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Th Semantic Web aims to represent the contents of Web resources in formalisms

that both programs and humans can understand. It relies on rich metadata, called

semantic annotations, offering explicit semantic descriptions of Web resources. These

annotations are built on ontologies, representing domains through their concepts and the

semantic relations between them. Ontologies are the
foundations of the Semantic Web and the keystone of
the Web’s automated tasks—searching, merging,
sharing, maintaining, customizing, and monitoring.

Our work focuses on searching as needed in Web
applications such as digital libraries, Web intelli-
gence, and corporate intranets for knowledge man-
agement. Publishing languages such as HTML let us
retrieve documents on the basis of their presentation
and textual contents. Structuring languages such as
XML or SGML let us access Web resources on the
basis of their data structure. Semantic annotations
improve Web searches by letting us access Web
resources on the basis of their semantic descriptions. 

Here, we address the problem of a dedicated ontol-
ogy-based query language. Ontologies ensure an effi-
cient retrieval of Web resources by enabling infer-
ences based on domain knowledge. However, the
vision of the Semantic Web implicitly relies on the
assumption that an ontology designed to describe a
domain can both annotate and retrieve Web
resources. In reality, this isn’t always the case,
because domain specialists usually build the ontolo-
gies, and users don’t always share or understand their
viewpoints. Users might not use the right concepts—
from an ontologist’s viewpoint—when writing a

query, leading to missed answers. For example, a
user might use commerce instead of business. Or,
perhaps a user asking for a person working on a sub-
ject might also appreciate the retrieval of a research
group working on that subject. 

Consequently, approximate-query processing is
of prime importance for efficiently searching the
Semantic Web. Our Corese ontology-based search
engine handles RDF Schema, OWL Lite, and RDF
metadata, and its query language enables both onto-
logical and structural approximations. Several real-
world projects using Corese illustrate its potential.

Ontology-based Web search 
Ontologies let us take into account, during query

processing, some background knowledge implicit in
the annotations. This comprises subsumption links
between concept types or relation types, signatures
of relations, axioms or rules enabling deductions, and
so forth. This knowledge supports inferences that
improve the matching process’s efficiency.

The following logical model expresses the use of
ontological knowledge in Web search approaches.
Assume we have a model for ontologies, a model for
annotations of Web resources based on ontologies, a
model for queries based on ontologies, and a match-
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ing function defining how a query is matched
with any annotation. In this case, a Web
resource R is relevant for a query Q accord-
ing to the ontology O from which they’re
built if and only if the annotation of R and
the ontology O together logically imply Q
(noted R � O � Q).

We can view the query as a set of constraints
on the description of the Web resources to be
retrieved, which corresponds to a search prob-
lem. The matching function implements the
strategy chosen to solve this problem. It differs
from one search system to another, depending
on the formalism chosen for the descriptions,
the types of query, and the requirements the
results must satisfy. To implement such a
matching function, Corese uses the projection
operator defined in the conceptual graphs for-
malism (www.jfsowa.com/cg/cgstand.htm).1

Corese’s theoretical foundations 
The Corese semantic search engine inter-

nally works on CG. When matching a query
with an annotation according to a shared ontol-
ogy, the search engine translates the query,
annotation, and ontology into the CG model.
CG and RDF Schema models share many
common features, and we established a map-
ping between RDF Schema and a large subset
of the CG model. An in-depth comparison of
both models was our starting point for Corese.

Both models distinguish between onto-
logical and assertional knowledge. Asser-
tional knowledge is positive, conjunctive,
and existential and is represented by oriented
labeled bipartite graphs. Corese translates an
RDF graph G representing an annotation or
a query into a CG. Regarding the ontologi-
cal knowledge, the class (respectively, prop-
erty) hierarchy in a RDF Schema corre-
sponds to the concept (respectively, relation)
type hierarchy in a CG support (an ontology).
RDF properties are declared as first-class
entities such as RDF Schema classes, similar
to how a CG support declares relation types
independently of concept types. This com-
mon handling of properties makes the map-
ping very relevant, as opposed to in an object-
oriented language, where properties are
defined inside classes.

Some differences exist between RDF
Schema and CG models in their handling of
classes and properties, but we can easily man-
age these differences. The declaration of a
resource as an instance of several classes in
RDF can be translated in the CG model by gen-
erating the concept type corresponding to the
most general specialization of the concept

types translating these classes. Similarly,
Corese can translate an RDF property’s multi-
ple domain (respectively, range) constraints
into a single domain (respectively, range) con-
straint in CG by generating the concept type
corresponding to the most general specializa-
tion of the concept types constraining the
domain (respectively, range).

As a result, searching RDF Schema
through CG consists of compiling the CG
support’s type hierarchies, associating a
compiled type to each resource, and using
the CG model’s projection operation for an
optimized query processing based on com-
piled type hierarchies.

This projection operation is the basis of
reasoning in the CG model. A CG G1 logi-

cally implies a CG G2 if and only if it’s a spe-
cialization of G2 (noted G1 ≤ G2). A CG G1 is
a specialization of G2 if and only if a projec-
tion of G2 into G1 exists such that each con-
cept or relation node of G2 is projected on a
node of G1. This node’s type must be the same
as the type of the corresponding node of G2 or
a specialization of it, according to the con-
cept- and relation-type hierarchies. 

Corese retrieves the resources that have a
projection of the query graph onto their anno-
tation graphs. For example, the following query
graph lets us search for science resources and
their authors:

[Document:*]-
-(createdBy)-[Person:*]
-(subject)-[Science:*]

When processing this query, Corese retrieves
a professor’s book about social science
annotated with the following graph, upon
which there’s a projection of the query
graph:

[Book:#book9638]-
-(createdBy)-[Professor:#david-dupond]
-(topic)-[SocialScience:*]

The node [Document:*] is projected onto
[Book:#book9638]}, Book being a subclass of Doc-
ument in the ontology and the URI #book9638
specializing the generic referent *—likewise
for the Person and Professor nodes and the Science
and SocialScience nodes. The (createdBy) node is
projected onto its counterpart, and (subject) is
projected upon (topic), a subproperty of subject
in the ontology.

The Corese ontology 
representation language

Corese’s first ontology representation lan-
guage was RDF Schema. We’ve progres-
sively extended the language to handle some
major features of OWL Lite. We chose RDF
Schema mainly because the first implemen-
tations of Corese with RDF Schema came
before OWL. However, the different projects
experimenting with Corese have shown that
RDF Schema’s expressivity is sufficient in
many applications—if extended with infer-
ence rules and approximation in the query
language. We think that OWL Lite features
are sufficient to handle most knowledge rep-
resentation problems encountered in Seman-
tic Web applications. Corese provides OWL
value restrictions, class intersection, sub-
classes, and algebraic properties such as tran-
sitivity, symmetry, and inverse. It also pro-
vides annotation, versioning, and ontology
OWL statements. Corese doesn’t yet provide
loops in a subsumption hierarchy or state-
ments from OWL such as cardinality restric-
tions, property and class equivalences, or the
sameAs statement.

These extensions to OWL features are
based on domain axioms, and Corese inte-
grates an inference engine based on forward-
chaining production rules. Corese applies the
rules once it loads the annotations, before
query processing, so it enriches the annota-
tion graphs before projecting the query graph.
This is the key to Corese’s scalability to the
Web application in which we’ve used it. 

Furthermore, Corese implements CG
rules. For instance, the following CG rule
states that if a person ?m is head of team ?t,
which has a person ?p as a member, then ?m
manages ?p:

[Person:?m]-(head)-[Team:?t]-(hasMember)-
[Person:?p] => [Person:?m]-(manage)-    
[Person:?p]
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A rule G1 � G2 applies to a graph G if
there’s a projection � from G1 to G2. The
resulting graph is built by joining G and G2

while merging each �(xi) in G with the cor-
responding xi in G2. Joining the graphs might
lead to specializing the types of some con-
cepts or to creating new individual concepts
or relations between concepts.

We based the Corese rule language on
RDF’s triple model. For instance, the CG rule
we just presented translates this Corese rule:

<cos:rule>
<cos:if>

?m rdf:type s:Person
?m s:head ?t
?t rdf:type s:Team
?t s:hasMember ?p
?p rdf:type s:Person

</cos:if>
<cos:then>

?m s:manage ?p
</cos:then>
</cos:rule>

Corese RDF query language
A query is either a triple or a Boolean com-

bination of triples. For instance, the following
query retrieves all the persons (line 1) with
their names (line 2) who are authors (line 3) of
a thesis (line 4) and returns its title (line 5):

(1) ?p rdf:type kmp:Person
(2) ?p kmp:name ?n
(3) ?p kmp:author ?doc
(4) ?doc rdf:type kmp:Thesis
(5) ?doc kmp:Title ?t

The first element of a Corese triple is a vari-
able or a resource-qualified name (XML
qname); the second is either a property qname,
variable, or comparison operator; the third is
a variable, value, or resource qname. Class and
property names are qnames whose name-
spaces are either standard and denoted by pre-
defined prefixes (rdf, rdfs, xsd, owl, and cos for the
Corese namespace) or user-defined prefixes—
for example, dc as http://purl.org/dc/elements/1.1/.

Variable names begin with a question mark.
Values are typed with the XML Schema data
types: numerical, xsd:string, xsd:boolean, and
xsd:date. We can specify the language of the lit-
eral’s value using an @ operator and the con-
stants defined for xml:lang. For instance, we can
request that a thesis’s title be in English using
?doc kmp:Title ?t@en. 

The comparison operators for equality and
difference (=, !=), ordering ( <, <=, >, >=), and

string inclusion and exclusion (~, !~) let us
compare a variable with a constant or another
variable. For instance, we can state the title
must include the term “Web” using ?t ~ “Web”.

Type comparators (<:, <=:, =:, >=:, >:) and
combinations with the ! (negation operator) let
us specify constraints on some types in a query.
For instance, we can constrain the document
to be a strict specialization of a thesis (such as
a PhD or an MSc thesis) using ?doc <: kmp:Thesis.

By default, a list of triples is a conjunc-
tion. The or and and operators with parenthe-
ses let us combine conjunctions and dis-
junctions in a query. Corese handles such
queries by transforming them into disjunc-
tive normal form, processing each conjunc-
tive subquery and juxtaposing the results.

The Corese query language supports
queries on ontologies just as it does on anno-
tations because RDF Schemas are RDF
graphs. For instance, the following query
retrieves the properties whose domain is a sub-
class of kmp:Document:

?p rdf:type rdf:Property
?p rdfs:domain ?c
?c rdfs:subClassOf kmp:Document

Some SQL-like operators customize the
presentation of the retrieved answers. By
default, a Corese query returns all the vari-
ables’ values. A select operator lets us list the
values desired in the answers. For instance,
we can choose to only return the documents’
title and authors using select ?t ?n. 

A group operator lets us group the retrieved
answers according to one or more concepts
instead of separately listing answers about
the same concepts. For instance, when look-
ing for documents on a specific subject writ-
ten by an author, a group on the ?doc variable

will avoid returning a document written by
several authors for each of the authors.

A count operator, combined with group,
counts the different answers retrieved. For
instance, to count the number of documents
written by a person, Corese applies count to
the variable ?doc and group to the variable ?p.
Finally, we’re integrating SPARQL syntax for
the query language into Corese.

Approximate Semantic Web
search

We have extended Corese’s core query
language to address possible mismatches
between end-user and ontologist concepts.
Corese can cope with queries for which no
exact answer exists by approximating the
query’s semantics, structure, or both.

Ontological approximation              
The first principle of the Corese semantic

approximation is to evaluate semantic dis-
tances between ontological types. On the basis
of this ontological distance, Corese retrieves
not only Web resources whose annotations are
specializations of the query but also those
whose annotations are semantically close.

Ontological distance. To evaluate concep-
tual relatedness, Corese relies on the ontol-
ogy’s structure. In CG, structured-based dis-
tances are the key to defining a nonbinary
projection—for example, a similarity S: C2

� [0,1], where 1 is the perfect match and 0
the absolute mismatch. Corese uses such a
similarity to carry out approximate search.

We start with the fact that in an ontology,
low-level classes are semantically closer than
top-level classes. For example, TechnicalRe-
port and ResearchReport, which are broth-
ers (that is, subclasses of the same class) at
depth 10, are closer than Event and Entity,
which are brothers at depth 1. So, we want
the ontological distance between types to
decrease with depth. 

To capture this, let the length of a sub-
sumption link (t, t’ ) between a type t and one
of its direct super types t ’ in an inheritance
hierarchy H be , where dH(t’ ) is the
depth of t’ in H. Because of multiple inheri-
tance, dH refers to the maximal depth (with
dH(T) = 0, �x �H, dH(x) � dH(	), and �(x, y)
� H2, y < x � dH(y) < dH(x); T and 	 being
the hierarchy’s root and the bottom).

Then we define the length of a subsump-
tion path between a type t1 and one of its
supertypes t2 in an inheritance hierarchy H
as the sum of the lengths of the subsumption

1 2d tH ( )′
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links making up this subsumption path:

Finally, we define the ontological distance
between two types as the minimum of the
sum of the lengths of the subsumption paths
between each of them and a common super-
type:

DH (t1, t2) = min{t 
 t1, t 
 t2}

(lH (< t1, t >)
+ (lH (< t2, t >))

We proved that DH is a semidistance, a dis-
tance that doesn’t match the triangle inequal-
ity in the general case.2

Contextual closeness. The ontological dis-
tance between two classes isn’t always suffi-
cient to render the closeness of some concepts.
We’ve encountered cases where concepts are
distant in the ontology but share some features
that make them close from the search view-
point. For instance, in the O’CoMMA ontol-
ogy, KnowledgeDissemination, which is in the
Activity viewpoint, and KnowledgeEngi-
neering, which is in the Topic viewpoint, share
some semantics that the rdfs:subClassOf link
doesn’t express. When querying for Knowl-
edgeDissemination, a user might want to
retrieve KnowledgeEngineering resources in
case of failure. Similarly, some properties
might share a semantic proximity such that it
makes it desirable to authorize the occurrence
of one of them instead of the other when
matching a query with an annotation.

Corese can express relatedness using the
standard rdfs:seeAlso property. It can add this
property to any existing RDF Schema. So, it
can parameterize a given ontology to better
fit a specific Web search task or a particular
user class. This addition not only improves
browsing capabilities but also shortens the
semantic distance and tunes approximate
matching. It’s worth considering having the
subclasses and subproperties inherit the
rdfs:seeAlso property. So, any Corese ontology
has the following rule for classes (and the
equivalent one for properties):

?x rdfs:seeAlso ?y
?z rdfs:subClassOf ?x
=> ?z rdfs:seeAlso ?y

Approximate projection. On the basis of the
ontological distance, Corese distinguishes

between exact answers for which there exists
a projection of the query upon the answers’
annotations and approximate answers for
which there exists an approximate projection
of the query upon the answers’ annotations.
These annotations have a structure upon which
the query can be projected, but their concept
and relation types aren’t necessarily subsumed
by those of the query: they are considered “just
close enough” to them in the ontology. 

Formally, we define an approximate pro-
jection from a CG G = (CG, RG, EG, lG) to a
CG H = (CH, RH, EH, lH) as a mapping � from
CG to CH and from RG to RH. This mapping

• preserves adjacency and order on edges,
• might change the labels of concept nodes

to ontologically close ones (the ontologi-
cal distance between a concept type in G
and its projection in H must be lower than
a given threshold), and 

• might decrease the labels of relation nodes
or change them to contextually close ones
(for which a seeAlso property stands).2

Corese authorizes a class’s approximation
by potentially any other class of the ontology,
whereas for combinatorial constraints, approx-
imating a property is limited to contextual
closeness. Corese thus computes ontological
distances between concept (not relation) types.
The similarity between a resource annotation
and a query depends on the ontological dis-
tances between the types of their concept
nodes. Corese translates contextual closeness
in terms of ontological distances.

Setting an rdfs:seeAlso property between two
concept types c1 and c2 should shorten the
ontological distance between them to a broth-
erhood distance. Consequently, it should
increase the similarity between the two

graphs for which there exists an approximate
projection mapping a node of type c1 in one
graph to a node of type c2 in the other graph.

Setting an rdfs:seeAlso property between two
relation types r1 and r2 is also taken into
account when computing the similarity
between two graphs for which there exists an
approximate projection mapping a node of
type r1 in the query graph with a node of type
r2 in the target graph. The cost of this approx-
imation is proportional to 1/2d, where d =
max(dH(c1), dH(c’ 1))—that is, the maximum
depth of the types c1 and c ’ 1 of the neighbor
concept nodes of r1.

Corese measures the relative relevance of
the retrieved annotations by their similarity to
the query. It presents to the user annotations
whose similarity doesn’t exceed a given
threshold, sorted by decreasing similarity.
This threshold is relative to the query’s best-
found approximation.

Syntactically, the more keyword in a Corese
query’s select clause asks for approximate
answers. In this case, Corese basically approx-
imates every query concept. However, its
query language lets us require the specializa-
tion of some concepts while approximating
others using type comparators. For instance,
using the <=: operator, Corese can retrieve
people interested in knowledge engineering
(or something close) and members of a related
project (or something close):

select more where
?person c:interestedIn ?k
?person <=: c:Person
?k rdf:type c:KnowledgeEngineering
?person c:member ?project
?project rdf:type c:Project

In this query, the class Person or one of its
subclasses is required (by <=:), while  Knowl-
edgeEngineering and Project may be approximated.

Structural approximation
The ontology-based approximation we’ve

described makes up for the possible diver-
gences between the vocabularies. Another
kind of approximation that the Corese query
language supports makes up for the possible
divergences between the annotation struc-
tures and the query structure. In some cases,
the user will search for conceptually related
resources while ignoring how to express their
relationship—in other words, how the anno-
tator has described it. For example, the user
might search for organizations related to
human science, whatever the relationship is.

∀( ) ∈ < >( )
=

∈<

t t H l t tH

t t t

dH t

1 2
2

1 2

1 2
1 2
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This kind of approximation concerns the
annotations’ structure but still remains
semantic. We can view it as the approxima-
tion of a complex relationship that can’t be
represented by a single property and that
requires a graph to define it.

The Corese query language supports such
approximations through the path graph fea-
ture. It lets the user search for resources
related by a relation path graph (made of suc-
cessive binary relations between a series of
intermediate concepts).

We’ve extended our definition of an
approximate projection of a CG G to a CG H
to allow the mapping of a relation node with
a path graph. This extension preserves adja-
cency and order on edges, considering the
graph H’ where the path graphs of H—upon
which relation nodes of G are projected—are
contracted to relation nodes whose types are
defined by these path graphs.2

Syntactically, in the Corese query lan-
guage, the path graph expression must be suf-
fixed by the path’s maximal length. By
default, Corese stops after retrieving one path
(with the shortest length). It computes all
possible paths when the all qualifier prefixes
the relation.

Consider the following query asking for
organizations related to human science by a

(nondirected) relation path of a length less
than or equal to two:

?org all::c:relation{2} ?topic
?org rdf:type c:Organization
?topic rdf:type c:HumanScience

The two following annotations answer the
previous query: they express that the CNRS
institute is interested in human science and
a member of the INRIA institute graduated in
human science.

[Institute:#CNRS]
- (interestedIn)-[HumanScience:*]

[Person:#Alain]
-(memberOf)-[Institute:#INRIA]
-(graduatedIn)-[HumanScience:*]

Corese’s architecture
We developed Corese in Java, and it’s pub-

licly available under the INRIA license at
www.inria.fr/acacia/corese (including Java
packages, documentation, and the GUI).
We’ve also developed a Corese server accord-
ing to a three-tier architecture (see figure 1).

The presentation layer generates the con-
tent that the user’s browser will present
(ontology views and browsing controls,

query edition interfaces, annotation forms,
answers, and so forth). This layer relies on a
model-view-controller architecture to han-
dle HTTP requests and generate responses
fed by the business logic layer’s appropriate
Corese services. The responses are format-
ted using Extensible Style Sheet Language
Transformation or JavaServer Pages tem-
plates. Servlets implement the presentation
layer, which provides

• the front end of what we call a Semantic
Web server—that is, an HTTP server that
can solve Semantic Web queries submit-
ted through HTTP requests; 

• JSP tags to include Semantic Web pro-
cessing and render results in Web pages;

• XSLT extensions to perform Semantic
Web functions related to XPath expres-
sions, thus improving RDF/XML trans-
formation capabilities; and

• a form description language to dynami-
cally build forms using queries—for in-
stance, to populate the different choices of
a drop-down box.

The business logic layer consists of a plat-
form that implements three main services
accessible through an API: a CG server
(using the Notio API, www.cs.ualberta.ca/~
finnegan/notio), a query engine, and a rule
engine. Parsers transform RDF to CG, rules
to CG Rules, and queries to CG graphs to be
projected. The core CG server manages the
CG base, the projection and join operators,
and the type inferences on the type hierar-
chies. A CG-to-RDF pretty printer produces
results in RDF/XML syntax. This layer is an
independent package and provides an API
that developers can use to add Semantic Web
capabilities to their applications.

In the persistent layer, Corese can access
RDF Schema data using the ARP (Another
RDF Parser) parser (www.hpl.hp.com/per-
sonal/jjc/arp), and the RDF-to-CG parser
translates the data. Rules are saved in sepa-
rate files and parsed by the rule parser.

A real-world application
We’ve tested Corese on several real-world,

large-scale applications with ontologies (see
the “Applications” sidebar).3 Here we discuss
how we used Corese to build a knowledge man-
agement platform for a mapping of telecom-
munications skills for Sophia Antipolis firms
(see www-sop.inria.fr/acacia/soft/kmp.html).
To foster synergies and partnerships in the Tel-
com Valley community, the KMP system pro-
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Figure 1. Corese’s three-tier architecture.
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vides a dynamic map of different stakehold-
ers’competencies. The KMP solution relies on
specifying, designing, building, and evaluat-
ing an online customizable service. 

This service is becoming the main com-
ponent of a portal for the community of
industries, academic institutes, and institu-
tional organizations involved in the Telecom
Valley of Sophia Antipolis. The KMP project
is a real-world experiment, and the steering
committee comprises 10 pilot companies —
Amadeus, Philips Semiconductors, France
Telecom R&D, Hewlett Packard, IBM, Atos
Origin, Transiciel, Elan IT, Qwam System,
and Cross Systems.

The KMP provides clustering views to
analyze the competencies in the Telecom
Valley. The screenshot in figure 2 shows one
of these views, also called a cluster. This
cluster presents a distribution of grapes cor-
responding to resources involved in each
competence area (such as telecommunica-
tions or computer science). Each grape con-
tains bubbles representing actions (for exam-
ple, “produce” or “design”) involved. The
integrated RDF Schema data collected then
dynamically generates a scalable-vector-
graphics view, which provides a powerful
representation for analyzing the Telecom Val-
ley’s diversity. The grouping of competen-
cies relies on the ontology-based distance
defined in Corese to evaluate the conceptual
similarities between competencies. 

To test Corese’s approximate reasoning,

at the end of the KMP project, we used a vari-
ant of KMP for an intra-enterprise skills man-
agement scenario. We ran a query for people
who are Java programming experts and are
interested in XML. Such a query might aim
to find profiles for building project teams or
managing mobility in a company. A basic
exact retrieval in the annotation base—a base
comprising descriptions of competencies of
employees in a company—couldn’t answer
this query, but Corese retrieved eight answers.
One exact answer was the result of applying
a domain rule of the ontology, stating that the
author of a thesis on a given subject is an
expert on that subject: Yvonne Duchard
wrote a thesis on Java programming, so she

is considered an expert in that area.
Moreover, Corese extended this answer

using an interesting approximation: in addi-
tion to XML, Yvonne Duchard is interested
in (aware of) the Wireless Application Pro-
tocol, which is close enough to XML for the
semantic search in the ontology. This shows
how Corese supports serendipity. The seven
other answers approximately matched the
query, and two had annotations with the same
similarity to the query. One was an engineer
skilled in both XML and Java programming;
the other was a project manager skilled in
both XML and Enterprise JavaBeans pro-
gramming. In both cases, IsSkilledIn approxi-
mated the IsExpertIn property.

In the main text, we discuss how we’ve used Corese to build a
knowledge management platform for a mapping of telecom-
munications skills in for Sophia Antipolis firms. Other projects
using Corese include the SAMOVAR (Systeme d’Analyse et de
Modèlisation des Validations des Automobiles Renault) system,
which supports a vehicle project memory for Renault. The ontol-
ogy has 792 concept types and four relation types and annotates
4,483 problem descriptions. Corese answers queries such as, “Find
all problems that occurred on the dashboard in a past project.”

The CoMMA (Corporate Memory Management through
Agents) IST project involves a multiagent system for corporate
memory management with two scenarios: integration of a
new employee and technological watch. The O’CoMMA ontol-
ogy comprises 472 concept types and 80 relation types used for
annotating documents or people in an organization. Corese
answers distributed queries over several annotation bases such
as, “Find users who might be interested in the technological
news that was just submitted about GSM v3.”

The Escrire project involves annotating and searching the
Medline database’s genetics abstracts. Corese answers queries
such as, “Find articles describing interactions where the Ubx

gene acts as a target and where the instigator is either an en
or dpp gene.”

The Ligne de Vie project involves a virtual staff for a health
network relying on an ontology comprising 26,432 concept
types and 13 relation types. It guides physicians discussing possi-
ble diagnoses and alternative therapies for a given pathology
according to the patient’s features. It can answer queries such as
“Find the past sessions of virtual staff where they chose a given
therapy for the patient, and indicate the arguments in favor of
this therapy.”

The MEAT (Memoire d’Experiences su l’Analyse due Transcrip-
tome) project is creating a memory of the experiments per-
formed on a DNA microarray, relying on annotations on scientific
articles and using the Unified Medical Language System as an
ontology. Corese answers queries such as “Find all the articles
asserting that HGF gene plays a role in lung disease.”

We’ve also tested Corese with other ontologies such as the
Gene ontology (represented by an RDF graph with 13,700 con-
cept types and 950,000 relations), IEEE Learning Object Meta-
data, W3C Composite Capability/Preference Profiles, and the
Dublin Core.

Applications

Figure 2. Conceptual clustering of the competencies of the Sophia Antipolis Telecom Valley.
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Evaluation
We evaluated Corese from a systems view-

point (performance) and from an end-user
viewpoint (scenario-based evaluation). For
the latter, we used the KMP project.

Corese performance 
We measured Corese engine performance

on an RDF Schema or RDF base comprising
19,000 properties, 8,000 resources, and 10
rules. The Corese standard test base of 262
queries covering all of the query language’s
features runs in 9.7 seconds on a laptop. The
average answer time is 0.037 seconds per
query. The efficient projection operator lets
Corese achieve good performances in real-
world applications.

Scenario-based evaluation
Corese users gave it a positive evaluation

once they received domain axioms, approx-
imate queries, and presentation capabilities
(features they really required). (Details for
the scenario-based evaluation used for sev-

eral applications, including CoMMA and
KMP, appear elsewhere.4)

The evaluation of the KMP application
involved 10 mediators and approximately 30
users from 17 organizations. 

Users emphasized that

• the Corese query language is powerful and
effective,

• the ontology-driven user interface forms are
useful and user-friendly because they hide
the ontology structure’s complexity, and

• Corese’s approximate search feature was
unique and useful, letting them find the best
match for any query with the ontology.

Users also suggested several useful
improvements for the KMP system. First,
some users wanted more dynamic interac-
tions in the query-answer cycle. They
wanted to be able to easily refine a query
from the answer. Once their query was
refined, they wanted Corese to enhance the
differences in the answer. They also wanted

the system to manage a history of queries.
Second, some users thought we could

improve the ordering of approximate an-
swers, and they wanted the system to justify
the proposed approximations. Some users
also wanted to be able to tune the approxi-
mation—for example, which concept can be
approximated and how. After receiving a
result, they wanted to be able to document the
distance of each approximate concept to its
query concept.

Finally, some experiments showed that the
generic distance wasn’t always completely
accurate: sometimes a class is closer to its
brother class than to its direct ancestor. This
led us to more work on distance modeling in
ontologies.

Overall, we concluded that although ontol-
ogy-driven tools are powerful and useful, the
user, task, and domain models, not the ontol-
ogy, should drive user interaction.

In addition to using Corese for an ontology-
based Web search, we could also integrate

Corese definitions of semantic distances be-
tween concepts into existing alignment tech-
niques. We might also benefit from using such
alignment techniques to integrate aspects other
than simple structural distance and ontology
depth into the Corese semantic distance. (In the
“Related Work” sidebar, we compare Corese
to other work.)

We’re exploring how to specify semantic
distances or semantic heaps between classes
in the ontology, depending on viewpoints, to
take into account different user profiles in the
query processing. We aim to contextualize
the distance of the seeAlso property, making it
more dependent on user profiles or tasks.
This will let us integrate user profile features
into the Corese query language.
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Here we review some of the many query languages and
ontology-based search tools designed for the Semantic Web. 

RDF query languages 
The Corese RDF query language is close to the RDF Data

Query Language, the Sesame language SeRQL1 (www.openrdf.
org/doc/users/ch06.html), and SPARQL (Simple Protocol and RDF
Query Language, www.w3.org/TR/rdf-sparql-query), which
might become a W3C recommendation to query RDF.

Like SPARQL, the Corese query language is based on a Boolean
combination of triples that computable expressions can con-
strain. Corese also processes data-typed RDF literals, optional
patterns, and alternatives. Corese returns an RDF/XML graph
or an XML binding format, and the bindings are available
through an API. Corese also provides the select, distinct, and order
statements, and an equivalent of limit statements but not the
construct, describe, and ask SPARQL statements (although Corese can
simulate the last two).

In addition, Corese provides approximate search and a struc-
tural-path graph. It can group and count results and can merge
all results into one graph or provide the results as a list of graphs.
It can also generate the result using the vocabulary (the classes)
used in the query instead of the target RDF graph’s possibly
specialized vocabulary.

Ontology-based Web search applications
One previous ontology-based Web search application is

OntoBroker, which expresses ontologies and queries in Frame
Logic and translates them into Horn Logic.2 Others include
Sesame1 and RDQL,3 which rely on database management sys-
tems to store and query RDF Schema or RDF.

In addition to these general-purpose reasoners, WebKB4 and
OntoSeek5 are search-oriented applications based on concep-
tual graphs. WebKB interprets statements expressed in a CG
linear notation and embedded in HTML documents; it can
query lexical or structural properties of HTML documents.
OntoSeek focuses on lexical and semantic constraints when
encoding resources into CG and building queries. 

WebKB, OntoSeek, and Corese are all built on CG and conse-
quently use the same core principle of matching a query graph
against annotation graphs with respect to subsumption rela-
tions between concepts or relations. However, neither WebKB
nor OntoSeek handles RDF Schema or RDF data like Corese
does, and they don’t handle rules in their ontology representa-
tion language. Moreover, both focus on annotation and onto-
logical problematics and lack an expressive query language.

Above all, when compared to these applications, Corese is the
only ontology-based system to provide approximate-search fea-
tures. To the best of our knowledge, it’s the only Web search
application addressing structural approximation of queries.
Some recent methods address ontological approximation for
searching the Web; one example approximates overlap between
RDF Schema concepts based on Bayesian networks.6 This method
suggests applying such approximation to define a semantic dis-
tance between concepts and sort the answers to an ontology-

based search. However, this method hasn’t actually been applied
to Web search and focuses on overlap rather than subsumption.  

The PASS (Personalized Abstract Search Services) system
searches abstracts of research papers, using a fuzzy ontology of
term associations for query refinement.7 PASS searches for doc-
uments tagged with domain-specific keywords, while Corese
searches for documents annotated by more expressive descrip-
tions (RDF graphs) based on ontologies. The PASS fuzzy ontol-
ogy of term associations is similar to the Corese see-Also network
of concepts. Also, the measure of the so-called narrower and
broader relations between terms would correspond to our
semantic distances only between the concepts related by see-Also
relations, not between any two concepts in the ontology.

Ontology alignment or versioning
Our work might be considered as having some analogies

with the mapping between classes of two ontologies to be
aligned or with the comparison of two versions of the same
ontology. The various ontology alignment approaches (see the
state of the art on current alignment techniques provided by
the Knowledge Web network, http://knowledgeweb.semantic)
or the PromptDiff algorithm heuristic matchers8 for finding
the differences between two versions of the same ontology
could be useful if Corese aimed to find an alignment between
the ontology and the user’s (implicit) personal ontology, but it
doesn’t. Instead, Corese focuses on finding the RDF annotations
closest “semantically” (that is, with regard to the ontology and
our ontological distance) to the user’s query.
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