

Using Grids in Industry The example of EADS

French/UK workshop on GRID Computing

Guillaume ALLEON EADS Corporate Research Center guillaume.alleon@eads.net

Outline

Company presentation

Why Grids are of interest for us

Some ongoing projects

Conclusions

EADS: A worldwide competition

EADS: Research sites (testbed for Grid computing)

Corporate Issues

- Technical Computing environment more and more complex
- Must cut budget in R&D and Innovation
- Access computing resources anywhere, anytime
- Must optimize resources, data sharing and application sharing

Which grid are we dealing with ?

• <u>Compute Grid:</u>

- seamless access to CPU cycles,
- saved about 100k Euros the first year using Globus during off-peak hours using our existing assets (CAD desktops).

• Data Grid:

- ex CAD databases
- more benefit expected

Improved Collaboration

Virtual organizations

The response of On Demand Computing

• Gain peak performance when needed by using (momentarily) idle resources

• Make better use of **IT** investment

• Shorten development cycles and time to market

Model, Optimize, Analyze

EADS

Non optimized resource usage

UK FR DE Users Jobs Local Resources

Optimized resource usage

What are the benefits for EADS? Lowering the total cost of IT ownership

• Monitors and controls use of computing resources for your enterprise virtual infrastructure. Identifies under-utilized, overutilized and mis-utilized resources. Recommends more efficient architecture configurations based on real needs

Improve Users productivity

• Provides users with simple, web-based, secured access to computing resources 'on demand. Gives projects Managers more Projects Flexibility : On-Demand real-time allocation of Computing and resources to projects without IT usual constraints

SC & Grid added value

• Scientific Computing (and Grids) are used to decrease physical mock-up (especially for certification) ; <u>a factor from 2 to 3 seems possible</u>.

• SC is used to decrease conception margin which have a direct cost (material, mass, ...); <u>30% is a realist target</u>.

• SC unleash the power of your engineers enabling them to study an unlimited number of in-silico configurations – which is impossible through physical testing.

UROGRID Project

- Based on UNiform Interface to COmputing Resources
- Funded by EC (11/2000-12/2003)

- Integrate resources of leading European HPC centres into a European HPC GRID

- Develop new software components for GRID computing
- Demonstrate the Application Service Provider (ASP) model for HPC access ('HPC portal') for different applications
- Contribute to the international GRID development
- www.eurogrid.org
- DWD, ETH, FZJ, IDRIS, ICM, PALLAS, Parallab, UoM, T-Systems & Fujitsu labs

molex simulations ...

• Application specific interface can be provided. They are called <u>plugins</u>.

• There exist a number of plugins for commercial software such as Fluent, Nastran, Star-CD,

• At EADS, this approach has been chosen for interfacing some of our applications mainly in the wave propagation area.

B : 498 B.

• In Acoustic : noise prediction of a nacelle.

The coupled applicatic

A vibro-acoustic application targeted for Airbus cockpit simulations

Grid RMI an ACI grid funded project

EADS CRC involvement in FROD initiatives - EUROGRID

- DAMIEN
- ACI Grid projects
 - GRID RMI
 - CGP2P (use XtremWeb for ray tracing application)
 - GRID TLSE (evaluate Sparse solvers)

RNTL project

- CASPER (Build ASP for scientific applications)

RNTL 2003 & FP6 proposals

- eGuilde, Visage
- SIMDAT, HEAVEN, EUGICA, CCGrid

Room for collaboration

On an application basis

- Wave propagation phenomena (EMC, Acoustics, ...]
- Multi-disciplinary, coupling

Areas of interest (with no particular priority)

 Convergence of Desktop Computing & Clusters (Integration /Heterogeneity)

- Virtual organisations (trust, security, contract Mgt, ...)

- Data Sharing & Knowledge Management

Summary

• Thanks to several projects, it is being used in CRC and should spread to business units,

• Our goals are:

- Improvement in the design, manufacturability and/or maintenance,
- Ease collaboration between discipline,
- Gain insight,
- Lower cost & shorten process cycle time,
- Take advantage of distributed hardware, data & expertise.
- Grids requires investment, investment requires stability i.e. need for standards.

