
Building Concept Lattices by Learning Concepts

from RDF Graphs Annotating Web Documents

Alexandre Delteil1, Catherine Faron2, and Rose Dieng1

1 INRIA, Acacia project
2004 route des Lucioles, BP93, 06902 Sophia Antipolis cedex, France

{Alexandre.Delteil,Rose.Dieng}@sophia.inria.fr
2 I3S, Mainline project

930 route des Colles, BP145, 06903 Sophia Antipolis cedex, France
faron@essi.fr

Abstract. This paper presents a method for building concept lattices
by learning concepts from RDF annotations of Web documents. It con-
sists in extracting conceptual descriptions of the Web resources from
the RDF graph gathering all the resource annotations and then forming
concepts from all possible subsets of resources - each such subset being
associated with a set of descriptions shared by the resources belonging
to it. The concept hierarchy is the concept lattice built upon a context
built from the power context family representing the RDF graph. In the
framework of the CoMMA European IST project dedicated to ontology-
guided Information Retrieval in a corporate memory, the hierarchy of
the so learned concepts will enrich the ontology of primitive concepts,
organize the documents of the organization’s Intranet and then improve
Information Retrieval. The RDF Model is close to the Simple Conceptual
Graph Model; our method can be thus generalized to Simple Conceptual
Graphs.

1 Introduction

The Semantic Web is expected to be the next step that will lead the Web to
its full potential [2]. It is based on the description of all kinds of Web resources
with semantic metadata. The Resource Description Framework (RDF) [12] is
the emerging standard to annotate Web documents with such metadata. These
annotations are related to ontologies, declared in RDF Schema [13]. RDF(S) is
very close to the Simple Conceptual Graph Model, and the work on one formal-
ism can be easily generalized to the other.
The research presented in this paper takes place in the framework of the CoMMA
European IST project dedicated to ontology-guided Information Retrieval in a
corporate memory. This corporate memory is constituted by documents semanti-
cally described by RDF annotations. We propose a method for learning concepts
and extracting knowledge to manage the amount of information available in the
documents of the memory.
The building of hierarchical structures from structured data has been extensively

U. Priss, D. Corbett, and G. Angelova (Eds.): ICCS 2002, LNAI 2393, pp. 191–204, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

192 Alexandre Delteil et al.

studied in machine learning, especially in concept formation. Most approaches
of concept formation are dedicated to the prediction of unknown features of new
objects [7] [10]. The clusters of similar objects are then privileged, the learned
concept hierarchy does not comprise all the possible sets of objects, but only the
best ones according to some heuristic criteria.
We adopt a particular approach of concept formation, where each concept is
defined in extension by a subset of resources and in intension by a set of de-
scriptions shared by these resources. In this approach, all the possible subsets
of objects are systematically considered, as in [16] [4] [3]. Given the RDF graph
gathering all the annotations we consider, we build a concept lattice upon a
context built from the power context family representing this RDF graph.
In the following section, we briefly describe the RDF data model and the RDF
Schema and we present several criteria for extracting partial resource descrip-
tions from RDF annotations. We then present the principles of our approach of
concept formation that deals with the intrinsic complexity of the building of a
generalization hierarchy: we propose an incremental approach by gradually in-
creasing the size of the descriptions we consider. We then formally describe the
building of a concept lattice from a context built upon the power context fam-
ily representing the RDF graph we consider. Finally, we show how the learned
concept hierarchy will be exploited in the framework of the CoMMA project.

2 From Document Annotations
to Conceptual Descriptions

In the framework of the CoMMA project, the documents building up the corpo-
rate memory are annotated by semantic metadata. These document annotations
are based on domain ontologies and then enable knowledge-based Information
Retrieval. With the growth of the Semantic Web, the development of methods to
exploit the document annotations will become of prime importance. We address
the problem of learning concepts from the semantic annotations of documents
to organize the documents of a corporate memory into a conceptual hierarchy,
to enrich the ontology on which the annotations are constructed with this con-
cept hierarchy, and finally to improve Information Retrieval on the corporate
memory.

2.1 The RDF(S) Data Model

The RDF annotation of a Web resource consists of a set of statements, each one
specifying a value of a property of the resource. A statement is thus a triple
(resource, property, value), a value being either a resource or a literal. Resources
are either identified or anonymous but are uniformly handled by RDF parsers
which generate new identifiers for anonymous resources. The RDF data model is
close to semantic nets. A set of statements is viewed as a directed labeled graph:
a vertex is either a resource or a literal; an arc between two vertices is labeled
by a property.

Building Concept Lattices by Learning Concepts 193

www.DeutscheTelekom.de
subdivisionOf

www.T−Nova.de

employs

 <subdivisionOf rdf:resource=‘www.DeutscheTelekom.de’>

 <employs> <rdf:Description /> </employs>

 </subdivisionOf>

</rdf:Description>

<rdf:Description about=‘www.T−Nova.de’>

Fig. 1. An example of an RDF annotation

Figure 1 presents an example of an RDF graph with its corresponding XML syn-
tax. This annotation describes the Web page relative to the company Deutsche
Telekom. All the examples illustrating our article stem from the O’CoMMA
ontology [8].

An RDF annotation is a set of RDF triples. It can thus be viewed as a graph,
which is a subgraph of the complete RDF graph representing the whole set of
annotations on the Semantic Web.
RDF Schema (RDFS) is a schema specification language [13]. It is dedicated to
the specification of schemas representing the ontological knowledge used in RDF
statements: a schema consists of a set of declarations of classes and properties.
Multi-inheritance is allowed for both classes and properties. A property is de-
clared with a signature allowing several domains and a single range. The RDFS
metamodel is presented in Figure 2 and is itself defined as a set of statements
by using the core RDFS properties: rdfs:subclassOf and rdf:type which denote
respectively the subsumption relation between classes and the instantiation re-
lation between an instance and a class.

As shown in Figure 2, an ontology embedding domain-specific knowledge is
represented by a schema defined by refining the core RDFS. Domain-specific
classes are declared as instances of the ‘Class’ resource, and domain-specific
properties as instances of the ‘Property’ resource. The ‘subclassOf’ and ‘sub-
PropertyOf’ properties enable to define class hierarchies and property hierar-
chies. The resources appearing in an RDF annotation are then typed by the

Literal

Class

Resource Property

subdivisionOfemploys

subPropertyOf domain type

activity

subclassOfrange

InanimateEntity

Country Company Person

domain

range
subclassOf

type

nationality

www.T−Nova.de www.DeutscheTelekom.de
subdivisionOf

O
nt

ol
og

y
R

D
FS

M
et

am
od

el
R

D
F

A
nn

ot
at

io
n

employs

Fig. 2. The RDFS metamodel and an RDFS ontology

194 Alexandre Delteil et al.

classes declared in the RDF schema the annotation is relative to; the properties
between the resources are those declared in the RDF schema.

2.2 The RDF(S) Model and the Conceptual Graphs Model

The RDF(S) Model and the Simple Conceptual Graph Model have similar ex-
pressiveness: both correspond to the positive, existential and conjunctive sub-
fragment of first order logic, and both enable to use sentences as objects of the
language. In [5], a way to translate RDFS Schemas into CG supports and RDF
triples into CGs is presented. In [6], a detailed description of similarities and
differences between both formalisms is presented. The main differences between
RDF(S) and CGs concern the way constraints on property domains are handled
(a signature for a relation in the CG Model, several domains but only one range
for a property in the RDF Model) and the way membership to a class is ex-
pressed (by a concept type in the CG Model and by a specific property called
type in the RDF Model. However these differences are not fundamental, and our
method described in this paper can be generalized easily to Simple Conceptual
Graphs.

2.3 Extracting Conceptual Descriptions of Web Resources

Regarding the RDF model, the knowledge base representing the resource an-
notations consists of a single graph G. There is no difference between stating
a resource description in one annotation and stating it in several pieces in sep-
arate annotations: ‘there is no distinction between the statements made in a
single sentence and the statements made in separate sentences’ [12].
Learning concepts from RDF annotations requires resource descriptions to be
given. As the RDF model does not handle the delimitation of a subgraph of G
describing a resource, we introduce the notion of description of length n of a
resource.

Definition 1 (Description of Length n). The description of length n of a
resource R is the largest connected subgraph of G containing all possible paths of
length smaller or equal to n, starting from or ending to R. It is noted Dn(R). It
is inductively obtained by joining Dn−1(R) with the descriptions D1 of length 1
of the resources which are external nodes of Dn−1(R).

Figure 3 presents the extraction of two possible descriptions of the resource
Deutsche Telekom from the whole RDF graph which the RDF annotation of
Figure 1 participates to: the description of length 1 of Deutsche Telekom and
the description of length 2 of Deutsche Telekom. D1 (Deutsche Telekom) is a
subgraph of D2 (Deutsche Telekom) which is made of paths of length 1 and of
length 2 starting from or ending to the resource Deutsche Telekom.
Given the whole RDF graph G, we can now be provided with a set of partial
descriptions for all the resources that are nodes of G (in the example Deutsche
Telekom, TNova, Germany and an anonymous resource of type ‘Person’).

Building Concept Lattices by Learning Concepts 195

Deutsche
Telekom

Deutsche
Telekom

Deutsche
Telekom

D (Deutsche Telekom)
2

D (Deutsche Telekom)
1

Person

employs

type

Germany

Country

subDvsOf

type

nationality

nationality

Person

nationality

employs

type

Germany

Country

subDvsOf

type

nationality

Person

nationality

employs

type

Germany

Country

subDvsOf

type

nationality

T−Nova T−NovaT−Nova

Company CompanyCompany

typetypetypetypetypetype

Fig. 3. The RDFS metamodel and an RDFS ontology

3 Learning Concepts from Conceptual Descriptions

Our approach of knowledge capture consists in learning new domain-specific
concepts from the whole RDF graph G comprising the resources participating
to a given corporate memory.

3.1 Systematic Conceptual Clustering

To learn concepts from RDF metadata, we adopt an approach of concept for-
mation. Concept formation or conceptual clustering aims at building hierarchies
to cluster similar objects and classify object descriptions. However in these ap-
proaches a single particular hierarchy of classes is built, the best according to a
given criterion. Our approach of concept formation is slightly different since it
aims at systematically generating a class for each possible set of objects. This
systematic approach is shared by researches in formal concept analysis [17] and
on knowledge organization [16] [3].
Given an RDF graph G and a resource description extraction criterion, let us
consider the set of the descriptions of all the resources nodes of G. Our approach
consists in associating to this set of descriptions a hierarchy of concepts whose
extensions correspond to all the possible subsets of the set of resources of G. All
the concepts covering a set of resources of G are systematically considered. A
concept is defined in extension as a set of resources; its definition in intension
is the set of all the descriptions satistied by all the resources in its extension;
this concept description language is presented in the following section. Each con-
cept ci of the hierarchy is thus a pair (exti, inti), where exti is the extension
of ci and inti is its intension. This concept hierarchy is a lattice: its nodes are
partially ordered by the inclusion relation on their extensions, as well as on their
intensions.

196 Alexandre Delteil et al.

3.2 The Concept Description Language

The concept description language is close to the object description language. A
description is a path of RDF triples and a concept intension is a set of such triple
pathes of length less or equal to the length chosen for the object descriptions
considered. For readability, a concept intension can be presented as a graph in
normal and non redundant form built by join of the descriptions belonging to
this intension. Let us note that, regarding subsumption on RDF graphs relying
upon the subsumptions relations between classes and properties declared in the
associated RDF schema, such a graph representing a concept intension subsumes
the object descriptions of all the resources belonging to the extension of the con-
cept considered. Moreover, since anonymous resources are handled like identified
ones in resource descriptions, in case of a concept extension is a singleton, the
graph built from the concept intension is equivalent (under subsumption) to the
description of the single resource.

Figure 4 presents the concept hierarchy built from descriptions of length
1 of four resources nodes of the RDF graph depicted in Figure 3: Deutsche
Telekom, TNova, Germany and the anonymous resource of type ‘Person’. The
graph representing the intension of each concept is built by join of all the triples
of the concept intension, satisfied by the resources in its extension. The intension
of the bottom concept is the set of all the triples that describe at least one
resource; it is not depicted in the Figure.

3.3 Incremental Principle

The question which now arises is the choice of a resource description extraction
criterion: starting from an RDF graph, we must choose from which partial re-
source descriptions the concept hierarchy will be built. On the one hand, the
larger the extracted resource descriptions will be, the more domain-specific the
concepts will be. On the other hand, graph matching has a well-known intrinsic
exponential complexity.
As a result, we adopt an incremental approach for the construction of the concept
hierarchy to deal with the intrinsic complexity of description matching. A similar
approach of incremental building of a concept hierarchy is adopted in [3]. It is
based on a gradual increase of the structure of matching. Object descriptions are
given and the concept description language is made more expressive at each step
to gradually take into account the complexity of the object descriptions. In our
approach, the incrementality is based on the gradual increase of the size of the
structure of matching -and not its structure: the resource descriptions are not
given in the RDF graph, they are partial and their length is gradually increased.
To be precise, we first build a concept hierarchy H1 from resource descriptions of
length 1. The concepts of H1 thus have intensions of length 1. Hn is then induc-
tively built from Hn−1 and H1 by incrementally increasing the maximum length
of the resource descriptions we consider. The description Dn(R) of length n of a
resource R is inductively increased by joining Dn−1(R) with the descriptions of
length 1 of the resources which are external nodes of Dn−1(R).

Building Concept Lattices by Learning Concepts 197

*
type

type
Germany*

nationality

* in {An. Res., TNova}

Deutsche
Telekom

*

Person

nationality

employs

type

Germany

* in {Germany}

TNova

nationality

Country

type

nationality

*

* InanimateEntity
type

*
... ...

Deutsche
Telekom

Company *
type

* in {Deutsche Telekom, Germany

TNova, An. Res.}

* in {TNova} * in {Deutsche Telekom}* in {An. Res.}

* in {Deutsche Telekom, Germany, TNova}

Germany

Company

*

type

subDvsOf

nationality

TNova

employs

Company

type

subDvsOf
*

* in {Deutsche Telekom, TNova}

* in O

Fig. 4. The concept hierarchy associated to descriptions of length 1 extracted
from the RDF graph of Figure 3

3.4 Resource Exploration and Size of the Concept Hierarchy

If several sets of resources share the same intension, a single concept is added to
the hierarchy: the one having for extension the largest set of resources. There-
fore, if the size of the concept hierarchy may theoretically reach 2N concepts
for N resources in the RDF graph G, it is in practice much lower. For instance,
the size of the hierarchy of Figure 4 is 9 concepts instead of 16 (24).
We avoid the computation of concept descriptions for all the subsets of the set
of resources of G that do not lead to concepts: those that would share a same
set of descriptions with a larger subset of resources. To do this, the subsets of
resources are considered according to a total order that enables to memorize
those which do not correspond to maximal subsets: for each of the non maximal
subsets, the complementary subset of resources necessary to build a maximal set
are memorized. This is adapted from an algorithm proposed in formal concept
analysis [17] for attribute exploration [9] [1].
Once a concept is created, it is inserted in the concept hierarchy under construc-
tion. To deal with the intrinsic complexity of the classification of a concept into
a hierarchy, we take advantage of the order according to which the resources are

198 Alexandre Delteil et al.

considered to limit the comparison of the concept to be classified. This order
ensures that when inserting a concept, there will be no concept in the hierarchy
that subsumes it.

4 Incremental Building of a Concept Hierarchy

4.1 Building of a Concept Hierarchy Based on Resource
Descriptions of Length 1

In this section we formally describe the principle for building a concept hierar-
chy H1 of concepts with sets of triples as intension as the building of a concept
lattice from a context, the RDF graph from which the resource descriptions are
extracted being viewed as a power context family.

Given an RDF graph G, let O be the set of resources in G which are not
classes in the RDF schema upon which G is built, C and P the set of classes
and the set of properties in the RDF schema of G, and P−1 the set of property
inverses associated to P . We represent G by a power context family (C,P) where
C = (O,C, IC) and P = (O2, P ∪ P−1, IP).
In our concept description language, a triple t is a triplet (r, p, v) with r ∈
O ∪ {∗} ∪ {‘∅’}, p ∈ P ∪ P−1 and v ∈ O ∪ {‘∅’} ∪ C; ‘∅’ denotes a resource
that is unidentified (whereas in the object descriptions anonymous resources are
provided with an identifier generated by the RDF parser). A triple path is a
sequence of triples whose first triple (∗, p, v) has for first resource a star ∗, that
designates any resource the triple path is a description of, and such that for all
consecutive triples ti and ti+1, vi = ri+1.
To build a concept lattice from (C,P), we first build a set of triple pathes T1

defined as follows:

– if (r1, p, r2) is a triple of G, then (∗, p, r2) ∈ T1 and (∗, p−1, r1) ∈ T1,
– if (∗, type, c) ∈ T1 and (∗, type, c′) ∈ T1, then (∗, type, c′′) ∈ T1, for all c′′ ∈ C

most specific subsumer of c and c′,
– if (∗, p, r) ∈ T1 and (∗, p, r′) ∈ T1 with r 	= r′, then (∗, p, ‘∅’) ∈ T1,
– if (∗, p, r) ∈ T1 and (∗, p′, r) ∈ T1 with r ∈ O ∪ {‘∅’}, then (∗, p′′, r) ∈ T1 for

all p′′ most specific subsumer of p and p′,

We then build two contexts C1 = (O, T1, I1) and C′
1 = (O2, T1, I

′
1) with I1 and I ′1

defined as follows:
I1 = {(o, t), t = (∗, type, c) and (o, c) ∈ IC} ∪ {(o, t), t = (∗, p, v) and ((o, v), p) ∈
IP } ∪ {(o, t), t = (∗, p, ‘∅’) and ∃o′ ∈ O ((o, o′), p) ∈ IP },
I ′1 = {((o, o′), t), t = (∗, p, ‘∅’) and (o, (∗, p, o′)) ∈ I1}.

Finally, H1 is the concept lattice built from C1.

Let us apply this principle on the RDF graph depicted on Figure 3. O =
{DeutscheTelekom, TNova,An.Res.,Germany},C={Country, Person,Com-
pany}, and P = {nationality, employs, subDivisionOf, type}. C1 is represented
in Figure 5.

Building Concept Lattices by Learning Concepts 199

Deutsche Telekom

Germany

An. Res.

TNova

(*
, s

ub
D

vs
O

f
 ,

T
N

ov
a)

(*
, n

at
io

na
lit

y
 ,

T
N

ov
a)

(*
, t

yp
e,

 P
er

so
n)

(*
, t

yp
e,

 C
om

pa
ny

)

(*
, t

yp
e,

 I
na

ni
m

at
e

E
nt

ity
)

(*
, t

yp
e,

 C
ou

nt
ry

)

(*
, n

at
io

na
lit

y
 ,

A
n.

R
es

.)

(*
, e

m
pl

oy
s,

 A
n.

 R
es

.)

(*
, s

ub
D

vs
O

f,
 D

T
)

(*
, n

at
io

na
lit

y
 ,

O
)

(*
, n

at
io

na
lit

y,
 G

er
m

an
y)

(*
, t

yp
e,

 O
)

−
1

−
1

−
1

(*
, e

m
pl

oy
s

 ,
D

T
)

−
1

−
1

Fig. 5. The context C1 upon which H1 represented in Figure 4 is built

T1 is built from the triples extracted from G and matched two by two. For
instance, the triples (An. Res., nationality, *) and (TNova, nationality, *) of G
lead to the triple (∅, nationality, *), TNova being incomparable with the iden-
tifier generated by the RDF parser for ‘An. Res.’; (*, type, Company) and (*,
type, Country) lead to the triple (*, type, Inanimate Entity), ‘Inanimate Entity’
being one of the most specific classes subsuming ‘Company’ and ‘Country’. Note
that RDFS allows for multi-inheritance on class and property hierarchies. There-
fore two classes or two properties may have several most specific subsumers; in
such cases, the generalization of two triples may lead to several triples.

The concept hierarchy H1 in Figure 4 represents the concept lattice built from
the context C1 depicted in Figure 5. Concept intensions are represented as graph
in normal and non redundant form built by join of the triples in the intensions.
Let us note that the non maximal subsets of resources have been discarded:
for instance, the concept ({Deutsche Telekom, TNova}, {(*, type, Inanimate
Entity)}) is not created since the concept whose extension is the set {Deutsche
Telekom, TNova, Germany} shares the same intension. A naive algorithm for
the construction of H1 from C1 would be to consider every possible extensions,
for each one of them to compute its intension and then to discard those of the
learned concepts that are not of maximal extension. However this may be very
unefficient in most practical cases where a lot of concepts are expected to be
discarded. Among several algorithms to build a lattice from propositional data,
we chose the one proposed by [9] that is much more efficient in the general case.

4.2 Building of a Concept Hierarchy Based on Resource
Descriptions of Length n

The principle for building a concept hierarchy Hn of length n from Hn−1 and H1

consists in an iterative construction of a set Tn of triple pathes of length n by join
of all the possible pairs of one triple path of length n− 1 of Tn−1 and one triple
(triple path of length 1) of T1. Two triple pathes can be joined if the value in the

200 Alexandre Delteil et al.

last triple of the first path is equal to the resource described in the first triple
of the second path. This iterative building of Tn is equivalent to considering
resource descriptions Dn(R) of length n by joining Dn−1(R) and D1(Ri), with
i = 1 . . . k, Ri being the external nodes of Dn−1(R).

Formally, Tn is defined as follows: Tn = {t|(ρ(t), p, r) with t ∈ Tn−1, p ∈
P ∪ P−1 and r ∈ O ∪ C and ρ the function which associates to a triple path t
the value of its last triple}.

We then inductively build two contexts Cn = (O, Tn, In) and C′
n = (O2, Tn, I

′
n)

whose attributes are in Tn from the two contexts Cn−1 = (O, Tn−1, In−1) and
C′

n−1 = (O2, Tn−1, I
′
n−1). In and I ′n are defined as follows:

In = {(o, tn−1|(ρ(tn−1), type, c)), (o, tn−1) ∈ In−1 and ∃o′ ∈ O, (o′, (∗, type, c)) ∈
I1 and ((o, o′), tn−1) ∈ I ′n−1} ∪ {(o, tn−1|(ρ(tn−1), p, r)), (o, tn−1) ∈ In−1 and
∃o′ ∈ O, (o′, (∗, p, r)) ∈ I1 and ((o, o′), tn−1) ∈ I ′n−1},
I ′n = {((o, o′), tn−1|(ρ(tn−1), p, ‘∅’)), (o, tn−1|(ρ(tn−1), p, o′)) ∈ In}.

Finally, Hn is the concept lattice built from the context C1 + . . . + Cn.

Let us apply this principle to build the concept hierarchy H2 depicted in
Figure 7. The building of the context C2 used to build H2 is represented in
Figure 6. To build C2, the triples of the context C1 depicted in Figure 5 are
joined one with another (in the general case, the triple pathes of Cn−1 would be
joined with the ones of C1). For instance, the triple (*, nationality, Germany) is
joined with the triple (*, type, Country) since the value of the former triple is
equal to a resource belonging to the extension of the second one. The join results
in a triple path of length 2 (*, nationality, Germany) (Germany, type, Country),
whose extension is equal to the extension of the former triple.

D
eu

ts
ch

e
T

el
ek

om

T
N

ov
a

A
n.

 R
es

.

G
er

m
an

y

(*, nationality, Germany)

(*, employs, An. Res.) (An. Res., type, Person)

(*, nationality, Germany) (Germany, type, O)

(Gertmany, type, Country)

(*, type, Country)

(*, type, Person)

(*, nationality , TNova)

(*, employs, An. Res.)

(*, type, O)

(*, nationality, Germany)

−1

Fig. 6. Building of the context C2 from C1 depicted in Figure 5

Building Concept Lattices by Learning Concepts 201

*
type

* InanimateEntity
type

*

type
Country

type

nationality

Deutsche
Telekom

Deutsche
Telekom

Deutsche
Telekom

Company *
type

* in {Deutsche Telekom} * in {Germany}

* in {Deutsche Telekom, Germany

TNova, An. Res.}

* in {Deutsche Telekom, Germany, TNova}

Germany

* in {An. Res., TNova}

nationality

employs

Germany

Country

Company

*
subDvsOf

type

nationality

* in {TNova}* in {An. Res.}

*

Person

TNova

nationality

employs

type

type

Company

Germany

Country

subDvsOf

nationality

type

Person

TNova

nationality

employs

type

Germany

Company

subDvsOf
*

nationality

Person

TNova

nationality

employs

type

Country

type

nationality

subDvsOf

*

Company

type

* in {Deutsche Telekom, TNova}

*
...

type typetypetype

* in O

Fig. 7. The concept hierarchy H2 built upon the context C2 + C1 of Figures 6
and 5

Figure 7 presents the concept hierarchy H2 built upon C2. H2 has the same
number of concepts than H1 but five of its concepts have more complex inten-
sions: the four concepts whose extensions are reduced to a single resource and
whose intensions correspond to the descriptions of length 2 of these resources,
and the concept of extension {TNova, An. Res.}.

5 Experiments

5.1 Preliminary Results and Discussion

Our algorithm has been tested in the framework of the European IST CoMMA
Project where the so learned ontologies will be used to organize the documents
of the corporate memory, to improve the Information Retrieval process on the
corporate memory, and provide feedback to the ontology designer to refine and
enrich the domain ontology. On a set of CoMMA annotations, with an ontology
of height 6 and containing 50 classes and properties, the results of applying the

202 Alexandre Delteil et al.

50 100 200 300

2

1

Time in min

Number of triples 50 100 200 300

Number Of Nodes

Number of triples

300

200

100

Fig. 8. Results obtained at level 5

algorithm is shown in Figure 8. Time seems to grow in a linear way and number
of concepts seems to grow first rapidly and then slower. This depends of course
a lot on the shape of the ontology (height, number of classes and properties).
Althougth in the worst case time and number of nodes could be exponential, it
shows that in practical applications it is definitely not.

5.2 Exploitation of the Conceptual Hierarchy

The learned concept hierarchy is expected to be exploited in the CoMMA project
for three purposes. It first will be helpful in refining the domain ontology design.
The learned concepts whose intensions are judged particularly relevant and inter-
esting enough by the ontology designer will be integrated in the ontology. Some
of the learned concepts will correspond to primitive concepts already present in
the ontology; the definitions of these concepts will then be provided. Moreover
the learned concepts may be useful to detect regularities in the use of the classes
and properties of the primitive ontology that betray a misuse or a misconception
of the ontology. A further work will be the development of heuristics and the
choice of domain-specific criteria to extract particularly interesting classes from
the learned concept hierarchy.
Second, the learned concept hierarchy is dedicated to the organization of the
corporate memory. By indexing the documents of the intranet to the concepts
they belong to, the concept hierarchy builds up a classification of the documents.
This is of prime importance to support the navigation of the users in the corpo-
rate memory and help them access to the documents by browsing the concept
hierarchy [16].
Finally, the concept hierarchy will be used to improve Information Retrieval on
the corporate memory. To answer a query, it will be classified in the concept
hierarchy instead of being matched with the descriptions of all the documents of
the memory. Moreover, the concept hierarchy will enable to sort and organize the
answers to a query to help the user access them with a classificatory structure.

Building Concept Lattices by Learning Concepts 203

6 Conclusion

We presented a method to capture knowledge from Web documents. More pre-
cisely, we build a concept lattice from a context built upon a power context
family representing the RDF graph gathering the annotations of the Web docu-
ments we consider. In order to deal with the intrinsic exponential complexity of
such a task, the concept hierarchy is incrementally built by increasing at each
step the maximum size of the RDF resource descriptions we consider.
Our further work deals with the specialization of the general principle presented
in this paper to classify all the resources in an RDF graph. In many applications,
we may identify peculiar subsets of the resources of the RDF graph to classify,
e.g. those sharing a particular type. Next, we intend to explore a more expressive
description language and compute for a set of resources the set of patterns satis-
fied by all these resources. At each step of our inductive process, patterns would
be refined into patterns with one more triple. As it may lead to too numerous
patterns, language bias (e.g. trees or graphs with only unidentified nodes) should
be explored to reduce their number. Finally, conditions on the refinement opera-
tion should be found to refine, at each step of the process, the only patterns that
will lead to further interesting patterns, i.e. patterns whose some refinement is
more specific than any of the refinements of the other patterns.

References

1. Baader, F., Molitor, R. Building and Structuring Description Logic Knowledge
Bases Using Least Common Subsumers and Concept Analysis. In Proceedings of
ICCS 2000 (Darmstadt, Germany, 2000), LNAI 1867, Springer-Verlag, 292-305.
197

2. Berners Lee, T.: Weaving the Web, Harper San Francisco, 1999. 191
3. Bournaud, I., Courtine, M. and Zucker, J-D. Kids: An Iterative Algorithm to Orga-

nize Relational Knowledge. In Proceedings of 12th EKAW (Juan-Les-Pins, France,
2000), LNAI 1937, Springer-Verlag, 217-232. 192, 195, 196

4. Carpineto, C., Romano, G. Galois: An Order Theoretic Approach to Conceptual
Clustering. In Proceedings of 10th ICML (Amherst, Massachusetts, 1993), Morgan
Kaufmann, 33-40. 192

5. Corby, O., Dieng, R., Hebert, C.: A Conceptual Graph Model for W3C Resource
Description Framework. In Proceedings of ICCS’00, Darmstadt, Germany, LNAI
1867, Springer-Verlag, 2000. 194

6. Delteil, A., Faron, C., Dieng, R. Extension of RDF(S) based on the CGs For-
malisms, in Proceedings of 9th ICCS, Stanford, CA, USA, August, 2001, Springer-
Verlag, LNAI 2120, p. 275 - 389. 194

7. Fischer, D. H., Pazzani, M. J., and Langley, P. Concept Formation: Knowledge
and Experience, Unsupervised Learning, Morgan Kaufmann, 1991. 192

8. Gandon, F. Ontology Engineering: a Survey and a Return on Experience. Research
Report of Inria, RR4396, France, March 2002. 193

9. Ganter, B. Finding all Closed Sets: A General Approach. Order, 8, 1991. 197, 199
10. Gennari, J. H., Langley, P., and Fisher, D. H. Models of Incremental Concept

Formation. Artificial Intelligence, 40: 11-61, 1989. 192

204 Alexandre Delteil et al.

11. Mineau, G., Gecsei, J., and Godin, R. Structuring Knowledge Bases using Auto-
matic Learning. In Proceedings of 6th ICDE (Los Angeles, CA, 1990), 274-280.

12. RDF: http://www.w3.org/TR/REC-rdf-syntax/, 1999. 191, 194
13. RDFS: http://www.w3.org/TR/2000/CR-rdf-schema-20000327/, 2000. 191, 193
14. Sowa, J. F.: Conceptual Graphs, Conceptual Structures: Information Processing

in Mind and Machine, Addison-Wesley, Reading, MA, 1984.
15. Sowa, J. F.: Conceptual Graphs: DpANS. In Proceedings of ICCS’99, Blacksburg,

VA, USA, LNAI 1640, p.1-65, Springer-Verlag, 1999.
16. Stumme, G. Hierarchies of Conceptual Scales. In Proceedings of 12th KAW (Banff,

Canada, 1999). 192, 195, 202
17. Wille, R. Restructuring Lattice Theory: an Approach Based on Hierarchies of Con-

cepts. In: I. Rival (ed): Ordered Sets, Reidel, Dordrecht-Boston, 1982. 195, 197

	Building Concept Lattices by Learning Concepts from RDF Graphs Annotating Web Documents
	Introduction
	From Document Annotations to Conceptual Descriptions
	The RDF(S) Data Model
	The RDF(S) Model and the Conceptual Graphs Model
	Extracting Conceptual Descriptions of Web Resources

	Learning Concepts from Conceptual Descriptions
	Systematic Conceptual Clustering
	The Concept Description Language
	Incremental Principle
	Resource Exploration and Size of the Concept Hierarchy

	Incremental Building of a Concept Hierarchy
	Building of a Concept Hierarchy Based on Resource Descriptions of Length 1
	Building of a Concept Hierarchy Based on Resource Descriptions of Length n

	Experiments
	Preliminary Results and Discussion
	Exploitation of the Conceptual Hierarchy

	Conclusion

