
Querying the Semantic Web with Corese Search Engine
Olivier Corby 1 and Rose Dieng-Kuntz2 and Catherine Faron-Zucker 3

Abstract. This paper presents an ontology-based approach for web
querying, using semantic metadata. We propose a query language
based on ontologies and emphasize its ability to express approximate
queries, useful for an efficient information retrieval on the web. We
present the Corese search engine dedicated to RDF(S) metadata and
illustrate it through several real-world applications.

1 INTRODUCTION

The present Web comprises a huge amount of heterogeneous data
(structured data, semi-structured data, textual data, multimedia data),
dedicated to human users of the Web. The Semantic Web [1] aims at
enabling the semantic contents of Web resources to be also processed
by automated tools. It relies on rich metadata, also called semantic
annotations, offering explicit semantic descriptions of Web resources
and built on domain ontologies.

In this paper, we focus on information retrieval (IR) on the seman-
tic web. This specific kind of IR is needed in web applications such
as web browsing, digital libraries, knowledge management (KM), E-
learning, e-commerce, etc. Web users aim at retrieving resources or
services satisfying specific criteria or constraints.

IR on the Semantic Web can be addressed according to three dif-
ferent points of view:developers of ontologiesfocusing on the rep-
resentation of domain knowledge,annotators of web resourcescre-
ating semantic annotations based on ontologies, andend-usersask-
ing ontology-based queries for searching the web. Previous work on
ontology-guided IR (SHOE [16], OntoBroker [8], OntoSeek [13],
WebKB [17], Corese [3, 4]) mainly focused on ontology knowledge
representation (KR) languages. In this paper, we rather focus on the
query processing point of viewand we address the problem of aded-
icated ontology-based query language.

After showing how ontologies ensure an efficient retrieval of web
resources by enabling inferences based on domain knowledge, we
present the Corese search engine and its query language dedicated to
the retrieval of web resources annotated in RDF(S). Then we describe
Corese’s approximate query processing capabilities. Last, we present
real-world applications of Corese.

2 ONTOLOGY-BASED IR

2.1 A Logic based Approach

Ontology-based IR stems from a logical model as defined in [20]:
given (1) a model for the descriptions of documents, (2) a model for
the queries, and (3) a matching function that defines how a query is

1 INRIA Sophia Antipolis, France email: olivier.corby@sophia.inria.fr
2 INRIA Sophia Antipolis, France email: rose.dieng@sophia.inria.fr
3 I3S, University of Nice - Sophia Antipolis, France email: cather-

ine.faron@sophia.inria.fr

matched with any description, a document D is relevant for a query
Q if the description of D logically implies Q (D→ Q).

In this model, a query is viewed as a set of constraints on the de-
scription of the documents to be retrieved and then correspond to
a search problem to be solved. The matching function thus imple-
ments the strategy chosen for solving this problem. It differs from an
IR system to another, depending on the KR formalism chosen for the
document descriptions and the queries.

For IR on the semantic web, ontologies enable to take into account
in the query processing some knowledge implicit in the annotations
of the web resources. It comprises subsumption links between do-
main concepts and between domain relations, other semantic links
between domain concepts, domain axioms or rules enabling deduc-
tions on semantic annotations. This domain knowledge enables to
retrieve web resources while using in the query terms maybe differ-
ent from - but semantically related to - those of the annotation, and
to perform inferences improving document retrieval.

The use of ontological knowledge in the query processing is ex-
pressed in the following IR model: (1) a model for ontologies, (2) a
model for annotations of web resources based on ontologies, (3) a
model for queries based on ontologies, and (4) a matching function
that defines how a query is matched with any annotation. Given this
model, a web resource R is relevant for a query Q iff R satisfies Q
according to the ontology O from which both the annotation of R
and the query Q are built. This means that the annotation of R and
the ontology O together logically imply Q :O ∧R → Q.

2.2 Corese and its Query Language

Corese is an ontology-based search engine for the semantic web: it
is dedicated to the retrieval of web resources annotated in RDF(S)
[26] by using a query language based on RDF(S). Corese ontology
representation language is built upon RDFS, that enables representa-
tion of ontologies provided with a concept hierarchy and a relation
hierarchy. Corese thus takes into account subsumption links between
concepts and between relations when matching a query with an anno-
tation. Corese ontology representation language also enables to rep-
resent domain axioms which are taken into account when matching
a query with an annotation. Annotations are represented in RDF and
related to the RDF Schema representing the ontology they are built
upon. The query language is also built upon RDF; for each query, an
RDF graph is generated, related to the same RDF Schema as the one
of the annotations to which it is to be matched.

The Corese engine internally works on conceptual graphs (CG).
When matching a query with an annotation, according to their com-
mon ontology, both RDF graphs and their schema are translated in
the CG model [24]. Through this translation, Corese takes advantage
of previous work of the KR community leading to reasoning capabil-
ities of this language.



2.2.1 RDF(S) and Conceptual Graphs

The RDF(S) and CG models share many common features and a
mapping can easily be established between RDFS and a large sub-
set of the CG model. An in-depth comparison of both models was
the starting point of the development of Corese [3, 4].

Both models distinguish between ontological knowledge and as-
sertional knowledge. In both models, the assertional knowledge is
positive, conjunctive and existential and it is represented by directed
labeled graphs. In Corese, an RDF graph G representing an annota-
tion or a query is thus translated into a CG. Regarding the ontologi-
cal knowledge, the class (resp. property) hierarchy in a RDF Schema
corresponds to the concept (resp. relation) type hierarchy in a CG
support. RDF properties are declared as first class entities like RDFS
classes, in just the same way that relation types are declared inde-
pendently of concept types in a CG support. This common handling
of properties makes relevant the mapping of RDFS and CG models,
contrarily to object-oriented language, where properties are defined
inside classes. For sake of room, we don’t detail the few differences
between the RDF(S) and CG models in their handling of classes and
properties but they can be easily dealed with when mapping both
models.

The projection operation is the basis of reasoning in the CG model.
A query is thus processed in the Corese engine by projecting the
corresponding CG into the CGs translating the annotations. The re-
trieved web resources are those for which there exists a projection of
the query graph into the annotation graph. For example the following
query graph :

[Document]-(createdBy)-[Person]
-(subject)-[Science]

can be projected on the two following annotation graphs:

[TechReport]-(createdBy)-[Researcher]
-(subject)-[CognitiveScience]

and:

[Book]-(createdBy)-[Professor]
-(topic)-[SocialScience]

In the ontology shared by these annotation graphs and the query
graphs, bothTechReportand Book are subClassOf Document,
Researcherand Professorare subClassOf Person, Cognitive-
ScienceandSocialSciencearesubClassOf Scienceand topic is
subPropertyOf subject. The two previous graphs thus annotate
web resources answering the above query and will be retrieved by
Corese when processing this query.

2.2.2 Domain Axioms

In addition to a concept hierarchy and a relation hierarchy, a richer
ontology is provided with domain axioms that enable to deduce new
knowledge. However RDF Schema is not provided with such a fea-
ture. Hence we have proposed an RDF Rule extension to RDF and
Corese integrates an inference engine based on forward chaining
production rules [4]. The rules are applied once the annotations are
loaded in the system and before the query processing occurs. Hence,
the annotation graphs are augmented by rule conclusions before the
query graph is projected on them.

The production rules of Corese implement CG rules [21]: a
rule G1 ⇒ G2 is a pair of lambda abstractions(λx1, ...,

λxnG1, λx1, ..., λxnG2) where thexi are co-reference links be-
tween generic concepts ofG1 and corresponding generic concepts
of G2 that play the role of rule variables.

For instance, the following CG rule states that if a person ?m is
head of a team ?t which has a person ?p as a member, then ?m man-
ages ?p (if needed, we can add that?p != ?m in the condition) :

?m rdf:type c:Person
?m c:head ?t
?t rdf:type c:Team
?t c:hasMember ?p
?p rdf:type c:Person
=>
?m c:manage ?p

A rule G1 ⇒ G2 applies to a graphG if there exists a projection
π from G1 to G, i.e.G contains a specialization ofG1. The resulting
graph is built by joiningG and G2 while merging eachπ(xi) in
G with the correspondingxi in G2. Joining the graphs may lead to
specialize the types of some concepts, to create relations between
concepts and to create new individual concepts (i.e. concept without
variable).

3 APPROXIMATE IR

3.1 Why do We Need Approximation?

The implicit vision of the Semantic Web in the previous section relies
on three strong hypotheses:

1. it is possible to design standard conceptual vocabularies (so-called
ontologies) to describe a domain objectively,

2. it is possible to describe web resources using these vocabularies,
3. it is possible for users to search information using the same vo-

cabularies as the annotators.

In other words, we have supposed that an ontology designed to
describe a domain is useable to both annotate web resources of this
domain and retrieve them by semantically querying the web.

Reality is more contrasted. The viewpoint of the designers of on-
tologies, the viewpoint of the designer of annotations describing web
resources and the viewpoint of the user performing IR may not com-
pletely match.

Ontologies are models of reality that may be complex. They are
built according to some goals, among which (1) identify and describe
the objects and relations of a domain in order to promote reuse and
shareability, and (2) ease IR of web resources of this domain. Usu-
ally, an ontology is built by specialists of the domain, not by special-
ists of the IR task in this domain, i.e. the users. The user may not
share or not understand the viewpoints of the designers: the techni-
cal domain modeling does not necessary meet the IR management.
There may be some mismatch between the needs of a clean reusable
formal ontology and an effective guideline for IR. Sometimes, dis-
tinctions made from the ontology viewpoint are not significant from
the user viewpoint. Hence, it is difficult to master an ontology of
hundreds of concepts.

Some experiments of Corese with the O’CoMMA [9] ontology
give us good examples of misunderstanding or misuse by the user
of concepts stated by the ontologist: the user used theCommerce
concept instead ofBusinessor KnowledgeDisseminationinstead of
Education.



Users may not use theright concepts - those of the ontologist -
when writing a query, and this mismatch may lead to an empty an-
swer to the query.

A user asking for apersonworking on asubjectmay appreciate,
instead of a failure, the retrieval of aresearch groupworking on that
subject, even if a research group is not exactly a person. S/he may
even appreciate to retrieve a research group working on a similar
subject, instead of no answer at all.

So, the core query language of Corese presented above was ex-
tended to address this problem of mismatch between the design of
ontologies and annotations and the IR activity. Corese is able to pro-
vide the user with approximate answers to a query, the semantic dis-
tance being computed by using the ontology and the approximation
being controlled with comparison operators.

3.2 Semantic Distance

The principle of the Corese approximation is to evaluate the seman-
tic distance of classes or properties in the ontology hierarchies: two
brother classes or relations are closer than two cousins, etc. Based
on this semantic distance, Corese does not only retrieve web re-
sources whose annotations arespecializationsof the query, it also
retrieves those whose annotations have a structure upon which the
query can be projected but whose concepts and relations are not nec-
essarily subsumed by those of the query: they are just close enough
to them in the ontology hierarchies. The projection of the query
upon annotations is thus done free from the subsumption relations
between classes and between relations; for each retrieved web re-
source, its distance to the query is then computed and finally the re-
sources whose semantic distance does not overpass a given threshold
are eventually presented to the user, sorted by increasing distance.
Furthermore, Corese generates a specific markup on approximate
concepts in the output, to ease up their identification and to enable
their enhancement at presentation time (with another color or another
font).

We define the distance of a web resource to a query as the sum of
the distances of its concepts to those of the query that project upon
them. If a target concept is a specialization of the query concept that
projects upon it, its distance is 0. Otherwise, the distance between
two concepts can be defined as the distance between their classes, the
distance between two classes being the sum of the distances between
each of them and their deepest common super class [10].

But low level classes are semantically closer than top level classes.
For example,TechnicalReportand ResearchReportare closer than
EventandEntity: two brothers are closer at depth 10 than at depth
1. In other words, the distance between classes decreases with depth:
the deeper the closer. As a result, following [28], we define the dis-
tance between a class and a direct super class of it (separated by a
path of length 1) by1/2d, whered is the (maximum) depth of the
upper class. Let us note that, because of multiple inheritance, a class
may be associated with several depths and we chose to take into ac-
count its maximum depth.

Our semantic distance is generic and applies to homogeneous cor-
porate ontologies. The handling of distributed ontologies would re-
quire further researches to refine the semantic distance by taking into
account the heterogeneous depths of the ontology parts.

3.3 Operators for Tuning Approximation

In approximate mode, Corese basically approximates each concept of
the query. However, it is sometimes useful to require specialization

of some concepts and only approximate the others. Hence, Corese
enables to define which concepts can be approximated and which
ones must be found exactly. More generally, it enables to specify
conditions on the types that are acceptable and those that are not. For
this purpose, we have introduced in the Corese query language a set
of type comparison operators that can be associated to each query
concept:

<: strict subtype,<=: subtype,=: same type,>=: super type,
>: strict super type. These operators can also be combined with a!
negation operator, e.g. :!<: , !<=: , etc.

By using these operators, Corese is able to retrieve, for instance,
the persons interested inKnowledgeEnginering(or something close)
and member of aProject(or something close) by processing the fol-
lowing query written in Corese query language :

?person c:interestedBy ?k
?person <=: c:Person
?k rdf:type c:KnowledgeEngineering
?person c:member ?project
?project rdf:type c:Project

In this query, the<=: specialization operator indicates that the class
Personis required, whileKnowledgeEngineringandProjectmay be
approximate.

The Corese query language offers type operators that support vari-
ables to enable the comparison of concepts types in a query. For ex-
ample, the following query asks to retrieve two documents that must
be of the same class:

?d1 rdf:type c:Document
?d2 rdf:type c:Document
?d1 =: ?d2

3.4 Approximation using related classes or
relations

3.4.1 See Also between Classes

The semantic distance of classes in ontologies is not always suffi-
cient to express the proximity of some concepts. In our experiments
of Corese, we have often encountered some concepts which were
somehow distant from each other in their hierarchy but which shared
some features making them closer from IR point of view. For in-
stance, in the O’CoMMA ontology,KnowledgeDisseminationwhich
is in theActivity viewpoint andKnowledgeEngineeringwhich is in
theTopicviewpoint share some semantics that is not expressed by the
rdfs:subClassOf link. For example, when querying forKnowl-
edgeDissemination, one may want to retrieveKnowledgeEngineer-
ing resources in case of failure.

Hence, Corese has a second approximation capability by means
of the standardrdfs:seeAlso property. The effect of a
rdfs:seeAlso property between two classes is to shorten the ac-
tual semantic distance between the two classes in the approximate
query processing. For instance, shortening the semantic distance be-
tweenKnowledgeDisseminationandKnowledgeEngineeringis sim-
ply achieved by setting ardfs:seeAlso property between these
two classes, as shown below:

<rdfs:Class rdf:ID=’KnowledgeDissemination’>
<rdfs:seeAlso

rdf:resource=’#KnowledgeEngineering’/>
</rdfs:Class>



<rdfs:Class rdf:ID=’KnowledgeEngineering’/>

The semantic distance between two classes linked by a
rdfs:seeAlso property is shortened to the distance between
brothers. In the particular case of ardfs:seeAlso property set be-
tween brother classes, the distance between them is divided by two,
which makes these brothers closer than other brothers.

The following rule

?x rdfs:seeAlso ?y
?z rdfs:subClassOf ?x
=>
?z rdfs:seeAlso ?y

enables to propagate theseeAlso property to subclasses.
Corese enables to add ardfs:seeAlso property to an existing

RDF Schema, for a specific purpose such as a class of users or spe-
cific IR tasks. Hence, an existing ontology can be parameterized to b
etter fit a specific IR task.

3.4.2 See Also between Properties

Like classes, some properties may share a semantic proximity from
an IR point of view. For instanceisInterestedBy, hasForWorkInterest
andhasForPersonalInterestare close properties. As for close classes,
a rdfs:seeAlso property can be set between close properties.
Corese handles them by authorizing the occurrence of one of them
instead of the other when matching a query with an annotation. For
instance, let us put ardfs:seeAlso property in the declaration of
thehasForWorkInterestproperty:

<rdf:Property rdf:ID=’hasForWorkInterest’>
<rdfs:seeAlso

rdf:resource=’#isInterestedBy’/>
</rdf:Property>
<rdf:Property rdf:ID=’isInterestedBy’/>

Hence, when answering a query involving thehasForWorkInterest
property, Corese may return a resource annotated with aisInterest-
edByproperty in approximate mode.

The semantic distances in the relation hierarchy of an ontology are
computed similarly to the semantic distances in the class hierarchy.

To sum up,rdfs:seeAlso property allows an approximation
on both the query relations and the query concepts. The relevance
of the final answer is guided by the connectedness of the query, its
structure, which can always be projected on the structure of any ap-
proximate answer.

3.5 Approximation through Relation Paths

Sometimes, the user may search, without success, for resources
linked by a conceptual relation. In addition to the approximation of
concepts and relations, Corese can search for relation paths of vari-
able lengths between concepts. When querying for x R y, Corese can
also generate the query x R z R y (with a relation path of length 2 be-
tween x and y), the query x R z R t R y (with a relation path of length
3 between x and y), etc. The length of these relation paths is bounded
by a constant value in the query. For instance, the organizations re-
lated to Human Science by a relation path of maximum length 3 are
retrieved in response to the following query:

?org c:relation[3] ?topic
?org rdf:type c:Organization
?topic rdf:type c:HumanScience

The default behavior of Corese is to compute the answers with the
shortest successful path and to stop. It can also compute all the possi-
ble answers with the following syntax :all::c:relation[3] .
When used with a generic property, this enables to retrieve all con-
nected resources at a given depth.

4 EXPERIMENTATION AND EVALUATION

4.1 Architecture

Corese4 is implemented in Java and uses the Notio Conceptual Graph
API [23]. Corese includes an RDF parser and pretty printer, a query
processor, support for a subset of XML Schema datatypes. It also
includes an inference rule language and its forward chaining engine.
Corese can also be smoothly embedded into a web server.

4.2 Applications

The Corese search engine and its query language have been tested on
several real world applications:

• SAMOVAR: vehicle project memory system for Renault car man-
ufacturer [12]. The ontology has 792 concepts and 4 relations,
and annotates 4483 problem descriptions. Corese answers queries
such as:“Find all fixing problems that occurred on the dashboard
in a past project”.

• CoMMA: a multi-agent system for corporate memory manage-
ment (integration of a new employee and technological watch).
The O’CoMMA ontology comprises 472 concepts used for anno-
tating documents or people in an organization [9].

• KMP: Knowledge Management Platform, a RNRT project for car-
tography of skills in telecommunications for Sophia Antipolis
firms. The KMP ontology comprises 542 concepts and 45 rela-
tions. Corese answers queries such as:“Who are the possible in-
dustrial partner knowing how to design integrated circuits within
the GSM field for cellular/mobile phone manufacturers?”.

• Ligne-de-Vie: A virtual staff for a health network relies on an on-
tology comprising 26432 concepts and 4 relations. It guides sev-
eral physicians for discussing among alternative therapies for a
given pathology, according to the patient’s features.

• MEAT: a memory of experiments of biologists on DNA microar-
ray relies on annotations on scientific articles, using UMLS as an
ontology. Corese can answer queries such as”Find all the articles
asserting that HGF gene plays a role in lung disease”.

Corese has also been tested with existing RDF Schemas such as the
Gene ontology (13700 concepts, 950000 relations), IEEE LOOM,
W3C CC/PP, etc. Let us illustrate the expressivity of the Corese query
language by giving a concrete example of approximate retrieval taken
from the experiments of Corese with the O’CoMMA ontology.

The query below:

select more where
?p rdf:type c:Person
?p c:HasForActivity ?a
?a rdf:type c:KnowledgeDissemination

returns the following approximate answer:

4 http://wwww.inria.fr/acacia/corese



[Employee, Researcher http://www.inria.fr/a.g]
(gDistance) [Literal 0.0078125]
(HasForActivity) [Research]
(HasForActivity) [Education]
(IsInterestedBy) [KnowledgeEngineeringTopic]
(IsInterestedBy) [CognitiveSciencesTopic]

Corese palliates the absence of exact retrieval by using the
rdfs:seeAlso link between properties - it thus considers the
IsInterestedByproperty instead ofHasForActivity property asked
in the query - and between classes - it thus considersKnowl-
edgeEngineeringTopicand CognitiveSciencesTopicinstead of
KnowledgeDissemination.

4.3 Evaluation

Once provided with domain axioms, approximate queries and pre-
sentation capabilities - features that were really required by the users,
Corese received a very positive evaluation by its users. [11] de-
tails the scenario-based approach used for evaluating several Corese-
based applications (in particular, CoMMA and KMP).

Moreover Corese achieves good performances, due to its very effi-
cient projection operator. For example, with an RDF graph of 18000
relations, Corese answers in 0,01s in exact mode (0 answer) and in
0.02s in approximate mode (5 answers) to the following query, where
the∼ operator meanscontains.

?doc rdf:type c:TechnicalReport
?doc c:Designation ?t
?t ˜ knowledge
?doc c:CreatedBy ?p
?p rdf:type c:Person
?p c:Designation ?x

In approximate mode, it finds an interesting answer which is a
Lectureorganized by aGatheringEntity, instead of aTechnicalReport
created by aPerson. Such examples give an idea of the power of the
approximate search mechanism of Corese.

5 CONCLUSIONS

In this paper we presented an ontology-based IR system, Corese, and
its query language for searching the semantic web, possibly with ap-
proximate queries. A semantic distance between classes and proper-
ties of the ontology enables to sort the approximate answers by rel-
evance according to the ontology. Approximate answers can also be
retrieved by using therdfs:subClassOf andrdfs:seeAlso
properties when matching a query with annotations and by querying
for variable length relation paths between concepts.

Corese can be compared to query languages or tools dedicated to
RDF such as RQL [14], Triple [22], SquishQL [18], Sesame[2], KIM
[15], or the tools described in [7, 27]. But, to our knowledge,Corese
is the only RDF(S)-dedicated engine that offers both inference rules
and approximate search.

As a further work, we are studying Corese extension to handle an-
notations represented in OWL [25]. Our choice of RDFS is mainly
historical since the first implementations of Corese preceded the
emergence of OWL. However, in most applications of Corese, the
expressivity of the RDFS language is sufficient - if extended with in-
ference rules and approximation in the query language. Our previous

work on Description Logics and CGs [5] [6] convinces us that Corese
should and could handle the OWL Lite features.

We also currently explore user profile features for integration into
Corese query processing.

ACKNOWLEDGEMENTS

We thank Olivier Savoie for his implementation work on Corese, the
Acacia team for research and applications around Corese and the IN-
RIA for the support of Corese development.

REFERENCES
[1] T. Berners-Lee, J. Handler, O. Lassila. The Semantic Web, Scientific

American, May, 2001.
[2] J. Broekstra et al. Sesame: A Generic Architecture for Storing and Query-

ing RDF and RDF Schema. In ISWC’2002, pp. 54-68, Sardinia, Italy,
2002

[3] O. Corby et al. A conceptual graph model for W3C Resource Description
Framework. In Proc. of ICCS’00, pp. 468-482, 2000.

[4] O. Corby, C. Faron-Zucker. Corese: A Corporate Semantic Web Engine,
In Proc. of the WWW’2002 Workshop on Real World RDF and Semantic
Web Applications, Honolulu, Hawai, USA, 2002.

[5] P. Coupey, C. Faron. Towards Correspondences between Conceptual
Graphs and Description Logics. In Proc. of ICCS’98, LNCS 1453,
Springer Verlag, pp. 165-178, Montpellier, France, August 1998.

[6] A. Delteil, C. Faron. A Graph-Based Knowledge Representation Lan-
guage. In Proc. of ECAI’2002, pp. 297-301, Lyon, France, 2002.

[7] A. Eberhart. Automatic Generation of Java/SQL Based Inference Engines
from RDF Schema and RuleML. ISWC’2002,pp. 102-116, 2002.

[8] D. Fensel et al. On2broker. Semantic-Based Access to Information
Sources at the WWW. In Proc. of Webnet’99, pp. 366-371, 1999.

[9] F. Gandon et al. Semantic Web and Multi-Agents Approach to Corporate
Memory Management, 17th IFIP World Comp. Congr., p. 103-115, 2002.

[10] F. Gandon. DAI and KM: ontologies and MAS for a corporate semantic
web. PhD, 2002, UNSA.

[11] A. Giboin et al, Assessment of Ontology-based Tools: Systemizing the
Scenario Approach, Proc. of EON2002, Siguenza, Sept. 2002, pp. 63-73

[12] J. Golebiowska et al, Building and Exploiting Ontologies for an Auto-
mobile Project Memory, Proc. of K-CAP, Victoria, October 23-24, 2001.

[13] N. Guarino et al. Ontoseek: Content-based access to the Web. In IEEE
Intelligent Systems, vol. 14(3), pp. 70-80, 1999.

[14] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, M.
Scholl. RQL: a declarative query language for RDF. In Proc. of
WWW’2002, pp. 592-603, Honolulu, Hawaii, USA, 2002.

[15] A. Kiryakov et al, Semantic Annotation, Indexing and Retrieval. In Proc.
of ISWC’2003, pp. 484-499, Florida, Oct. 2003

[16] S. Luke et al. Ontology-based Web agents. In Proc. Of the 1st Int. Conf.
On Autonomous Agents, 1997.

[17] P. Martin, P. Eklund. Knowledge Retrieval and the World Wide Web.
IEEE Intelligent Systems, 15(3):18-25, 2000

[18] L. Miller et al. Three Implementations of SquishQL, a Simple RDF
Query Language. In ISWC’2002, 2002

[19] K. Patel, G. Gupta. Semantic Processing of the Semantic Web. In Proc. of
ISWC’2003, LNCS 2870, pp. 80-95, Sanibel Island, Florida, USA, 2003.

[20] C.J. Rijsbergen. A new theoretical framework for information retrieval,
In Proc. of the ACM Conf. on Research and Dev. in IR, pp. 194-200, 1986.

[21] E. Salvat. Theorem Proving Using Graph Operations in the Conceptual
Graph Formalism, In Proc. of ECAI’98, pp. 356-360, Brighton, UK, 1998.

[22] M. Sintek, S. Decker. Triple: A Query, Inference and Transformation
Language for the Semantic Web. ISWC’2002, pp. 364-378, Sardinia, 2002

[23] F. Southey and J. G. Linders, Notio - A Java API for Developing CG
Tools, 7th ICCS, pp 262-271, 1999,

[24] J.F. Sowa. Conceptual structures: Information Processing in Mind and
Machine. Addison-Wesley, Reading, Massachusetts, 1984.

[25] W3C. Web Ontology Language.http://www.w3.org/sw/WebOnt .
[26] W3C. Resource Description Framework,

http://www.w3.org/RDF .
[27] J. Wielemaker, G. Schreiber, B. Wielinga. Prolog-Based Infrastructure

for RDF: Scalability and Performance. ISWC’2003, pp. 644-658, 2003
[28] J. Zhong et al, Conceptual Graph Matching for Semantic Search,

ICCS’2002, pp. 92-106, Borovets, July 2002.


