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s=c=tfRG Motivation

m Engineering is one of the most knowledge-
Intensive activities

m Knowledge in form of CAD designs, documents,
simulation models and ERP data bases

® No industrial software employing ILP techniques
In real-life regular use we are aware of

m Goal: Making implicit knowledge contained In
CAD designs explicit useful for reuse, training,
guality control






===PRG Design Annotation

m the information available in CAD files and other
data sources formalized and integrated by means
of semantic annotation based on ontologies

B semantic annotation of CAD designs

B generated automatically from the commands
history available via the API of CAD tools

m based on a CAD ontology developed in
SEVENPRO

m available in RDF format






-—EM—’-@ Annotation Example - RDFS

<sp_cad:Body rdf:about="&sp_cad;Body_22083581184246506">
<rdfs:label>Redondeo4 < /rdfs:label>
<sp_cad:hasFeature>
<sp_cad:SolidExtrude rdf:about="&sp_cad;SolidExtrude_22083591184246507"/>
</sp_cad:hasFeature>
<sp_cad:hasFeature>
<sp_cad:SolidPocket rdf:about="&sp_cad;SolidPocket_22083621184246509"/>
</sp_cad:hasFeature>
</sp_cad:Body>
<sp_cad:SolidPocket rdf:about ="&sp_cad;SolidPocket_22083621184246509">
<rdfs:label>Cortar-Extruird</rdfs:label>
<sp_cad:hasLimit2>
<sp_cad:OffsetLimit rdf:about="&sp_cad;OffsetLimit_22083631184246509" />
</sp_cad:hasLimit2>
<sp_cad:hasLimitl>
<sp_cad:OffsetLimit rdf:about="&sp_cad;OffsetLimit_22083641184246510"/>
</sp_cad:hasLimitl>
</sp_cad:SolidPocket>



sec= RO ILP Background

® Inductive logic programming (ILP) aims at learning a theory
In a subset of first-order logic from given example s, taking
background knowledge into account

m Traditional ILP setting cannot exploit explicit tax onomies on
concepts and terms

m  Our aim: exploiting taxonomies in the framework of
propositionalization and subsequent learning from t he
propositionalized representation



s==2PROY Example

The CAD ontology declares a concept PrismSolFeature and its
subconcept SolidExtrude. It is possible to declare in background
knowledge e.qg.

subclass(prismSolFeature, solidExtrude).
hasFeature(B, F1):-hasFeature(B,F2),subclassTC(F1,F2).

Unfortunately, in such an approach, for the following two exemplary
clauses (hypotheses)

C = itemFamilyLiner(P):-hasBody(P,B),hasFeature(B, prismSolFeature).
D = itemFamilyLiner(P):-hasBody(P,B),hasFeature(B, solidExtrude).

It does not hold C8 I D, so clause D is not obtained by applying a
specialization refinement operator onto clause C.




sec= RO Sorted logic

m A sorted variable is a pair X1
®m where x is a variable name

m Tis asort symbol, which denotes a subset of the domain
called a sort

m A sorttheory is afinite set of formulas containing function
formulas and subsort formulas
m function formula|vz1....,zami(z) Ao ATe(zn) — 7(f(21, ... 20))
®  subsortformula |, (x) — Ta(z)
m Itis required that the directed graph corresponding to the
sort theory is acyclic and has a single root

m For asorttheory 2, a 2-sorted substitution is a mapping from
variables to terms such that for every variable x:t, it holds

that | X = 7a7(t) |, where tis (x:1)8 and 0 is the sorted
substitution




=== NE .
@ RDM Core Overview

Predicate declarations

mode hasBody( +CADPart, -Body).

mode hasMaterial(+CADPart, -Material). 11

mode hasSketch(+CADPart, -Sketch). P ro p OS Itl O n al ru | e

mode hasLength(+Sketch, -float). | o W k
earning (Weka)

Examples

eltem(eltemT_BA1341).
eltem(eltemT_BA1342).
eltem(eltemT_BA1343).

Sort theory

subClassOf(CADPart, CADEntity). Feature
subClassOf(CADAssembly, CADEntity). .
subPropertyOf(hasCircularSketch, hasSketch). construction

subPropertyOf(firstFeature, hasFeature).

Propositional rule

Background knowledge (Horn logic) learning (adapted)

partDocument
T \projecittwe_bolt_flange 123 cac

Feature
SUDSUMPLION  yuE————————

Subsumption and
exclusion matrix




s==1PRQ) Refinement

Downward A,Z-refinement

m extension of sorted refinement proposed by Frisch
m defined using 3 refinement rules:

1.adding a literal to the conjunction

2.replacing a sort with  pred ,(X,:7,,...,X,:T,) With one of its
direct subsorts pred, (X,:71,,...,.X,:T;,)

3.replacing aliteral pred; (X;:71q,...,X,:T,) with one of its
direct subrelations pred, (X{:Ty,....X,:T,)
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R ARS Feature Taxonomy

® information about feature subsumption hierarchy
stored and passed to the propositional learner

m assume that features f,,..., f, have been generated
with corresponding conjunctive bodies b.,..., b,

m elementary subsumption matrix E of n rows and n
columns is defined such that  E;; =1 whenever b; X
P, s(b;) and E;; = 0 otherwise

m exclusion matrix X of n rows and n columns is
defined such that X;;=1 whenever 1 =] or b; Xp, 5
(Pas (--- Pas(b)) ...)) and X;; = O otherwise.




===0RO  Propositional Rule Learning

2 propositional algorithms adapted to accept
elementary subsumption and exclusion
matrix

1. Top-down deterministic algorithm

2. Stochastic local DNF algorithm



e e BREY Top-down deterministic
Q algorithm

m stems from the rule inducer of RSD

B based on

m a heuristic general-to-specific beam search for
the induction of a single rule for a given target
class

m and a cover-set wrapper for the induction of the
entire rule set for the class
B using matrices E, X it can

B prevent the combination of a feature and its
subsumee within the conjunction

M specialize a conjunction by replacing a feature
with its direct subsumee



se =UPR Stochastic Local DNF
@ Search Algorithm

m algorithm introduced in Rickert 2003 and later
transferred into the propositionalization
framework by Paes 2006

B conducts search in the space of DNF formulas i.e.
refines entire propositional rule sets

m refinement done by local non-deterministic DNF
term changes

B we use matrix X to prevent combination of a
feature with 1ts subsumee within a DNF term



sac=tfRQ Experiments

experiments performed to assess

1. runtime impact of the extended sorted refinement
operator in propositionalization

2. exploitation of the explicit feature-taxonomy in
subsequent propositional learning

3. accuracy of classification by standard
propositional algorithm using propositional
features



=22 RG Dataset Description

B semantic annotations of command histories of 160
design drawings, generated automatically using CAD
Annotator

m annotations of individual examples and the CAD
ontology in RDFS format

m classification of examples given by the
belongsToFamily relation defined Item ontology

m examples classified into 4 proper classes describing
families of designs (57 examples that did not belong
to any of the 4 classes were classified as 'other'.




===R  Additional Preprocessing

m additional important information (from consultation
with users) : the first feature used and relative order of
the features

m properties next, sequenceStart and firstFeature
describing the order of CAD features added to the
CAD ontology

m relations added to the background knowledge:
m subpropertyOf(firstFeature,hasFeature),

m subpropertyOf(hasFeature,sequenceStart).
m special treatment of relations, which are subproperties
of next and sequenceStart implemented
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;Eiaﬂﬁa;,q@) Propositional Learning

Results
CAD data
Algorithm Time taken [s] | Predictive
accuracy
Top-down 0.22 £ 0.08 0.66 = 0.21
Top-down with feat. taxonomy 0.06 = 0.02 0.66 + (.22
SLS 0.63 £1.45 0.62 £ 0.18
SLS with feature taxonomy 0.28 +0.83 0.61 +0.19




se20PRQ Classification Results

m Classification performed with J48 decision tree
iInduction algorithm implemented in Weka

(Class Prec. Recall F-Measure
itemFamilyTT 0.792 0.826 0.509
itemFamilyLiner 0.879 0.895 0.8387

itemFamilyStdPlate 0.571 0.5 (0.533
itemFamilySlottedPlate 0.727 0.8 0.762
other (.883 0.8355 0.869




;@E@ RDM Results Management

m Framework for storing and management of RDM
results required due to their large amount and
diversity

m RDM ontology is being developed providing
m The logical model of the RDM knowledge base

® An interface between the RDM system and semantic
server

m Ontology designed w.r.t. 2 types of queries

m End-user requirements e.g. finding several classification
rules with the highest confidence for the given example

m Supporting RDM feedback and algorithm tuning e.g. metric
evaluation for clustering algorithms



====RY  Ongoing and Future Work

m extend the scope of meta-information
exploitable by refinement operators
beyond taxonomic information

B e.g. to deal with meta-knowledge such as
“relation R Is a function” or “binary
relation R is symmetrical,” etc.

m exploring the semantic subsumption
operator

m developing RDM ontology



