
SCiPX: a SystemC to IP-XACT converter (v1.0)
http://www-sop.inria.fr/aoste/index.php?page=software/scipx

Jean-François Le Tallec, Benoît Ferrero

January 28, 2011

Contents

1 Introduction 2

1.1 Tool overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Getting started: installation notice 6

2.1 Implementation features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1

http://www-sop.inria.fr/aoste/index.php?page=software/scipx


1 Introduction

1.1 Tool overview

SCiPX is a translator from SystemC code to IP-XACT interface description.
Its goal is to allow to make any SystemC component description become IP-
XACT compliant, and thus available for insertion and plug-and-play assembly
into IP-XACT based virtual platform building environments. SCiPX and its
documentation are available from
http://www-sop.inria.fr/aoste/index.php?page=software/scipx. SCiPX
and its environment are presented in a report paper [1].

SystemC is a language for Electronic System-Level (ESL) design of digital
circuits, and Systems-on-Chip (SoC), available at http://www.systemc.org/

and formalized as IEEE 1666 standard. SystemC design representations may
be provided at several well-de�ned levels. Widely used are the RTL level (for
synthesis) and the TLM level (for high-level simulation). SystemC program
runtime consists of two clearly distinct phases: �rst, an elaboration phase which
consists in actually building the various objects and the global structure of teh
system; a simulation phase, which animates the system built in the previous
phase, whose structure then remains static and unchanged.

IP-XACT is an Architecture Description Language (ADL) meant for easy
assembly of IP-component based Hardware Virtual Platforms (VPF). The el-
ementary component bahavioral content may eventually be provided in HDL
form, for instance as SystemC source code (but not necessarily so). IP-XACT
is available from http://www.accellera.org/activities/ip-xact, and doc-
umented as IEEE 1685 standard. IP-XACT allows for various types of propri-
etary annotations as so-called "vendor extensions".

SCiPX extracts structural information from SystemC programs, both by
running their elaboration phase (in C++, using the dedicated C++ libraries of
SystemC), and by performing static analysis (mostly for naming informations).
Results from both types of extractions are then reassembled into IP-XACT
compliant syntax.
For this, SCiPX builds up on top of existing softwares:

• the analysis and extraction during elaboration phase borrows partly from
PinaVM, an academic tool developed at VERIMAG laboratory in Greno-
ble, available at http://gitorious.org/pinavm and described in [2];
PinaVM in turn was itself based on the LLVM C++ compiler infrastruc-
ture (http://llvm.org/); It provides translation into dedicated format
for formal analysis tools mostly. A survey of similar tools for analysis of
SystemC elaboration phase is conducted by the authors of PinaVM in [3]

• SCiPX also internally relies on the Doxygen environment (http://www.
doxygen.org/) for abstract syntax analysis of C++ and SystemC code.

2

http://www-sop.inria.fr/aoste/index.php?page=software/scipx
http://www.systemc.org/
http://www.accellera.org/activities/ip-xact
http://gitorious.org/pinavm
http://llvm.org/
http://www.doxygen.org/
http://www.doxygen.org/


The current version of SCiPX uses PinaVM, LLVM version 2.7 , and Doxygen
version 1.6 . The translator can be applied as a stand-alone command process.

Figure 1: Global Flow

SCiPX is connected to further model transformations, this time between IP-
XACT and the OMG standard pro�le for Modeling and Analysis of Real-Time
Embedded systems (MARTE), available at http://www.omg.org/omgmarte/.
These companion tools, named Marte2IPXACT and IPXACT2Marte re-
spectively, are also availlable from our software download site (http://www-sop.
inria.fr/aoste/index.php?page=software). They require the use of a MARTE-
compliant UML editor to display and interact with the MARTE description,
such as Papyrus by CEA-LIST, http://www.papyrusuml.org/.
The purpose of such translations is to link the IP-XACT standard for hard-
ware IP-component based virtual platform construction to professional tools
for UML/SysML-based Model Driven Engineering (MDE), thereby allowing so-
phisticated handling of property annotations (such as SWaP: Size/Weight and
Power info) in a much more fancy and standardized way than current vendor
extensions. The global transformation approach is pictured in 1.

SCiPX modi�es PinaVM back-end to produce IP-XACT compliant archi-
tecture descriptions. Because some of the naming information is lost across the
underlying LLVM (together with several other minor things), another process-
ing is run in parallel to recover the needed parts by static analysis on the original
SystemC programs using Doxygen. Collaboration betwen the two processings
ensures that the results are then pasted at the proper place.

So far SCiPX translates from RTL code to the equivalent level of interface
and structure declaration in IP-XACT. Extension towards TLM level is well
under way, currently tested in beta-release. The various steps of SCiPX are

3

http://www.omg.org/omgmarte/
http://www-sop.inria.fr/aoste/index.php?page=software
http://www-sop.inria.fr/aoste/index.php?page=software
http://www.papyrusuml.org/


displayed in 2.
Future steps in our development will include the extraction of component

behavioral parts from SystemC directly into model form expressed as UM-
L/MARTE descriptions, or conversely the production of SystemC code from
abstract Models of Computation and Communications (MoCCs) provided in
MARTE. This is made possible because of the possibility o�ered by MARTE to
annotate precisely the UML bahavioral diagrams (state and activity diagrams
mostly) to endow them with the precise operational semantics of hierarchical
Mealy FSMs, SDF or Kahn Proces Networks, and other such modeling frame-
work recognized in the SystemC literature as a goal for design.

4



SystemC
 source code

Doxygen
(GPL)

Serializer
(PinaVM backend)

XML
Component

files

CPP
file

Class infos
extraction code

generation

ECore/IP-XACT generation

TXT
file

LLVM
compilation+execution

XML
Design

file

eCore/IP-XACT
files

IP-XACT
files

Final IP-XACT generation

Figure 2: Transformation steps in SCiPX
5



2 Getting started: installation notice

Warning : Currently the prototype SCiPX version runs only under Debian Linux
32 bits (check the actual distribution page for new versions). Otherwise people
should install a Linux virtual machine on their computer.

Step 1 Prior to SCiPX installation one needs to install several interdependent
Debian package. This is done by the command

$sudo apt−get i n s t a l l autoconf graphviz b i son f l e x
l i b x e r c e s−c−dev xsdcxx

Step 2 Then one can proceed to download the SCiPX.tgz �le from the down-
load site
http://www-sop.inria.fr/aoste/software/scipx/download/.

Step 3 Decompresing this �le (typing tar xvzf SCiPX.tgz for instance) will
create �les under the root SCiPX subdirectory. This hierarchy contains a
modi�ed version of PinaVM. It consists of source �les which should then
be compiled.

Step 4 Next, one should provide the absiolute path-name of the tool's instal-
lation directory by replacing teh value of the Unix variable $TOOLSDIR

$cd SCiPX
$autoconf
$export TOOLSDIR=${PWD}INSTALLDIR
$ . / c on f i gu r e −−with−t oo l s−d i r=$TOOLSDIR

Step 5 Actually run the installation script (which should take a couple of min-
utes)

$ . / i n s t a l l −pinavm . sh

Step 6 The tool location should then be added to the general $PATH variable.
Then PinaVM requires to rerun its installation (with all UNix variables
set).

$export PATH=$PATH:$TOOLSDIR/ l i b / llvm−gcc /bin :$TOOLSDIR
/ l i b / llvm −2.6/ bin
$ . / i n s t a l l −pinavm . sh

Now SCiPX is successfully installed. It can be tested by running a small
toy example (simple_example) :

$cd systemc−examples / simple_example ;
$make

6

http://www-sop.inria.fr/aoste/software/scipx/download/


The result of the .make command will produce a hierarchy of IP-XACT
.xml �les from the .cpp �les of the SystemC design, stored in a spirit

folder.

2.1 Implementation features

We describe now some of the internals of SCiPX. This should be read carefully
by anyone who wishes to enter or modify the source code of SCiPX.

Ecore meta-models of both SystemC and IP-XACT models have been devel-
oped. They can be provided on demand. Please contact us (see the download
page).
From the SystemC Ecore meta-model an .xsd schema for XMI is automatically
generated, thanks to the integrated genmodel of Eclipse. This .xsd has been
modi�ed to handle the addition of references, converted into c++ classes and
structures thanks to the xsd tool. Possible modi�cations should not alter this.

Our reference .xsd �le can be provided on demand. The xsd tool can be
retrieved by the command:

$sudo apt−get i n s t a l l xsdcxx

If ever the .xsd �les get modi�ed, the new corresponding c++ �les are built by
running :

$xsd cxx−t r e e −−generate−s e r i a l i z a t i o n −−namespace−map
' http :// f r . i n r i a . aos t e . systemc '= 'pinavmv2_ns '
systemCXMI . xsd

Then the .cxx �le should be renamed into .cpp, and copied in
SCiPX/backends/XMLBackend folder. This folder actually contains most of the
�les which could be modi�ed. In particular, it contains all methods and classes
to genrate the IP-XACT objects. Note that all �elds are mandatory in these
classes.

Recompilation of SCiPX (after modi�cation) can be done by runing make

under the SCiPX/toplevel subfolder.

7



C++ source
for the serializer

C++ compiler

eCore
file

ecl

PinaVM
source

Serializer
(PinaVM backend)

C++ source
for the classes

XSD

SXML

Figure 3: Production of the serializer

8



References

[1] Jean-Francois Le Tallec, Julien DeAntoni, Robert de Simone, Benoit Fer-
rero, Frédéric Mallet, and Laurent Maillet-Contoz. Combining systemc, ip-
xact and uml-marte in model-based soc design. In 2nd Workshop on Model
Based Engineering for Embedded Systems Design (M-BED 2011), Grenoble,
France, 2011.

[2] Kevin Marquet and Matthieu Moy. PinaVM: a SystemC Front-End Based
on an Executable Intermediate Representation. Technical Report TR-2010-
8, Verimag, 2010.

[3] Kevin Marquet, Matthieu Moy, and Bageshri Karkare. A Theoretical and
Experimental Review of SystemC Front-Ends. Technical Report TR-2010-4,
Verimag, 2010.

9


	Introduction
	Tool overview

	Getting started: installation notice
	Implementation features


