 d(ﬁ—tl,y—tg)?’ h fy(—R) 1—|—U2

where f,(z) = 5 - %. Finally, using the formula arctan(z) = 7 — arctan(1/x)

that holds for any x > 0, we get

/ / dydx:2—ﬁ—4\/§}%+&(}%,t1,t2)

t17 - t2)3 h
where |04(R, t1, )| < 200(h2 + s%)h/R3.

and v =

12



