Ontologies and Machine Learning for Semantic Multimedia Analysis

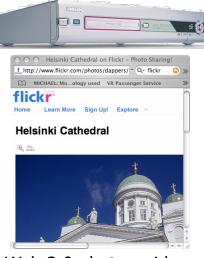
Yiannis Kompatsiaris Multimedia Knowledge Lab CERTH Informatics and Telematics Institute

Outline

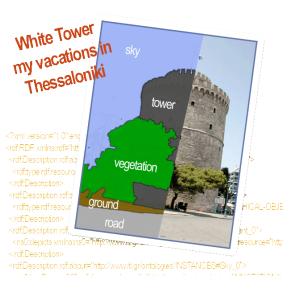
- Introduction
- Content applications
- Semantic Multimedia Analysis
 - Multimedia Ontologies
 - Analysis
 - Reasoning
- Coclusions

Multimedia Content

Storage & Devices



Web 2.0 photo - video applications



Segmentation KA Analysis

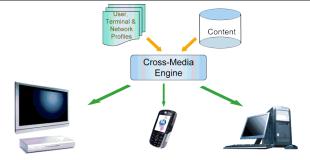
Labeling

Cross-media analysis

Context

Reasoning

Metadata Generation & Representation



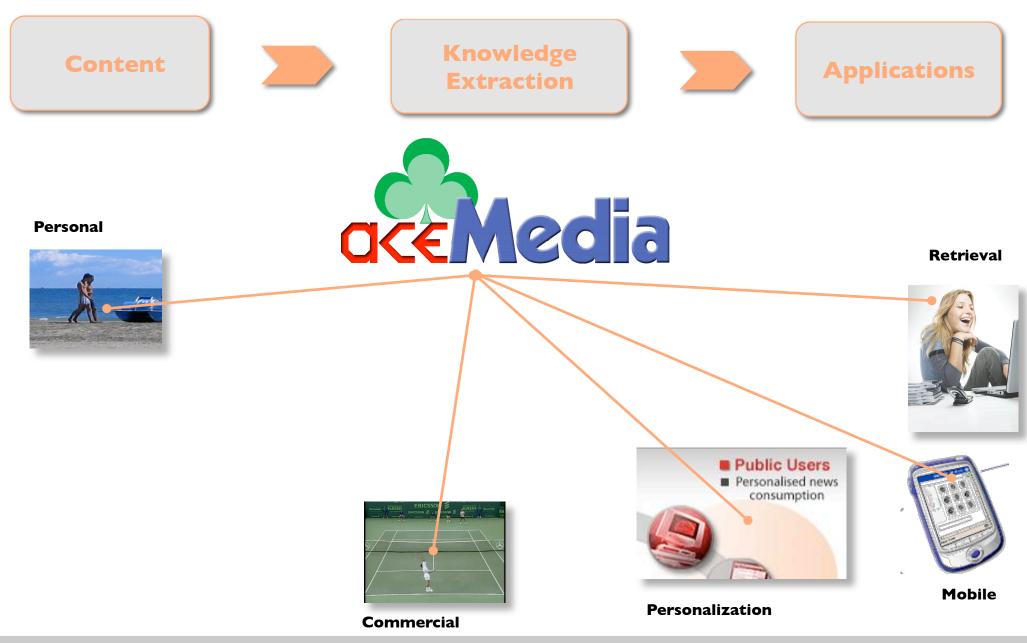
Content adaptation, personalization and distribution -Multiple Terminal & Networks

A	Application	Toro Exercit Charles And Torona	ATORPEZOTOPREA Autor Danker Autor Danker Autor Danker Autor Danker
ysis	SemanticMiddleware		
	Semanticimuleware	Eúsean Ouolear Ayand Europools Ayand Europools YAisod sarados	ΚΑΜΠΙΕΣ Εύρεση Ομοίων Πληροφορίες Αγορά Συναφούς: Υλικού Κατάλογο
	Application Server	/ Content-based	retrieval
	Database	dations and pers	
tion &	Operating System		
on	tomorrow	Semantic teo Mark	• • •

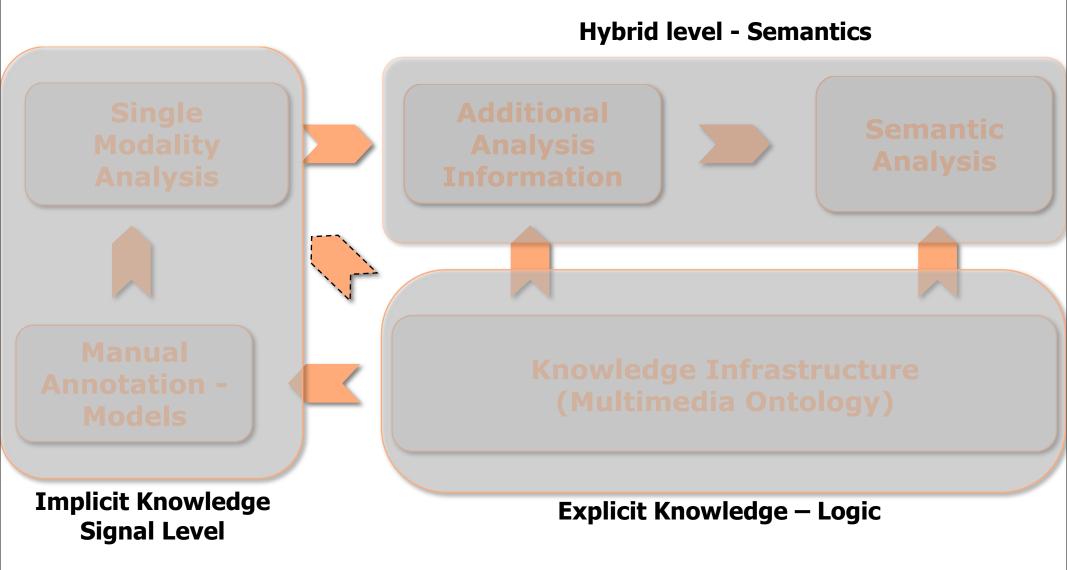
Need for annotation

"The value of information depends on how easily it can be found, retrieved, accessed, filtered or managed in an active, personalized way"

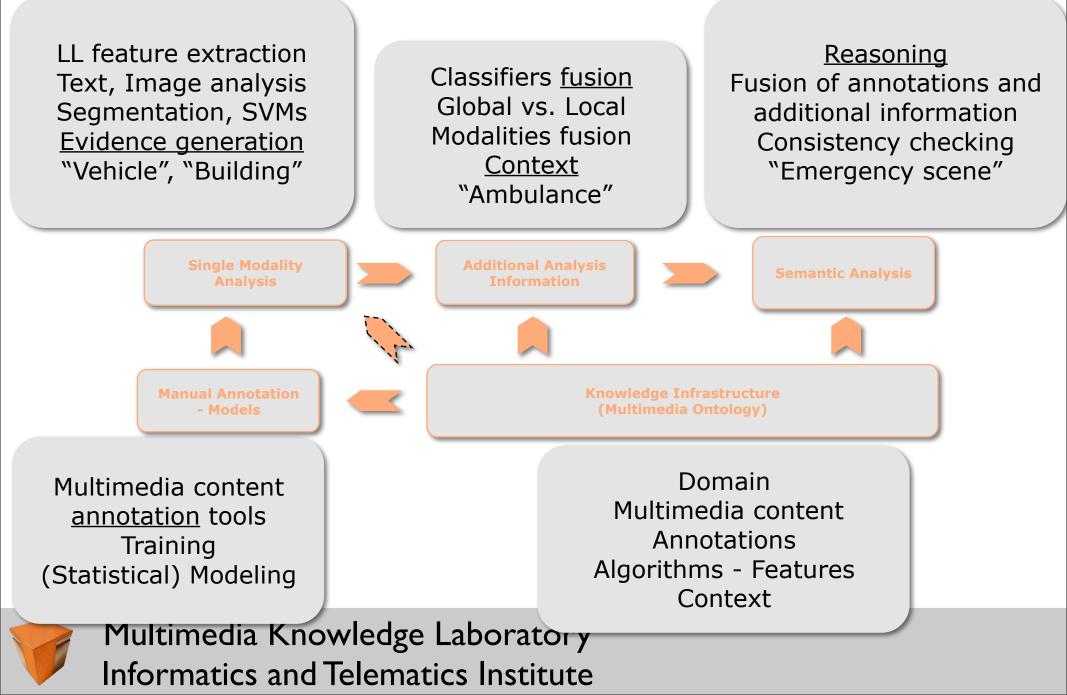
Content - Applications



Knowledge Extraction from MM



Knowledge Extraction from MM



Addressing the Semantic Gap

Semantic Gap for multimedia: To map automatically generated numerical low level-features to higher level human-understandable semantic concepts

<?xml version='1.0' encoding='ISO-8859-1' ?> <Mpeg7 xmlns...> <DescriptionUnit xsi:type = "DescriptorCollectionType"> <Descriptor xsi:type = "DominantColorType"> <SpatialCoherency>31</SpatialCoherency> <Value> <Percentage>31</Percentage> <Index>19 23 29 </Index> <ColorVariance>0 0 0 </ColorVariance> </Value> </Descriptor> </DescriptionUnit> </Mpeg7>

This image contains a sky region and is a holiday image

Dominant Color Descriptor of a sky region

Concept A

MM analysis

Final Decision

explicit knowledge, ontology

implicit knowledge
(machine learning)

context

other modalities (text, audio)

routes and level of difficulty

what skier has learned

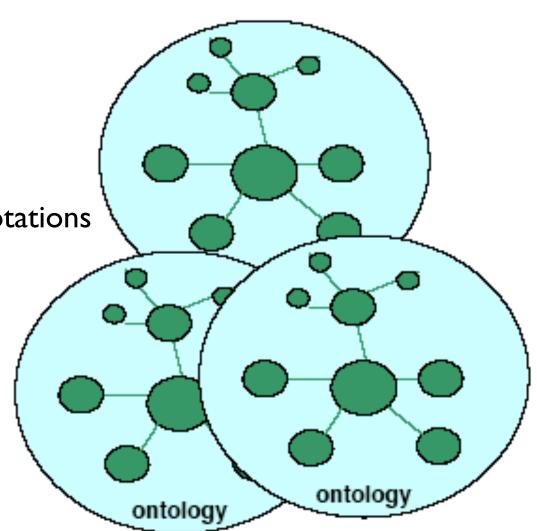
Skier

weather, level of snow

what reviews have written, what friends said

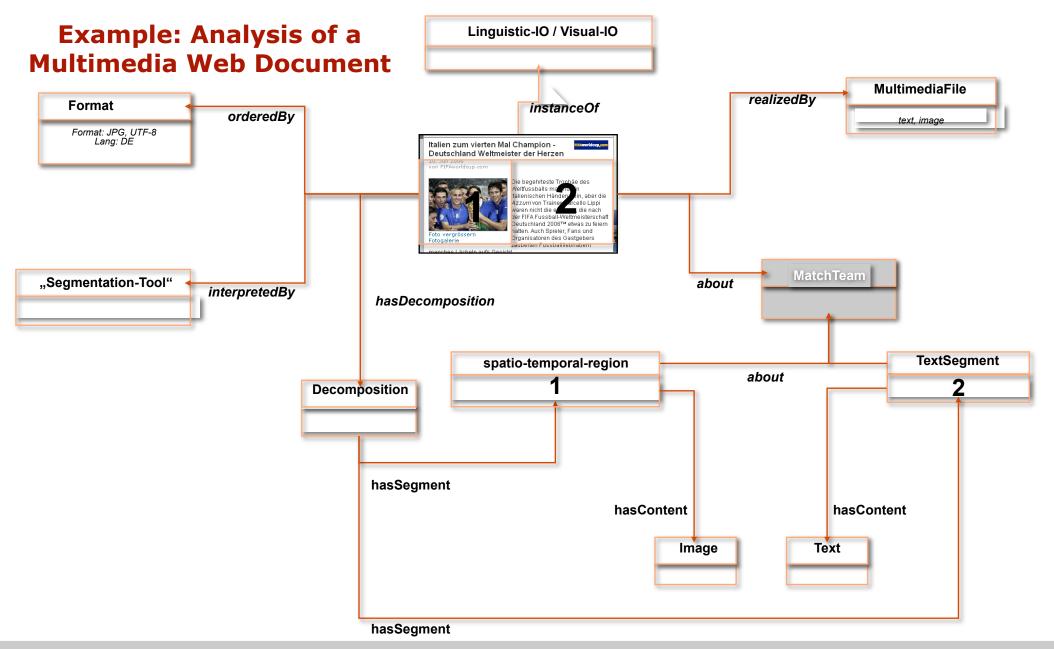
Use of ontologies

- Metadata representation
 - Annotation
 - Interoperability
- Reasoning
 - Extracting higher-level annotations
 - Consistency checking
 - Fusion
- Ontology-driven analysis
- Retrieval
- Personalization

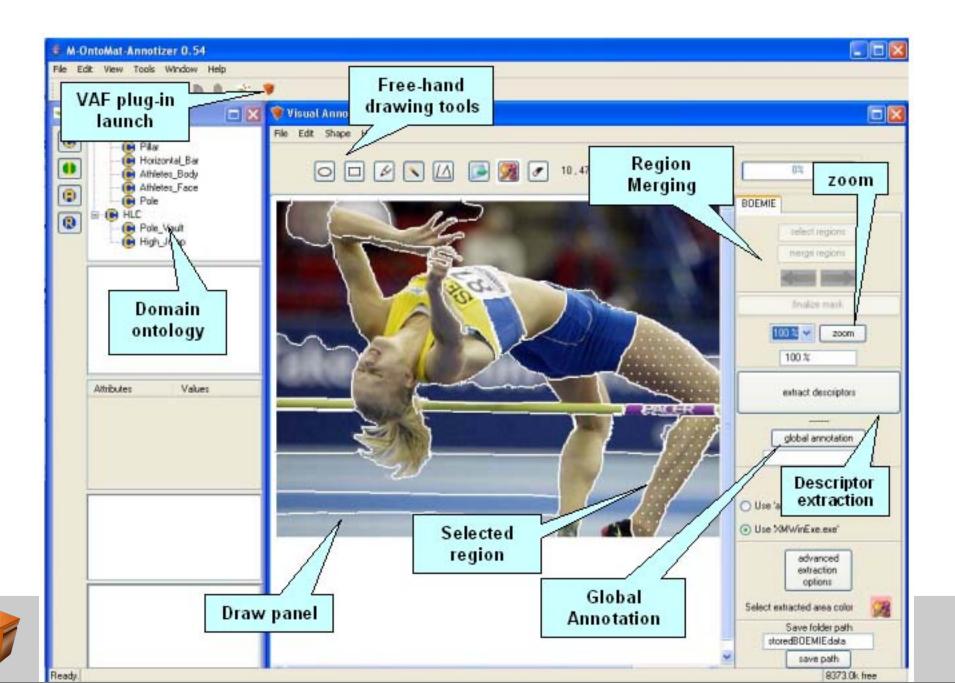


- Multimedia content structure
 - aceMedia (MPEG-7, RDF), AIM@SHAPE (3D content)
- Multimodality
 - MESH (OWL), BOEMIE (OWL-DL)
 - K-Space, X-Media (COMM, OWL, DOLCE)
- Fuzziness
 - K-Space, X-Media (Fuzzy-OWL)
- Changing knowledge
 - **BOEMIE** (evolution)
 - X-Media (versioning, reasons of change)
- Specific domains

Multimedia Information Objects -MESH



Annotation Tools

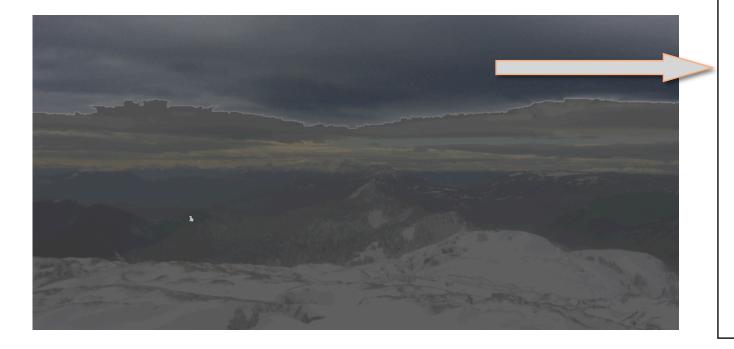


Multimedia Content Analysis

- MPEG-7 widely used for LL features
- Segmentation and feature extraction tools
- Well-known classifiers applied and developed
 - SVMs, EM, HMM Bio-inspired approaches

Classifications results

Segment's hypothesis set



Natural-Person: 0.456798 Sailing-Boat: 0.463645 Sand: 0.476777 Building: 0.415358 Pavement: 0.454740 Road: 0.503242 Body-Of-Water: 0.489957 Cliff: 0.472907 Cloud: 0.757926 Mountain: 0.512597 Sea: 0.455338 Sky: 0.658825 Stone: 0.471733 Waterfall: 0.500000 Wave: 0.476669 Dried-Plant: 0.494825 Dried-Plant-Snowed: 0.476524 Foliage: 0.497562 Grass: 0.491781 Tree: 0.447355 Trunk: 0.493255 Snow: 0.467218 Sunset: 0.503164 Car: 0.456347 Ground: 0.454769 Lamp-Post: 0.499387 Statue: 0.501076

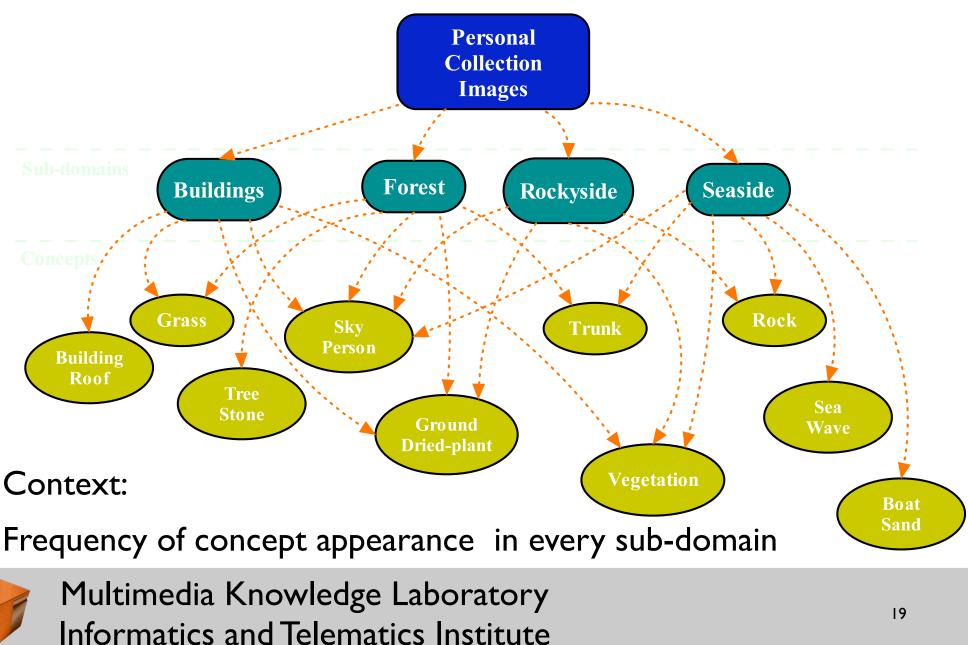
Multimedia Content Analysis

- Increasing use of context
 - Spatial, Frequency, EXIF (time, conditions, etc)
 - Recently: social context
- Fusion
 - Classifiers (global+local)
 - Modalities
 - e.g. Text+Image
 - Text+Speech+Video

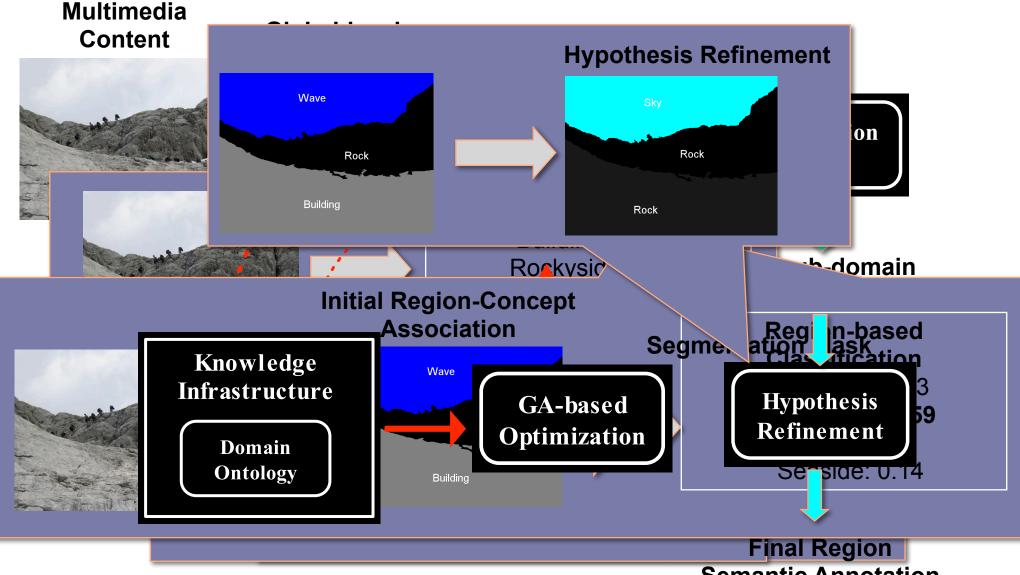
Knowledge-Assisted Image Analysis A specific approach

- Important observations:
 - Global-level information is not always sufficient
 - Local-level information can provide valuable cues
- The proposed approach combines:
 - Implicit and explicit knowledge
 - Global- and local-level information (Fusion)
 - Contextual information

Knowledge Infrastructure



Proposed Approach

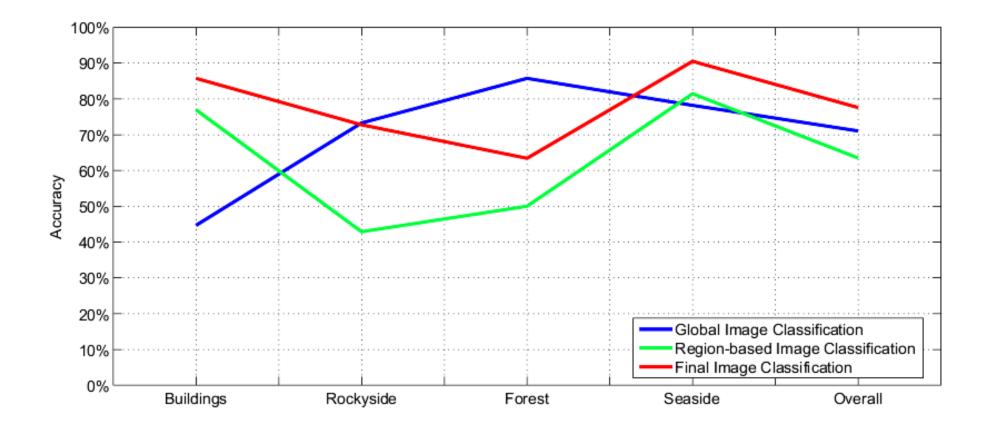


Semantic Annotation

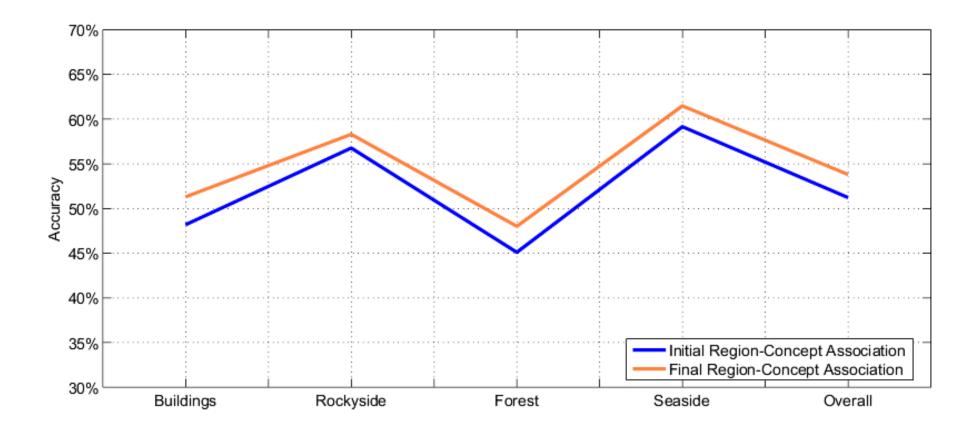
Experimental Results

- Domain of experimentation: Personal collection images domain
- 4 supported sub-domains
 - Buildings, Rockyside, Forest, Seaside
- 16 supported concepts
 - Building, Roof, Grass, Tree, Stone, Ground, Dried-plant, Sky, Person, Trunk, Vegetation, Rock, Boat, Sand, Sea, Wave
- 400 training images
- 400 testing images

Sub-domain detection



Concept Detection

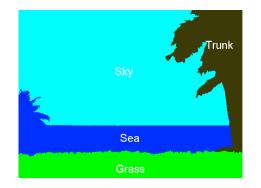


Indicative image - sub-domain association results

Input Image		
Global Image Classification	Buildings: 0.12 Rockyside: 0.23 Forest: 0.42 Seaside: 0.84	Buildings: 0.14 Rockyside: 0.52 Forest: 0.33 Seaside: 0.09
Region-based Image Classification	Buildings: 0.14 Rockyside: 0.22 Forest: 0.31 Seaside: 0.79	Buildings: 0.23 Rockyside: 0.36 Forest: 0.38 Seaside: 0.14
Final Image Classification	Seaside	Rockyside

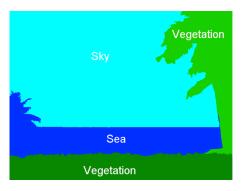
Indicative region-concept association results

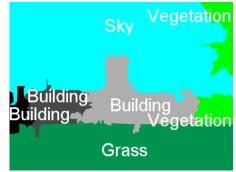
Input image



Initial region-concept association







Final region-concept association

Formal Reasoning Approaches

- Logic-based approaches
 - Extensions of formal theories
 - Ad-hoc solutions based on crisp reasoners
- Statistical approaches
 - Bayesian Networks
- Support of imprecision uncertainty

Reasoning

- Used for
 - Fusion
 - Consistency checking
 - Higher-level results

Reasoning

- Annotations from different analysis modules, of varying granularities (scene/region level)
 - partially contradictory
 - partially overlapping
 - restricted abstraction
- Need to be integrated into a semantically coherent overall representation

Proposed Solution

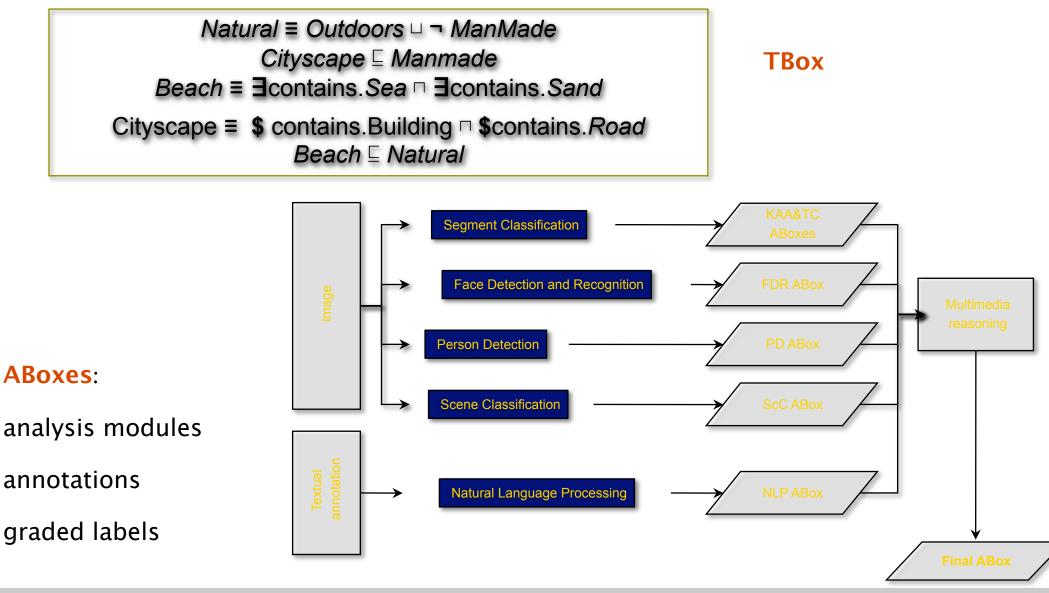
- OWL DL Ontologies
 - utilize domain semantics to integrate/enhance/remove annotations
- Fuzzy extensions on top of crisp DL reasoning to benefit from analysis extracted confidence values
- (DL-safe) Rules to address role value map expressivity requirements

Reasoning Tasks

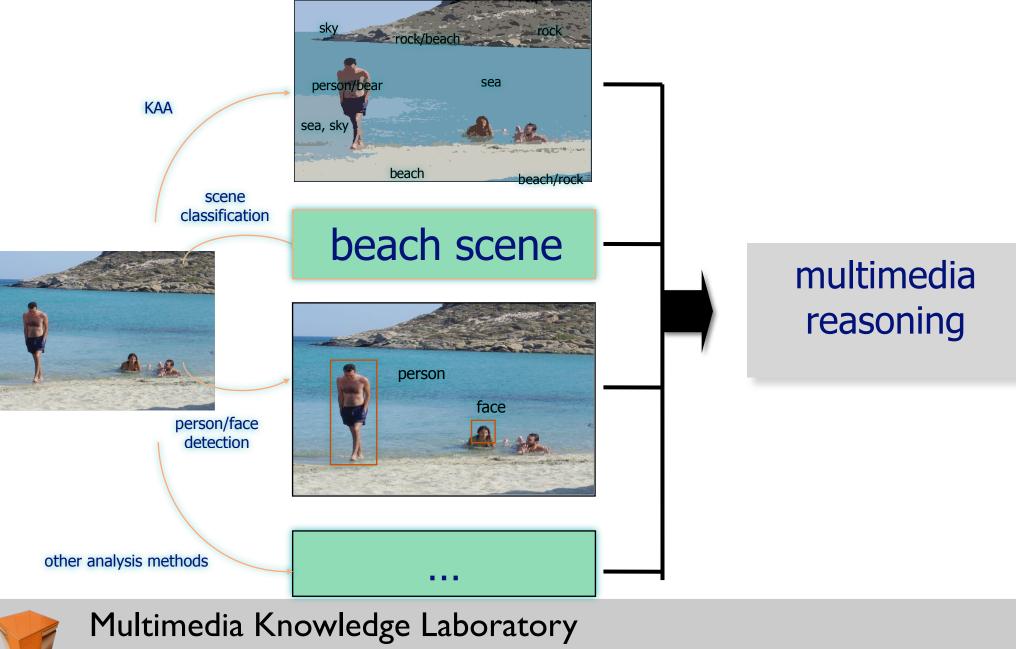
• Domain selection

- input: direct and inferred (from region based ones) scene level instances
- confidence values propagation along scene concept hierarchy
- average of the (provenance-based) weighted annotations extracted per module
- Consistency checking
 - scene to scene annotations
 - scene to region annotations
 - removal of instances that triggered inconsistent inferences
- Make implicit inferences explicit
 - annotation enrichment

Architecture

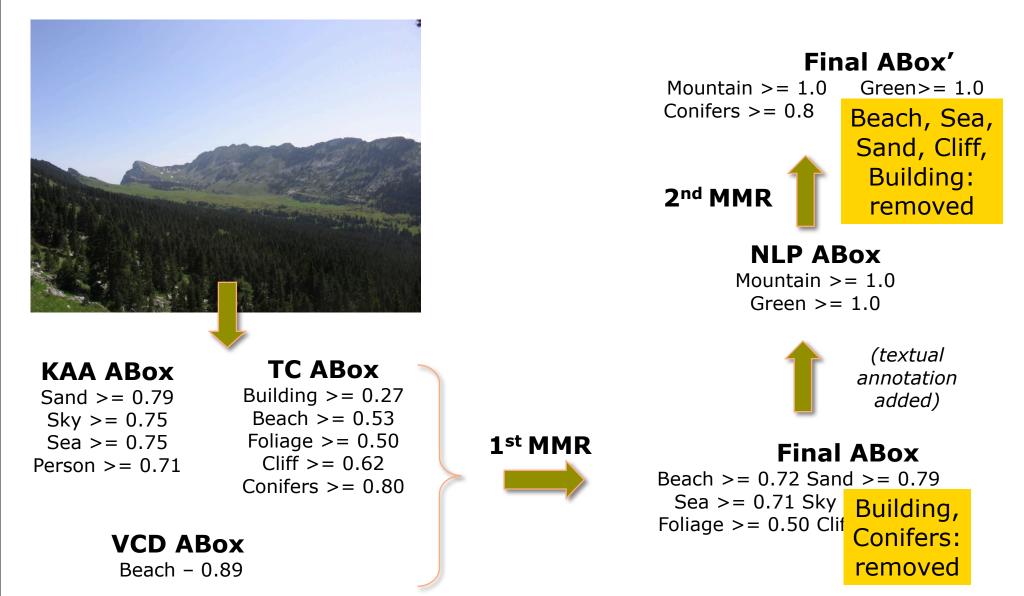


Context and Reasoning for Analysis, aceMedia



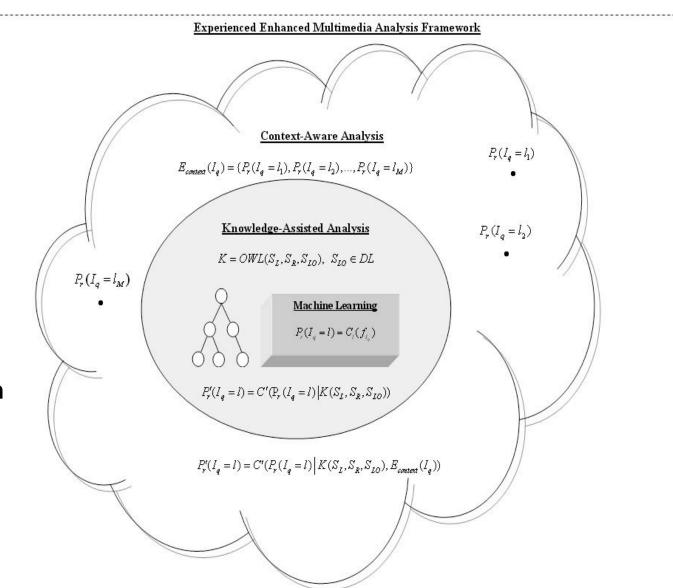
Informatics and Telematics Institute

Successive Reasoning



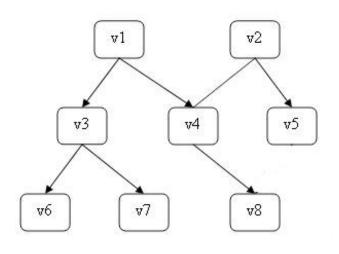
Reasoning with Bayesian Nets

- Machine learning to extract probabilities
- Knowledge-assisted analysis to define domain and context
- Perform knowledge inference for decision making using a Bayesian Network

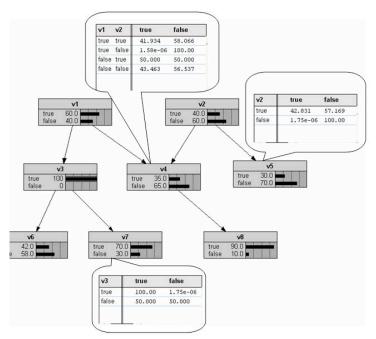


Bayesian Network Modeling

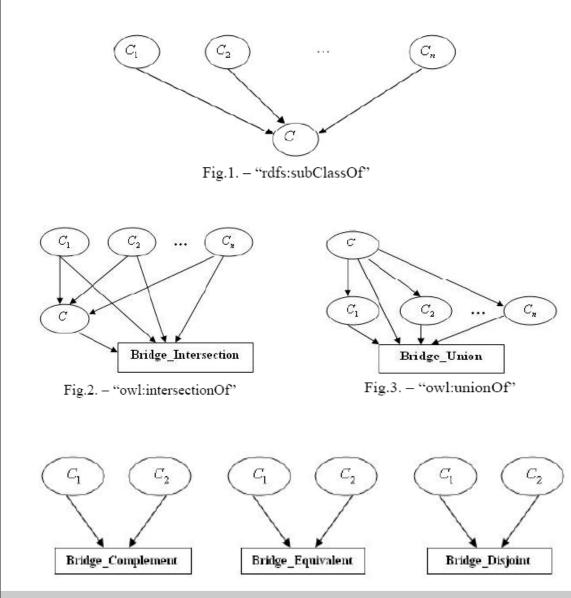
- Network Structure
 - Number of nodes
 - Placement of arcs



Parameter learning Prior probabilities Conditional Probability Tables



Ontology to BN mapping



Multimedia Knowledge Laboratory Informatics and Telematics Institute (1) Bridge_Complement (Table 1): When its state is set to "True", C_1 and C_2 are complement of each other;

Table 1 - CPT of Bridge_Compleme	nt
----------------------------------	----

C1 C2		True	False		
True	True	0.000	100.00		
True	False	100.00	0.000		
False	True	100.00	0.000		
False	False	0.000	100.00		

(5) Bridge_Union (Table 5): When its state is set to "True",C is the union of C₁ and C₂;

C1	C2	с	True	False
True	True	True	100.00	0.000
True	True	False	0.000	100.00
True	False	True	100.00	0.000
True	False	False	0.000	100.00
False	True	True	100.00	0.000
False	True	False	0.000	100.00
False	False	True	0.000	100.00
False	False	False	100.00	0.000

(2) Bridge_Disjoint (Table 2): When its state is set to "True", C_1 and C_2 are disjoint with each other;

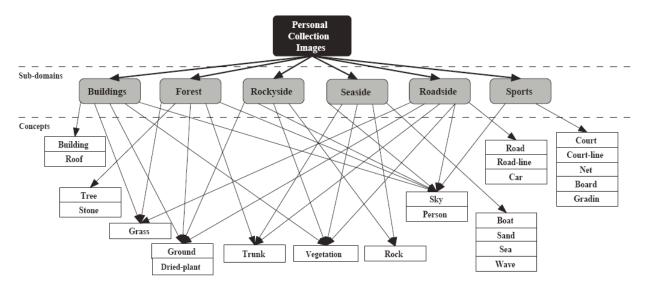
Table	2 –	CPT	of	Bridge	Disjoint	
N.9344	1/10/201		T	1201/1004 14	W-570-574	•

C1	C2	True	False
True	True	0.000	100.00
True	False	100.00	0.000
False	True	100.00	0.000
False	False	100.00	0.000

(4) Bridge_Intersection (Table 4): When its state is set to "True", C is the intersection of C_1 and C_2 ;

C1	C2	С	True	False
True	True	True	100.00	0.000
True	True	False	0.000	100.00
True	False	True	0.000	100.00
True	False	False	100.00	0.000
False	True	True	0.000	100.00
False	True	False	100.00	0.000
False	False	True	0.000	100.00
False	False	False	100.00	0.000

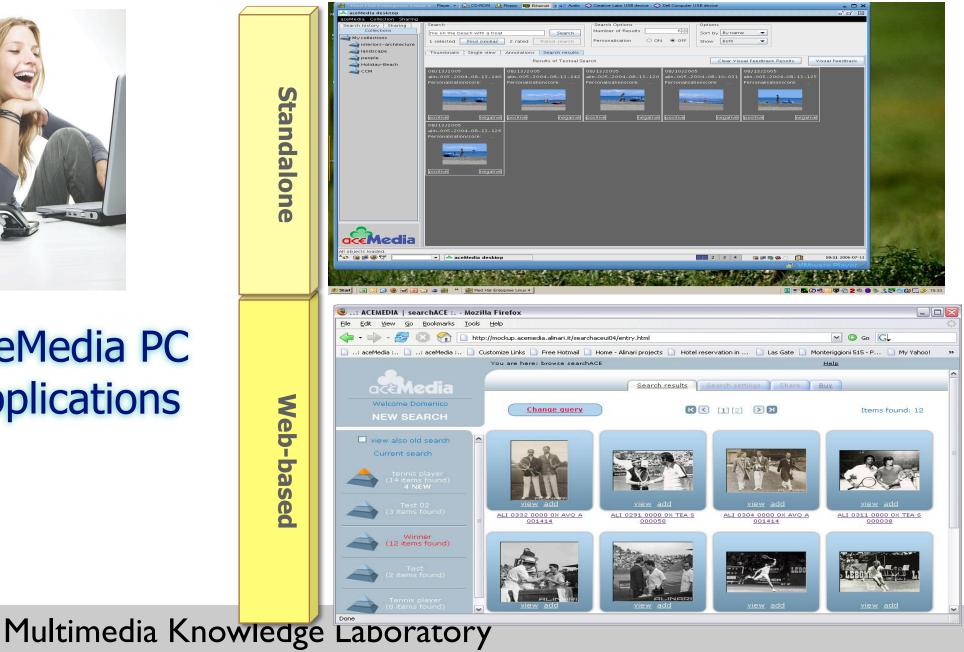
Preliminary Results



		Tennis	Roadside	Rockyside	Seaside	Forest	Countryside_Buildings	Average
	accuracy	96,91	89,19	90,43	90,43	87,65	89,19	90,63
	recall	100,00	68,42	68,62	85,71	76,66	30,00	71,57
Global classifiers solely		83,33	69,64	70,00	67,60	63,88	100,00	75,74
	f-measure	90,90	69,02	69,30	75,59	69,69	46,15	70,11
	accuracy	98,76	88,27	87,96	90,43	83,02	88,58	89,50
Global classifiers with backgound knowledge	recall	100,00	66,66	41,17	85,71	86,66	26,00	67,70
Giobal classillers with backgoulid knowledge	precision	92,59	66,66	70,00	67,60	52,52	100,00	74,90
	f-measure	96,15	66,66	51,85	75,59	65,40	41,26	66,15
	accuracy	95,06	83,95	86,41	84,56	87,65	90,12	87,96
Classification using regional information only	recall	94,00	68,42	47,05	69,64	55,00	50,00	64,02
Classification using regional mornation only	precision	78,33	53,42	58,53	54,16	71,13	78,13	65,62
	f-measure	85,45	60,00	52,17	60,93	62,26	60,97	63,63
Global classifiers with backgound knowledge and regional information	accuracy	98,14	88,27	91,35	91,97	89,50	91,97	91,87
	recall	98,00	73,68	64,70	91,07	71,66	54,00	75,52
	precision	90,74	64,61	76,74	70,83	71,66	90,00	77,43
		94,23	68,85	70,21	79,68	71,66	67,50	75,36

aceMedia applications

aceMedia PC applications



Informatics and Telematics Institute

Common (Open) Issues

- Evaluation
- Annotated content
- Ontologies
- Fusion in analysis
- Uncertainty in reasoning
- Large-Scale
- Generic vs. Specific approaches
- Multiple domains support

Dissemination Activities

- SMART: Semantic MultimediA Research and Technology, networking cluster
- SAMT: International Conference on Semantics and digital Media Technologies (EWIMT)
 - 2007: 5-7 December 2007, Genova, Italy
- SSMS: Summer School on Multimedia Semantics
 - 2008: Crete, September

Conclusions

- Semantic analysis of multimedia is already providing results
- Fundamental and applied research in
 - Logic-based + signal approaches
 - Implicit + explicit (knowledge) approaches
- Different applications and requirements
- Ongoing research in all areas
- Future direction: analysis+reasoning for social (Web 2.0) applications

Thank You! Multimedia Knowledge Lab, <u>http://mklab.iti.gr</u>

