

Coaction of Semantic Technology and Virtual Reality in an Integrated Engineering Environment

Matthias Strauchmann, Tina Haase (Fraunhofer IFF) Emmanuel Jamin, Hacène Cherfi (INRIA) Mikel Renteria, Cyril Masia-Tissot (Semantic Systems)

- SEVENPRO aims to develop technologies supporting mining of product engineering knowledge from multimedia repositories and semantically enhanced 3D interaction in integrated engineering environments
- Semantic Annotation of Knowledge enables Information Searching and Organisation
- Data Mining of Engineering Design enables Discovery of implicit Design Patterns

VR Interaction with Knowledge enables
Visualizing and sharing the knowledge

Introduction

Item concept:

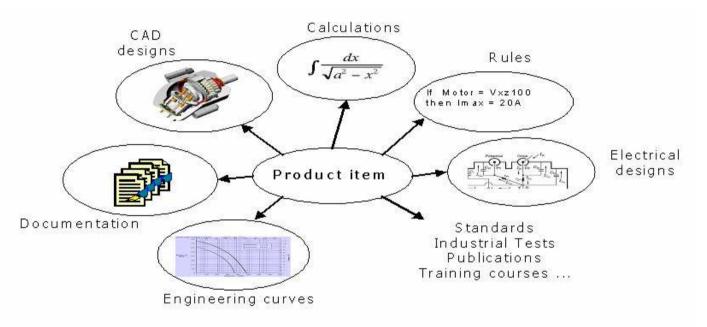
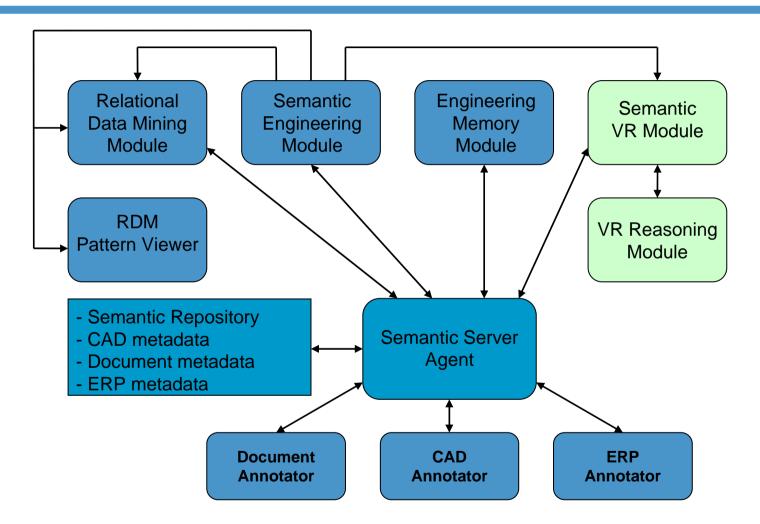


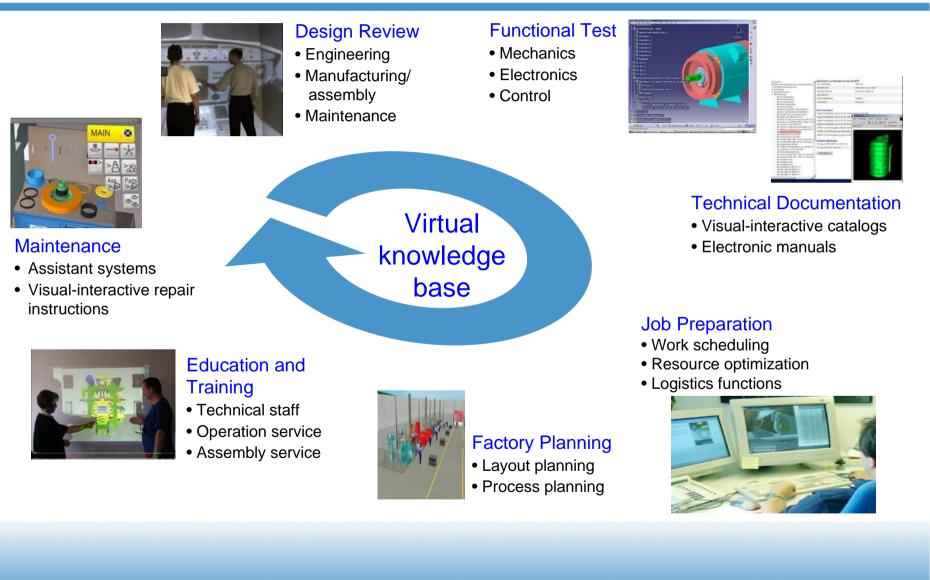
Figure. Product/Service related knowledge

- Product definition specific for each company: ontologies
- Important knowledge "hidden" in proprietary format files



Semantic Virtual Engineering Environment
 Introduction to Virtual Reality (VR)
 Semantically Enhanced VR interaction
 VR Reasoning

Results and conclusion



Semantic Virtual Engineering Environment

Introduction to Virtual Reality

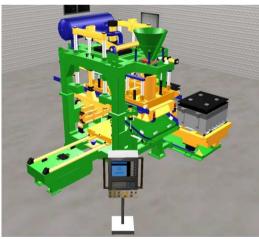
Introduction to Virtual Reality

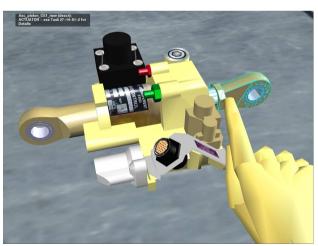
Options of a module building set for complete machining of undulated parts

- Platform with max. 4 supports
- Possibility of process combinations and simultaneous machining – throwing, milling, drilling, grinding and finishing
- Variable process strategy through random chaining of several machining modules

Example

- Interactive 3D-Visualisation of machining tools including of machining sequence
- Support of the sales department through visualisation of different machining tool configurations and detailed presentation of operating modes



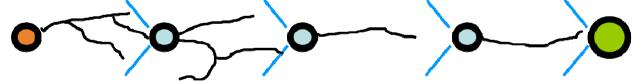

Introduction to Virtual Reality

Training with Virtual Reality

- Less dangerous
- Independent from the availability of the machine
- Individual and focussed training
- Training for maintenance, assembly and disassembly of machines
- Sample training scenarios:

Core Shooter

Aileron Servo Control


Organization of a virtual Training

- Presentation mode
 - Navigation through procedure steps; sequence of steps

Guided Mode

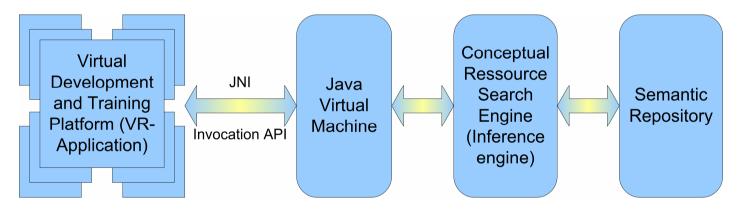
Solving a step task through interaction; sequence of steps

Free Mode

Solving a task as a whole without a given step order

Concentrate on raw geometry data

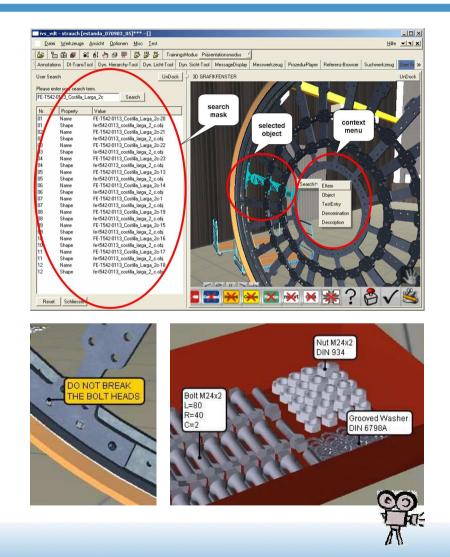
- Visualization of 3-D scene
- Knowledge representation for structure and procedure
- Preliminary relation between VR-scene and related documents
- No relation to a knowledge base


New challenge within the project

- Access to knowledge base (intuitive, contextual, scalable,...)
- Visualization of data retrieved from knowledge base
- Methods to enrich the VR Scenarios by means of a semantic engine.
- Combine raw geometrical information with product related meta-information

Semantically Enhanced VR interaction

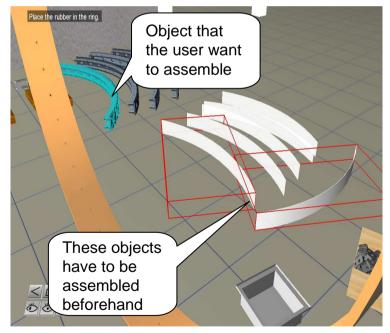
- Literature is devoid of any examples of combined semantic technology and virtual reality
- Embedded inference engine into the VRM for rule-based access to the semantic repository



- Query service translates user requests into a semantic query expressed in SPARQL
- Several query templates executable in different VR scenario states

Semantically Enhanced VR interaction

- Interactive search within a VR scene by means of context menu and search mask like
 - Retrieve all Eltems whose code is "PG" and creation date was between 01/01/06 and 05/31/06
- Using 3D text elements -Labels - Another way to intuitively search and displaying of Eltem-related information covered in the knowledge base directly on VR objects


Semantically Enhanced VR interaction

- Inference engine behind the VR scenario take care of rules and constrains for assembly and disassembly procedures
- Governing of object behaviour by mean of VR reasoning

Example

Obtain a decision about the mountability of a part

- User intents to assemble the first part of the base
- ⇒ it is not possible in current scenario situation
- VR reasoning module returns a list of the objects, that have to be assembled beforehand
- ⇒ highlighting of objects in VR scene

Introduction to Reasoning

Reasoning objectives

- enrich knowledge base (ontologies/instances) contents
- enhance query retrieval capabilities
- Two approaches used for VR

Information retrieval-based reasoning

- increase user-awareness of VR scene
- using SPARQL queries

Inference rule-based reasoning

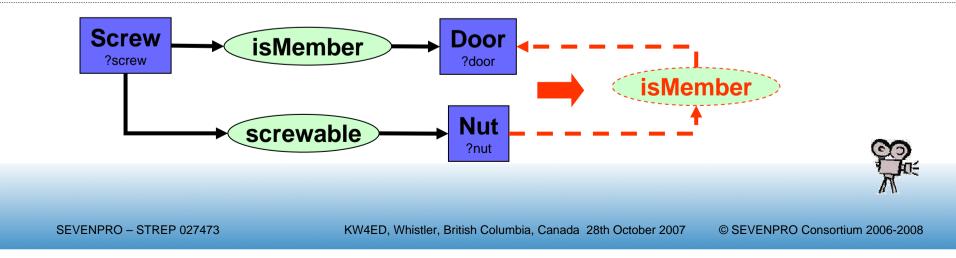
- add property to resource
- classify resource
- using RDF/OWL Rules

VR reasoning examples

Information retrieval-based reasoning

E.g.: complete VR scene with knowledge queries (SPARQL)

Which screw parts are not yet assembled?


Inference rule-based reasoning (1/2)

E.g.: add property to resource (i.e. object)

IF screw with right thread is member of *door* and screwable to *nut*, THEN nut is member of the door

```
?screw c:isMember ?door
?screw c:screwable ?nut
→
```

?nut c:isMember ?door

VR reasoning examples

Inference rule-based reasoning (2/2) E.g: classify resource (i.e. an animation)

IF screw has reference point and is animated, THEN a fixing screw animation is triggered

```
Screw
                                                                   Point
                                                 ► hasReference
?screw c:hasReference ?point
                                          ?screw
                                                                    ?point
?screw c:hasAnimation ?animation
\rightarrow
                                                         Animation
                                         hasAnimation
?animation rdf:type
                                                           ?animation
       c:FixingScrewAnimation
?animation c:from ?point
                                                                   fror
filter(
  triggerAnim(?screw, ?point))
```


Use of generic product engineering ontologies to integrate information from heterogeneous engineering repositories

Access information through Virtual Reality

Retrieval of semantic data from virtual reality scenarios is based on a query mechanism for ontological data (SPARQL)

Reasoning approach for the transfer of implicit knowledge

User tests for evaluation of reasoning technology and improvements