
Hybrid Ontology and Keyword Matching Indexing System 
Géry Ducatel 

British Telecommunications plc 
Adastral Park 

Orion Building pp1/12 
+44(0)1473 605 472 

gery.ducatel@bt.com

Zhan Cui 
British Telecommunications plc 

Adastral Park 
Orion Building pp1/12 
+44(0)1473 605 472 

zhan.cui@bt.com

Ben Azvine 
British Telecommunications plc 

Adastral Park 
Orion Building pp1/12 
+44(0)1473 605 472 

ben.azvine@bt.com 
 

ABSTRACT 
This paper describes a search tool that currently is being used by 
British Telecommunications engineers to access a technical 
repository. Our search tool is composed of two major 
components: an ontology assisted query understanding/rephrasing 
and a keyword based search that has an indexer enhanced with 
automatic text classification. Although the ontology was built for 
engineers it is a good basis to help represent semantics within the 
telecom industry. Our ambition is to apply our technology to an 
online self-service application. 

Categories and Subject Descriptors 
H.3.5 [Information Storage and Retrieval]: Online Information 
Services – web based services. 

General Terms 
Algorithms, Measurement, Performance, Reliability, 
Experimentation, Human Factors. 

Keywords 
Information Management, Semantic Analysis, Ontology, 
Information Retrieval, Services, Self-Service. 

1. INTRODUCTION 
This paper describes a hybrid system that combines an ontology 
and a keyword matching approach. It has been notoriously 
difficult to standardise ways of classifying information available 
on computer networks. The semantic web is a framework that 
intends to describe different strategies and technologies that can 
be used in order to start building broad and generally acceptable 
standards. This work has many research issues to be addressed; 
So far it is clear that content providers will be able to bring their 
contribution as well as benefit from a consensual classification 
scheme. Unifying globally obtained semantics into one theoretical 
model will result in a self-building categorization scheme. 
Ultimately, information management with the semantic web 
would not suffer restrictions inherent to keyword matching; 
information would be classified and searched on more abstract 
criteria such as concepts, validity, or quality. However, the 
semantic web is maturing [15, 17] but slowly and some concepts 
had to be tested behind closed doors first (i.e. on Intranets). In our 
case, we are using an ontology in order to understand the meaning 
of domain dependent queries. We then use the context clarified 
queries in a domain specific search engine. 

Our technology had been applied to other problem spaces: 
accessing technical information for BT engineers, or for operators 
in contact centres [5]. An ontology (manually built) is used to 
capture domain knowledge; this is used to put coming queries into 

their rightful context and access information in the appropriate 
space. Self-service (or self-help) is another possible application 
that can follow the same format. Traditionally self-service 
application are managed by FAQ management software. These 
solutions are popular at the entry level of self-help because the 
majority of contact centre queries revolve around the same three 
to five problems [3]. However, it proves difficult to maintain the 
appropriate semantics, and answers are often a one size fits all 
that falls short of being a reliable source. The next generation of 
self-service applications sees a growing number of software 
products [1, 11], both from support vendors and marketing 
automation firms. They are aiming at providing fast, automated 
answers to common questions, using natural language technology, 
which many believe to be key to the future of customer support. 

This paper describes an ontology driven query processing and its 
dialogue/conflict resolution process. The second section describes 
the search engine part of the system. The emphasis is put on the 
automatically classified information that allows the index to be in 
tune with the structure of an ontology. The conclusion discusses 
strengths and weaknesses of such a system as well as asking more 
general questions about introducing the semantic web on a larger 
scale. 

2. Combining Ontology Driven and Keyword 
Matching 
2.1 Ontology Driven Solution 
An ontology is a description of the things which we are interested 
in (referred to as concepts) along with information about the 
relationships between the concepts and properties which the 
concepts have. A formal definition of an ontology can be found in 
[6]. It can be seen that a product set can be readily represented in 
an ontology with concepts for products and for the aspects of the 
products such as price, fault information etc.  Each product can 
have properties specifying which aspects are appropriate for the 
concept. The concepts are classified into two types: topic 
(typically products and services, or special offers) and action 
(including such requests as tariff information, or fault inquiry). 
Instead of a simple taxonomy, the ontology allows to add 
constraints to taxonomy and to perform inferences with concepts. 

The ontology provides a semantic index to information sources, 
processes and expertise of human experts.  The basic mode of 
operation is to analyse natural language queries, chunk them into 
phrases and then map to concepts in the ontology.  If it can refer 
to several concepts then the system can ask further questions to 
disambiguate the phrase. Finally the system should apply some 
action attached to the concept e.g. forward to a web-page or 
display compliance advice. 



2.1.1 Phrase to Concept Mapping 
Phrase to concept mapping (seen on Figure 1 in the query 
processing stack) is a tool able to chunk phrases into separate 
input (which may be sentences, whole emails etc.) into smaller 
chunks which can be matched to concepts. Key phrases are 
identified on three possible basis: they are occurring within the 
text corpus, the exist in a dictionary (our system uses WordNet 
[16]), or they have been manually entered into a local dictionary. 
For each concept in the ontology there is an associated list of key-
phrases which are related to the concept. Each key-phrase has an 
associated support of between 0 and 1 which corresponds to the 
relevance of the phrase to the concept. For example for the 
concept :action:fault: the relevant key-phrases might be: broken = 
0.9, not working = 0.9, loose = 0.3, squeaky = 0.1. 
In order to obtain a weighting different methods were tried. No 
satisfactory solution was identified. Therefore, most of the 
weighting is done manually. Amongst the solutions tried the most 
promising one consisted of adapting a tf.idf type of weighting 
scheme to keyword co-occurrence were the idf part is replaced by 
the sum of all co-occurrences throughout the text corpus. This 
weight can be normalised to a number between 0 and 1. However, 
tests showed that only one word in three was associated with 
some relevant context. Therefore, no real automatic solution has 
been found using word frequency based techniques. 
The fuzzy-concept mapping connects phrase chunks to concepts 
in the ontology. At any given time the concept-mapping may 
consider a number of concepts to be activated, each of which will 
have an associated support. The concept-mapping uses the 
context-phrase database to match input chunks to phrases or 
patterns in the context-phrase database. The concept-mapping 
aggregates the supports for each activated concept during the 
customer communication. 

2.1.2 Concept and Resource Editor 
The concept editor allows an administrator to add new concepts to 
the system. This involves selecting a place in the hierarchy to add 
the concept adding a name and corresponding context phrases 
with supports. This can be done manually or semi-automatically. 
In the latter case, the administrator specifies a set of documents 
which describe the concept. Using query expansion techniques 
using synonyms and manually added domain knowledge, the 
system then suggests where the concept should be placed in the 
ontology and which key-phrases should be associated with it. The 
user can accept or amend these as desired. 

2.1.3 Query Engine and Query Processing 
Upon receiving customer queries such as natural language queries 
and emails, phrase chunks are broken into real keywords and key-
phrases, typically n-grams taken from the input where n < 5 [13]. 
The n-grams are compared to phrases in the fuzzy concept-
matcher and a list of matching concepts with corresponding 
supports is found and, in the case of returning queries (a returning 
query is one that has been refined by the users during a query 
dialog process), used to update the list of current concepts, 
typically by summing the supports of the current concepts with 
those of the new concepts. Therefore the weight of returning 
concepts is incremented and it is possible to rank the concepts 
found iteratively. 
The action selector looks for concepts of two types: task and non 
task. Tasks are abstract concepts e.g. fault, sales, pricing, 
overview etc. Each task can be associated with some non-tasks. 
For example a task called “broadband” will be associated with 

action concepts including “buying/tariffs”, “reporting fault”, 
“self-service”, and “billing”. The current Task item is considered 
to be that with the maximum support. Each topic is explicitly 
linked to a number of actions within the ontology. Based on 
which action concepts are found in the query the system selects 
appropriate topic/action pairs. In the case where the action 
concept cannot be isolated a default show_general_information is 
assumed. 
The ontology also contains information about whether a 
topic/action pair concept is appropriate, or whether further 
dialogue with the user is necessary to narrow down to the precise 
concept.  For example, it is appropriate to apply the action 
show_general_information to internet_access, but not the action 
sell since the customer must first choose between dial_up, 
midband and broadband. In this case the concept resolution 
dialogue presents the user with a list of possible child nodes, 
which the user can select. It repeats this until an appropriate node 
is found (typically this will be a leaf-node). Therefore it is 
important to link the right actions to the right topics in the 
ontology. This problem is inherent to ontology design and can 
make maintenance difficult. 

2.2 Handing Queries Over to a Keyword 
Matching Strategy 
Once a query has been disambiguated and even augmented with 
appropriate keywords it can be handed over to a search engine 
that is designed to pinpoint information. Classifying documents 
has been covered in numerous publications from automatic 
systems [9] using support vector machines, Bayesian classifiers 
[14] or at the other end of the spectrum, there are sophisticated 
systems using ontology based classification [8]. The solution 
presented here is a compromise between an automated system and 
a fully configurable one. The main advantage is that it allows for 
simple set up and low maintenance. Furthermore, classification is 
also exploited to help improve the searching process. The spirit of 
this approach is to be powerful and user friendly to both users and 
administrators. 

  
Figure 1: Overview of application. 

 
Figure 1 shows an overview of the system. There are three major 
sections: at the top the databases, to the right the indexing system 
(shown as a list of different indexes) and to the left the query 
processing stack that receives a user query and returns answers 
whilst interacting with the bottom database containing all the 
personalisation and collaborative information (these two aspects 

 

 

 

 

Index/Ontology 
(documents have a 
membership value 
against “task” nodes) 

Phrase to Concept 

Ontology Mapping 

Personalisation 

Extract answers 

Personalisation 

Collaborative ranking 

Monitor/feedback 

User 

A variety of databases… 



are not discussed in this paper, this work is discussed in [7]). 
Broadly speaking personalisation consists of associating 
keywords (from viewed documents) and repeatedly used query 
terms to individual users, and then using these keywords to enrich 
subsequent queries. Collaborative information is a way of 
exploiting this information for the benefit of other users, where 
frequent queries (from different users) are associated with good 
results (obtained from explicit feedback or moderated as in an 
FAQ system). The following sections describe the three main 
components of this system. 

2.2.1 Database wrappers 
This application has methods of extracting simple text from 
individual PDF files, databases or HTML. The indexer also 
extracts meta data (only found in HTML documents so far). This 
helps re-enforce the categorisation algorithm because manually 
provided information is considered more relevant than other 
keywords. 

2.2.2 Indexing system 
The indexing system is what gives this solution its specificity. 
First, documents are cut into series of small texts. At the moment 
they are chunked using known structure elements, for PDF files, it 
indexes pages separately, and for HTML it uses anchor tags as 
separators. This technique has two advantages, first, the index 
only refers to small pieces of text therefore queries can bring not 
only documents but precise location information. 
Because the index is classified precision is necessarily increased, 
this requires the interface to support classified search. It is worth 
mentioning that in its current state, FocusSearch supports 
overlapping categories, and also, the ranking solution can include 
result hits from different categories. This happens because 
ranking is an aggregated value. Therefore, hits from outside of the 
queried categories can be listed albeit they will typically show a 
low relevance value. 

2.2.3 Categorisation algorithm 
The current data set is composed of technical files and health and 
safety information representing about 50MB (other techniques to 
obtain data automatically have been discussed in [4]). There are 
short and long documents (especially the health and safety section 
and the drivers handbook). Content providers identified the 
following categories: “safety”, “repair”, “provision”, and 
“quality”. These categories match the “non-task” concepts 
described in the section about the ontology. They describe generic 
concepts that users are likely query. Two other categories, 
overview, and general are provided for convenience. The former 
(overview) helps find menu pages, and the latter (general) is a 
fall-back solution for when categorisation is not helpful. Content 
providers also provided initial keywords to start the categories. In 
order to improve the classification, the algorithm has to help 
maintain these keyword lists following these three objectives. 
In this implementation there are few leaf nodes, using a larger 
ontology would require a more complex classification able to 
manage class inheritance. This classifier has to be able to achieve 
an overlapping and not necessarily complete categorisation. 
Documents can hold multilateral information, therefore, themes 
(categories) can be densely or sparsely distributed within a 
document; for example, one of the categories created for this 
implementation is “safety”. This type of information is often 
found as a recurrent theme interweaved within technical 
documents throughout the text corpus. The categorisation help 

group such dispersed themes together allowing homogenous 
compounded views. 
A list of keywords is associated with every category. The 
algorithm uses these terms to find out if a document belongs to a 
category by measuring their frequency against a confidence 
threshold (which may vary depending of the nature and size of the 
data set). The solution returns, for every keyword in the category, 
the tf.idf value of a match in the document. However, this value is 
also modified by an importance factor attached to the keyword. 
This factor is either set up manually and can also vary depending 
on whether a keyword is found in text or in meta data (so long as 
the document supports meta data). This weighting is described in 
a section below. These values are added up and measured against 
a confidence threshold set manually. Therefore, the classifier can 
only perform so long as it has good keywords. 
This section describes how to maintain these keyword lists, i.e. 
remove, add and weigh keywords. There can also be some special 
categories that require ad hoc techniques. The application is able 
to single out menu pages such as table of content or HTML 
hypertext menus (linking to different sub sections in a text). Being 
able to index these pages separately is valuable because 
unsuccessful queries can be given a second chance, by finding the 
appropriate menu page. The current solution consists of 
identifying known pattern structures both in PDF and HTML. For 
example, PDF document table of contents are normally found 
within the first few pages and consist of bullet points. This is 
analogous to work described in [12], making use of hyperlinks to 
extend the reach of document indexing. 
In order to improve the classification, the algorithm has to help 
maintain these keyword lists following these three objectives: 
- Uncover keywords that can or should be removed. 
- Discover new keywords 
- Assign a weighting system to reflect keywords’ relative 
importance. 
There are strong benefits in involving content providers (in our 
case, people from whom data was actually generated from) in the 
deployment phase. They are knowledgeable about key issues such 
as domain dependent vocabulary, rightful classification, and data 
maintenance processes. Once the application is set up, some 
manual tuning is possible (e.g. more knowledge such as acronyms 
and jargon can be added, or more key terms can describe existing 
categories) therefore maintenance is minimal. 

2.2.4 Uncovering keywords that contributes poorly 
to the classification 
For the algorithm to be able to run the categorisation has to be 
performed once with the manually chosen keywords. Once the 
categories exist the algorithm can measure in which category 
between poor, medium, and good a keyword is classified. The 
algorithm uses keyword co-occurrence frequency. The probability 
of a keyword k to belong to a category c (poor, medium, and 
good): 

P(c)=n/d 
Where d is the number of documents in a given category and 
where c is one of three possible values: poor, medium, and good. 
If c is poor, n is the frequency of k not co-existing (found in the 
same document) with any other keywords of its category. If c is 
medium, n is the frequency of all combinations of k and any other 
keyword from the same list. If c is good, n is the frequency of all 



combination of this keyword and any other two keywords. The 
category with the highest experimental probability is the winning 
one. In the light of this keywords’ quality measure, an 
administrator can be assisted in removing irrelevant keywords. 
However this task cannot be automated. There is no evidence that 
low co-occurrence is detrimental to the quality of the classifier, it 
is only an indication. 

2.2.5 Discovering new keywords 
Again based on the assumption that co-existing keywords help 
indicate a connection to a category. A pre-processing step consists 
of extracting a complete picture of key terms (keywords, and 
phrases) co-occurrence. In order to avoid long computations a 
term co-occurs with another one so long as it is found in the same 
sentence. Already running this type of computation on the 50 MB 
of data can take several days with a recent PC. Initially two 
complementary strategies are used subsequently. First, WordNet 
is used to help highlight any instance. The second method consists 
of systematically computing the frequency of keywords following 
one another. This can highlight compounds of any size in the text 
corpus. A threshold as to how many times a key phrase should be 
found before it can be considered relevant is defined empirically, 
as a rule of thumb, it usually ends up being a number between 
five and ten. Key phrases discovered using the latter method can 
show noisy characteristics, nevertheless, they are very valuable 
because they are meaningful and often specific to the domain. For 
example, the following key phrases: “asbestos fibre”, “asbestos 
containing material”, “breathing apparatus”, “safety helpdesk”, 
and “safety legislation” were discovered as potential candidates to 
the “safety” category. This algorithm is also extremely time 
consuming because of the rapid explosion of combinations. 
Looking up co-occurrences to the word “repair” shows the 
following: “fault”, “closure”, “redcare” (a BT internal network 
alarm system), “adsl”, and “provision”. Amongst these keywords, 
two are general terms: fault and provision. Three are domain 
specific: “closure”, “adsl”, and “redcare”. The word “fault” is 
obviously relevant to this category. Other words are only relevant 
when found co-occurring with keywords from the “repair” list: 
“closure”, “adsl”, and “redcare”. Finally, “provision” belongs to 
another category which illustrates the overlapping nature of the 
data. The challenge of the algorithm is to be able to select the 
right keywords in order to improve the classification. The 
algorithm follows these steps: 
- Work out frequency of co-existing key terms for the entire data 
set 
- Work out co-existing relevance threshold (and maximum 
frequency) 
- Extract relevant keywords 
The first step has already been described, the second step will 
return the minimum frequency of co-occurrence between two 
individual terms before they can be considered complementary to 
one another. A co-existing relevance threshold is calculated for 
every keyword in relation to two factors: the size of the data set, 
and the frequency of individual keywords. The role of function T 
is to set the frequency threshold value of keyword k: 

T(k)=(f . p)+((m . (1/(1+e-x) )/2) 

Where x represents the frequency f of k normalised between 
minus 5 and -5, p is a threshold percentage value (here set to 5%), 
m is the maximum percentage value of representation of a 

keyword. Therefore this function boosts thresholds for low 
frequency keywords by adding up to half of m (maximum value 
of f.p for the same list), using a sigmoid function to obtain a 
factor: 1/(1+e-x). Keywords co-existing above this threshold are 
potential candidates for the category lists. However, the algorithm 
applies constraints. It is desirable only to keep nouns because it 
has been observed that verbs, adverbs, and adjectives do not carry 
enough meaning. This can be achieved using tools such as the 
Brill tagger [2]. Also, tests have shown that some noise can be 
introduced by high frequency keywords. Therefore, these have to 
be removed from an automated system. This threshold is 
empirically set as 0.1% of the number of keywords (excluding 
stop words). 

2.2.6 Weighting keywords found 
The most popular keyword weighting scheme for a keyword is the 
tf.idf algorithm. In this case however, weighting refers to entire 
categories and not discrete documents. The amount of co-
existence with keywords of the same category is a closer measure 
to what the algorithm is trying to achieve. This however has to be 
corrected in relation to the frequency of the keyword in question. 
Therefore, the weight p can be calculated as the observed 
probability of a keyword k to co-occur with at least one other 
listed keyword. Therefore p is the measure of how representative 
a keyword is of its category based on how often it co-occurs with 
other keywords of the same category. 

p(k)=n/d 

Where d is the number of documents in a given category and n is 
the frequency of all combinations of k and at least one other 
keyword from the same list. However, at run time the goal is to 
find out whether a document belongs to a category. All keywords 
belonging to the said category are searched in documents; if they 
are found, the extracted value is their tf.idf weight multiplied by 
their observed probability p. This alteration values the individual 
value of keywords as well as the importance they play within 
each document. Therefore the formula to work out the weight of a 
document belonging to a category is: 

 ∑ tf.idfi . pi 

  
i 

Using this weighting scheme, it is possible to measure how much 
a document belongs to a category by working out the sum of all 
the keywords it may contain. In order to decide whether a 
document belongs to a category, a threshold value is set up 
manually by trial and error. 

2.2.7 Results: 
Beyond technical implementation details it is also its 
configuration flexibility that makes the success of this system. 
The solution is intended to be used for Information Retrieval 
problems with domain knowledge constraints and low 
involvement for system administrators. Bootstrapping the 
classifier with few keywords is easy to achieve and can be 
sufficient to run the application in real conditions. This flexibility 
in deploying the application with customised feature has allowed 
it to be under trial within BT; the trial is under way at the time of 
writing this paper. 
Figure 2 shows the classifier’s performance using the manually 
selected keywords against the results obtained with the algorithm. 
There is an improvement in both the recall and precision. 
However, it is easy to raise the recall measure automatically but 
not the precision one. Scrutinising the results per category showed 



that classes that had already many keywords showed little 
improvement, and were more prone to noise, whereas categories 
with few keywords tended to easily pick relevant keywords. 
Therefore the automation works fine until the recall level reaches 
about 90%, beyond this stage, recall will still improve but only to 
the detriment of precision. Other improvements can be achieved 
by lowering the relevance threshold and selecting keywords 
manually. 

3. Conclusion 
Customer self-helps will continue to be the focus of any customer 
contact centres in order to reduce their costs. This paper outlines a 
vision and presented a hybrid ontology/keyword matching 
approach. An internal trial is under way within BT at the time of 
writing this paper. It indexes a large database of technical content 
together with quality, provision, and health and safety 
information. This technical data is only accessible to BT 
engineers. 
We are also developing other software which provides smooth 
flow from customer self-help to operator’s assisted self-help 
based on the semantic web technology.  We believe call centre 
information search is a different kind of search.  The current 
technology used by major global search engine companies such as 
Google [10] would not be suited and an ontology based semantic 
indexing is a promising alternative. 
There is scope to improve both parts of the system, and there is 
even a promising synergy in this hybrid system. The ontology is 
extremely useful to provide a view of the final classification. The 
keyword matching indexing has a keyword discovery algorithm 
that can benefit the ontology. Therefore the future research is 
looking at ways of simplifying the introduction of meta data 
automatically. Disambiguated semantic information is the only 
way to push the quality of Information Management applications. 
The representation of meta data has to be kept in an ontology and 
populated automatically or semi-automatically. The algorithm 
described here can help suggest keywords that can enhance an 
ontology that has been partially populated already. 

 

Figure 2: Precision and recall measures for the algorithm 
selecting keywords automatically. The automatic selection 

improves both recall and precision. 

Also using reasoning languages such as OWL combined with 
powerful Ontology browsing techniques it will be even possible 
to make sensible connections that had to be made manually 
before. Inferring information will further automate maintenance 
of future Information Search technology. 

The main attraction of the semantic web will be to help uncover 
new sources of information that are relevant to end users. 
However, using this information is challenging because there is 
no data quality checks. By providing information through the 
semantic web, corporate institutions must accept responsibility for 
content even when it is provided by third party entities. In order 
to adopt the semantic web, reliable data quality checks will have 
to be available. This includes challenges such as traceability, or 
the ability to update superseded information. 
The benefit between a self-service application and the semantic 
web can be reciprocal. On one hand information endorsed by 
corporate institutions and on the other an information structure 
built and understood by users. Ultimately the semantic web is the 
missing link between users and the information they need. 
However it is not clear how end users will use this tool to help 
sort their problems themselves. Should users take a pro-active role 
in filtering out dated information, should they contribute to the 
semantic web for their benefit and for their peers? Or should self-
service applications use the semantic web to automatically 
provide support to customers without seeking contribution? 
The philosophy of the semantic web is to rely on communal work. 
The contribution of each and everyone helps towards the overall 
structure of information. New possibilities are added when new 
contributions are validated (e.g. through statistical relevance), 
also, some connections can be discarded when support is 
discredited or no longer compelling. The semantic web has to 
prove that it can organise contribution to the benefits of all. Issues 
such as quality and validity of information also have to be 
addressed to help provide a network can classify and search data 
using models that are closer to our own way of mentally 
representing information. 

4. REFERENCES 
[1] Bradshaw D. Web self-service - empowering 

customers while saving money, Ovum Report, 
December, 2004 

[2] Brill E. http://research.microoft.com/users/brill 
[3] Case S., Assadian B., Ducatel G., and Thint M. IIM 

Report on Contact Centres. BT Group Internal Report. 
[4] Case S., and Thint M. Information management 

assistants for enterprise workers, BTTJ Vol 21, No 4, 
2003 

[5] Cui Z., Ducatel G., Thint M., Assadian B., and Azvine 
B. Towards Automated Customer Self-Help, BT 
Technological Journal Vol 24, No1, 2006 

[6] Cui Z., Tamma V., and Bellifemine L. Ontology 
Management in Enterprises, BT Technological Journal 
Vol 17, No4, 1999 

[7] Ducatel G., and Nürnberger A. iArchive: an Assistant 
to Help Users Personalise Search Engines. In 
Enhancing the Power of the Internet, Masoud 
Nikravesh, Ben Azvine, Ronald Yager, Lotfi Zadeh 
(Eds), pp 351-362, Springer-Verlag, 2004 

[8] Fagin R., Kumar R., McCurley K. S., Novak J., 
Sivakumar D., Tomlin J. A., and Williamson D. P. 

Algorithm Performance 

Hand 
Picked 

Hand 
Picked 

Hand Picked +  
Automatic 

Hand Picked +  
Automatic 

0.00% 

10.00% 

20.00% 

30.00% 

40.00% 

50.00% 

60.00% 

70.00% 

80.00% 

90.00% 

100.00% 

recall precision 



Searching the Workplace Web. In Proceedings of 
WWW2003, Budapest, pp 366-375, ACM Press, 2003 

[9] Glover E. J., Tsioutsiouliklis K., Lawrence S., 
Pennock D. M., and Flake G. W. Using We Structure 
for Classifying and Describing Web Pages. In 
Proceedings of the WWW2002, Honolulu, 2002 

[10] Google search site: http://www.google.com 

[11] Kolsky E. MarketScope for Web Self-Service, 2H04; 
Gartner Report, January, 2005 

[12] Kraaij W., Westerveld T., and Hiemstra D. The 
Importance of Prior Probabilities for Entry Page 
Search. In Proceedings of SIGIR’02, Tampere, pp 27-
34, 2002. 

[13] Manning C. D., and Schutze H. Foundations of 
Statistical Natural Language Processing, The MIT 
Press, 1999 

[14] McCallum A. and Nigam K. A. Comparison of Event 
Models for Naïve Bayes Text Classification. In AAAI-
98 Workshop on Learning for Text Categorization. 
1998 

[15] McIlraith S., and Martin D. Bringing Semantics to 
Web Services, IEEE Intelligent Systems, Vol 18 nb 1, 
pp 90-93, 2003. 

[16] Miller G. A. http://wordnet.princeton.edu. 
[17] W3C Semantic Web Initiative: 

http://www.w3.org/2001/sw 

 
 


