
SCiPX: Developer’s Guide

Jean-François Le Tallec

Abstract

The purpose of this document is to describe the internals of the SCiPX
tool, to give some advices and prerequisites to be able to modify/extend
it.

1 Introduction

SCiPX stands for SystemC to iP-Xact extraction tool. It takes as an
input a SystemC-TLM [IEE05, Ayn09] design and produces the architec-
tural view of this design in the IP-Xact [IPX] format linked to IP-Xact
components definitions. It can also be seen as a partial IP-Xact pack-
ager for components. To do so, SCiPX relies on two different approaches.
The first one uses the source code analysis tool Doxygen to produce the
footprint of a SystemC components in the xml format. The second one
uses a slightly modified version of SystemC 2.2 to stop the execution of
a SystemC program, built from the SystemC design, exactly when the
elaboration phase of the design is finished. Then, SCiPX merges the dif-
ferent informations in order to produce an IP-Xact model of the design
and the different Components models used by the design. Further in-
formation about inner techniques can be found in the first paper about
SCiPX [LTDS+11] or in the French thesis [LT12].

2 The tool’s compilation

SCiPX tool relies on different already existing tool/library to be able to
process the whole analysis. The installation is fully handled thanks to
bash script and is detailled in the “Getting Started” document. However,
the developer should want to be aware of the different installation steps.
The main script install.sh invokes the install-lib.sh script (available in the
script directory). The installation script extracts tar-ball files available in
the external directory then compiles and installs them in the ”locallib” di-
rectory when needed. The Makefile.root file is created during the process.
In the end, this file contains path to all needed libraries. If the installa-
tion fails at some point, the file can be corrupted (lack of specific path).
If everything goes well during the installation, Makefile.root should con-
tains the following Environment variables: ROOT DIR, SYSTEMCINST,
DOXYGENINST, TLM2INST, SCIPXINST, XSDCXXINST. All these
paths will be sourced by the standard ”Makefile.global” (in the example

1



directory) to be able to compile a SystemC program. SYSTEMCINST
is the path to the slightly modified SystemC 2.2 library. Modifications
are detailed in the section 3. DOXYGENINST is the path to a specific
version of Doxygen tool. It will be used to perform static source code
analysis. For that purpose, the Doxygen tool is compiled plus a specific
add-on intended to ease the exploitation of Doxygen output. TLM2INST
is the path to the template tlm 2.0 library, SCIPXINST is the path to the
SCiPX source code and XSDCXXINST is xml to C++ parser/serializer
library. The figure 1 highlights dependencies between both of them.

SCiPX sources

SystemC Designs Locallib

Doxygen lib

SystemC TLM examples

TLM 2.0 lib

SystemC 2.2 libSystemC examples

Doxygen tool

Doxygen parser addon

SCiPX lib

Xsdcxx lib

java tool

exec

exec

Figure 1: Libs dependencies in SCiPX

2



3 The modified SystemC 2.2 version

As introduced in section 1, SCiPX links every SystemC program to a
slightly modified version of SystemC. In this section, we describe each
modification and the motivation to do such a modification.

The first modification is not so important but is needed to be able to
compile SystemC library with not-so-old gcc versions.

#include ” s t r i n g . h”
#include ” c s t d l i b ”

have been added to the file $(SystemC Directory)/src/sysc/utils/sc utils ids.cpp.
All the following modifications intend to ease the access to specific

structures during the execution of a SystemC program. The most impor-
tant one is to be able to stop the execution after the elaboration phase. For
that purpose, an external call to the main SCiPX function has been added
in the following file : $(SystemC Directory)/src/sysc/kernel/sc simcontext.h/cpp.
This function call intends to start the SCiPX analysis, feeding the dy-
namic analysis part with a pointer to the internal SystemC structure
sc simcontext. This specific structure owns references to all objects built
during the elaboration phase. Another step to ease the SCiPX analysis
was to add specific methods to be able to access private members (i.e.
modules, ports, exports and channels). Same kind of methods was added
to the sc module, sc port, sc export and sc prim channel classes. To sum
up, all these modifications do not change class’s structures and only in-
tends to ease the navigation throw the whole design at runtime.

4 The SCiPX Internals

4.1 scipx callback.cpp

The main SCiPX executed function is the scipx callback(sc simcontext*)
function. Such a call appears once the whole design has been instantiated
(i.e. the design remains the same till the end of the execution). It will
process the full analysis via the scipxAnalysis object. Once done, it re-
turns to the original behavior of the SystemC program if the user choose
to start the simulation.

4.2 scipxAnalysis.h/cpp

The scipxAnalysis object is responsible for invoking successively each step
of the SCiPX analysis. The first step is to collect all module’s types used in
the design. This step is done by navigating into the sc simcontext object
and is done by an scipxModuleTypeHandler object. This list of types will
feed the static analysis to be able to retrieve public member names of
each component. The next step is to launch the Doxygen tool on the
SystemC source code with respect to a configuration file which is located
in the external directory. Once done, the analysis result is processed by
the scipxDoxyFileParsing object to extract static information of found
types. Thanks to these information, the scipxGenerateOffsetCode object

3



S
C

iP
X

 l
ib

sc
ip

x
ca

llb
a
ck

 f
u

n
ct

io
n

sc
ip

x
A

n
a
ly

si
s 

o
b
je

ct

1
-b

u
ild

sc
ip

x
M

o
d
u

le
Ty

p
e
H

a
n

d
le

r 
o
b
je

ct2
-b

u
ild

sc
ip

x
D

ox
y
Fi

le
P
a
rs

in
g
 o

b
je

ct

5
-b

u
ild

sc
ip

x
G

e
n

e
ra

te
O

ff
se

tC
o
d
e
 o

b
je

ct

7
-b

u
ild

sc
ip

x
A

tt
ri

b
u

te
N

a
m

e
R

e
co

v
e
ry

 o
b
je

ct

9
-b

u
ild

D
ox

y
g
e
n

 t
o
o
l

3
-e

xe
cu

te

re
co

v
e
re

d
 d

e
si

g
n

1
2

-g
e
n

e
ra

te

ju
ti

ls

1
3

-e
xe

cu
te

7
-f

e
e
d

7
-f

e
e
d

D
ox

y
g
e
n

 fi
le

s

6
-p

a
rs

e

o
ff

se
tF

ile

8
-g

e
n

e
ra

te

1
1

-f
e
e
d

1
0

-p
a
rs

e

e
n

tr
y
 p

o
in

t

4
-g

e
n

e
ra

te 1
3

-f
e
e
d

1
3

-f
e
e
d

IP
-X

a
ct

 fi
le

s

1
4

-p
ro

d
u

ce

Figure 2: SCiPX internal dependencies

produces a C++ file in order to generate the offset of each public member
of each classes. So the next step is compiling and executing this code to
generate the mapping table of each classes/public members/offset. Throw
this step, the offsetFile is created. The offsetFile is a formatted text file
needed to feed the scipxAttributeNameRecovery object. This object is an
interface to the offset mapping. It is then used by the master function
buildsystemStruct of the scipxAnalysis object to produce merge static and
dynamic informations. The whole produced design is then serialized and
lastly processed by the jutils to finally produced the IP-Xact design and
components files. The whole flow is depicted is the figure 2

4



4.3 scipxDoxyFileParsing.h/cpp

The scipxDoxyFileParsing class is the key point to navigate throw static
information. As explain in section 4.2, the first important thing this
class is in charge is to retrieve public member names in order to easily
identify port/export names. The second is to provide an interface to
the static information in order to retrieve, in a generic way, from which
closest mother class is derived a specific port/export and then to be able
to build different set of port/export (i.e. identify directed flows, for more
explanation cf. [LT12]).

4.4 scipxGenerateOffsetCode.h/cpp, scipxAttribute-
NameRecovery.h/cpp

This class intends to generate generic C++ plain text with respect to
the components’ list of the analyzed design and the public members’ list
of each component. It then produces the fakemain.cpp file which is a
concatenation of the original main.cpp file plus a newly generated main
function. The concatenation is explain by the fact that we are going to ask
each class the offset of all their public attribute. It then keeps all needed
dependencies/includes needed without interfering as the sc main is never
called in fakemain.cpp and the default main function became the one we
gave instead of the SystemC one. This main function, once compiled/exe-
cuted, generates a plain text offsetFile. The scipxAttributeNameRecovery
class intends to parse the generated offsetFile. It creates a scipxClassDe-
scriptor object for each class to ease the mapping interrogation. This two
classes are strongly connected. As long as a developer want to modify the
fakemain.cpp generation, a change to scipxAttributeNameRecovery class
could be necessary to stay compatible. In other words, if the offsetFile
format is changed, scipxAttributeNameRecovery will not be able to parse
it anymore.

4.5 systemCXMI.h/cpp, XMI.h/cpp

These two classes have been automatically generated thanks to xsdcxx
tool. Thus, it must not be changed.

References

[Ayn09] Aynsley, John. OSCI TLM 2.0 Language Reference Manual,
July 2009.

[IEE05] IEEE Standards Association. Open SystemC Language Ref-
erence Manual. Open SystemC Initiative, 2005. IEEE Std.
1666–2005.

[IPX] IP-Xact standard IEEE 1685.
www.accellera.org/downloads/ieee.

[LT12] Jean-François Le Tallec. Model extraction for System On
Chip design. PhD thesis, Université de Nice Sophia-Antipolis,
France, 2012.

5



[LTDS+11] Jean-François Le Tallec, Julien DeAntoni, Robert Simone,
Benoit Ferrero, Mallet Frdric, and Laurent Maillet-Contoz.
Combining SystemC, IP-Xact and UML-Marte in model-
based SoC design. In Proc. of the 2011 Workshop on
Model Based Engineering for Embedded Systems Design, M-
BED’2011, Grenoble, France, March 2011.

6


