
RDF/S and SPARQL Expressiveness
in Engineering Design Patterns

Hacène Cherfi - INRIA Sophia Antipolis
Olivier Corby - INRIA Sophia Antipolis
Cyril Masia-Tissot - Semantic-Systems S.A.

Extended from Web Intelligence Conference
(WI’07) short paper

28th October 2007 KW4ED workshop, Whistler, BC, Canada 2

Outline

� Context and relevance

� RDF/S and SPARQL features with Corese

� Expressiveness needs

� Order specification

� Quantity/unit expression

� Metadata description

� Conclusion and future work

28th October 2007 KW4ED workshop, Whistler, BC, Canada 3

Context

� SW is about "integration/combination of data
from diverse sources, whereas original Web
concentrated on interchange of documents"

� Based on W3C standards: RDF/S and OWL

� RDF/S lightweight ontology/data definition
� Simple, readable, understandable

� Primarily intended for machine consumption

� Has expressiveness limitations

� OWL ontology definition
� Description logics (DL)-reasoning-oriented

� Needs inference engine

28th October 2007 KW4ED workshop, Whistler, BC, Canada 4

Topic relevant?…I would say:

� RDF/S data structure is directed labeled graph
� Textual serialization (XML/ N3 triple)

� Tractable as unit of information
� Loses readability
� Linkability between RDF triples in large graphs

Our purpose
� Put additional information

� On property values
� Over selected instances

� Without defining
� Ontological property (holding for all instances)
� Ad-hoc property (overcharging these instances)

28th October 2007 KW4ED workshop, Whistler, BC, Canada 5

SPARQL features (e.g. sub-classification)

28th October 2007 KW4ED workshop, Whistler, BC, Canada 6

Ordering instance properties

� Use case: for engineering element (instance), specify
sequence of operations (properties) performed on it

� Tentative #1: Property reification with rdf:Statement

<rdf:Statement rdf:about="#s111">

<rdf: subject rdf:resource="#partBody_10"/>

<rdf: predicate
rdf:resource="&sp_cad;hasFeature"/>

<rdf: object
rdf:resource="#featExtrude_12"/>

</rdf:Statement>

<rdf:Description rdf:ID="partBody_10">
<sp_cad:hasFeature rdf: ID="s111"
rdf:resource="#featExtrude_12"/>

</rdf:Description>

28th October 2007 KW4ED workshop, Whistler, BC, Canada 7

Ordering instance properties
� Tentative #1: Property reification with rdf:Statement

� (++) Add as many information as necessary

<rdf:Statement rdf:about="#s111">
<rdf:subject rdf:resource="#partBody_10"/>
<rdf:predicate rdf:resource="&sp_cad;hasFeature"/>
<rdf:object rdf:resource="#featExtrude_12"/>

<sp_gen:position
rdf:datatype="&xsd;integer"> 1</sp_gen:position>
</rdf:Statement>

� After querying

� (--) Lose connection between genuine triple (line1)
and statement on triple (lines2 to 6)
Subject Predicate Object

1 #partBody_10 sp_cad:hasFeature #featExtrude_12

2 #s111 rdf:type rdf:Statement

3 #s111 rdf:subject #partBody_10

4 #s111 rdf:predicate sp_cad:hasFeature

5 #s111 rdf:object #featExtrude_12

6 #s111 sp_gen:position "1"ˆˆxsd:integer

28th October 2007 KW4ED workshop, Whistler, BC, Canada 8

Ordering instance properties

� Tentative #2: Property values with rdf:Seq and rdf:List

� (++) Easy to query (--) Difficult to query

rdfs:member No recursive mechanism

� (--) Arbitrarily order (--) Many blank nodes (BN)

<rdf:Description
rdf:about="#partBody_10">

<sp_cad:hasFeatures
rdf:parseType=’Collection’>

<rdf:Description
rdf:about="#featExtrude_12"/>

<rdf:Description
rdf:about="#featHole_15"/>

</sp_cad:hasFeatures>

</rdf:Description>

<rdf:Description
rdf:about="#partBody_10">
<sp_cad:hasFeatures>
<rdf:Seq>
<rdf:li
rdf:resource="#featExtrude_12"/>
<rdf:li rdf:resource="#featHole_15"/>
</rdf:Seq>
</sp_cad:hasFeatures>
</rdf:Description>

28th October 2007 KW4ED workshop, Whistler, BC, Canada 9

Ordering user-defined property values
� Tentative #3: using Container rdf:Seq

� In ontological level
<rdf:Property rdf:ID=" hasPropertySequence"/>
<rdfs:domain rdf:resource="&rdfs;Resource"/>
<rdfs:range rdf:resource="& rdf;Seq"/>
</rdf:Property>

� In instance definition
<rdf:Description rdf:about="#partBody_10">
<sp_cad:hasFeature rdf:about="#featExtrude_12" />
<sp_cad:hasFeature rdf:about="#featHole_15" />
<sp_cad: hasPropertySequence>
<rdf:Seq>
<rdf:li rdf:resource="#featHole_15" />
<rdf:li rdf:resource="#featExtrude_12" />
</rdf:Seq>
</sp_cad: hasPropertySequence>
</rdf:Description>

� (++) Easy to query with SPARQL (see in ex16)

� (--) Property and order definition in different levels
(see ambiguity in ex17)

28th October 2007 KW4ED workshop, Whistler, BC, Canada 10

Possible solution: our proposition (1/2)

� Property with explicit order

� Define in ontology
<rdf:Property rdf:ID=" order">

<rdfs:domain rdf:resource="&rdfs; Resource"/>

<rdfs:range rdf:resource="&xsd; integer"/>

</rdf:Property>

� Use as instance specification with
parseType=“Resource” and rdf:value

<rdf:Description rdf:about="#partBody_10">

<sp_cad:hasFeature rdf: parseType="Resource">

<rdf:value rdf:resource="#featHole_15" />

<sp_gen:order rdf:datatype=’&xsd;integer’> 1</sp_gen:order>

</sp_cad:hasFeature>

<sp_cad:hasFeature rdf: parseType="Resource">

<rdf:value rdf:resource="#featExtrude_12" />

<sp_gen:order rdf:datatype=’&xsd;integer’> 2</sp_gen:order>

</sp_cad:hasFeature>

</rdf:Description>

28th October 2007 KW4ED workshop, Whistler, BC, Canada 11

Possible solution: our proposition (2/2)

� Property with explicit order

� BN is created
#partBody_10 sp_cad:hasFeature _:bn1

_:bn1 rdf:value #featHole_15

_:bn1 sp_gen:order "1"ˆˆxsd:integer

#partBody_10 sp_cad:hasFeature _:bn2

_:bn2 rdf:value #featExtrude_12

_:bn2 sp_gen:order "2"ˆˆxsd:integer

� Query with operator [] matching BNs
select ?object ?part ?ordering where {

?object sp_cad:hasFeature

[rdf:value ?part ; sp_gen:order ?ordering]

}

order by ?object ?ordering

28th October 2007 KW4ED workshop, Whistler, BC, Canada 12

Order (1/2)

28th October 2007 KW4ED workshop, Whistler, BC, Canada 13

Order (2/2)

28th October 2007 KW4ED workshop, Whistler, BC, Canada 14

Quantity, unit, additional information

� Use cases:

1. Quantity: specify how much/many
(n) of something
� Without create (n) instance properties

2. Unit: specify
� Size, speed of object (metric/us scale)

� Weight system (international/us scale)

� Temperature (°C/°F)

� etc.

28th October 2007 KW4ED workshop, Whistler, BC, Canada 15

Order on statements and quantity (1/2)

28th October 2007 KW4ED workshop, Whistler, BC, Canada 16

Order on statements and quantity (2/2)

28th October 2007 KW4ED workshop, Whistler, BC, Canada 17

Query combination capabilities
E.g: sum on quantity (1/2)

28th October 2007 KW4ED workshop, Whistler, BC, Canada 18

Query combination capabilities
E.g: sum on quantity (2/2)

28th October 2007 KW4ED workshop, Whistler, BC, Canada 19

Annotation on metadata

� Use cases: annotate origin of information

� In RDF triple:

� E.g: author, version number, date

� Using SPARQL graph source capability

28th October 2007 KW4ED workshop, Whistler, BC, Canada 20

E.g.: using graph source (1/2)

28th October 2007 KW4ED workshop, Whistler, BC, Canada 21

E.g.: using graph source (2/2)

28th October 2007 KW4ED workshop, Whistler, BC, Canada 22

Conclusion and future work

� Express new features:

1. N-ary relations (order, unit, …)
� With standard RDF parseType=“Resource” , and value

� With standard SPARQL BN matching []

2. Annotation on metadata
� With standard SPARQL graph source

� In Engineering domain and wider…

� Perspectives

� Evaluate BN usage impact of our proposition in (1) on
massive RDF graphs

� Extend (2) to context types in engineering (design,
specification, …) and relate contexts to corresponding
ontologies

