
Continuous capitalization of design knowledge
Nada Matta1, Benoit Eynard2, Lionel Roucoules2, Marc Lemercier3

1Tech-CICO, Université de Technologie de Troyes 12 rue Marie Curie, BP. 2060, 10010 Troyes Cedex, France e-mail: nada.matta@utt.fr
2 LASMIS, Université de Technologie de Troyes 12 rue Marie Curie, BP. 2060, 10010 Troyes Cedex, France e-mail: {benoit.eynard,
lionel.roucoules}@utt.fr
3 LM2S, Université de Technologie de Troyes 12 rue Marie Curie, BP. 2060, 10010 Troyes Cedex, France e-mail: marc.lemercier@utt.fr

Abstract. Learning from past projects allows designers to
avoid previous errors and to solve problems. Several methods
have defined techniques to memorize lessons and experiences
from projects in what we call project memory. This paper
presents our traceability approach that allows to extract
knowledge without perturbing designers’ activities. Our
approach is based on web technologies. In the one hand it keeps
track of knowledge produced while using design tools (as a
behavior model) , in the other hand, it restitutes knowledge
according to a contextual situations recognition.

Keywords. Knowledge capitalization, design knowledge ,
project memory, product, process

1 INTRODUCTION
Knowledge management (KM), first considered as a scientist
stake becomes more and more an industrial stake. It is a
complex problem that can be tackled from several viewpoints:
socio-organizational, financial and economical, technical,
human and legal [9] . It concerns theoretical and practical know-
how of groups of people in an organization. KM is defined as a
continuous process of knowledge explicitation and
internalization [19] .

There are two types of techniques that help to make
knowledge explicit (Figure 1 .):

1. Knowledge capitalization, with which knowledge can be
extracted by interviewing experts and from documents.
Knowledge engineering methods are mainly used in this
aim [9] .

2. Direct knowledge extraction, in which knowledge are
extracted directly and dynamically from organization
activity. DataMining, Textmining, tracability are some of
these techniques.

For instance, some studies focus on how to keep track of
an activity and especially a project. In this type of studies, the
challenge is how to capitalize knowledge without perturbing
actors’ activities and workspace. Main questions can then arise:
how to extract knowledge directly from tools and documents ?
How to keep track of the issue and the evolution of a project ?
How to quickly model this knowledge and represent it in a way
that can be easily accessible and usable by organization actors.

Experts, documents

Knowledge asset

Daily Activity

EXPLICITATION

EXPLICITATION

Knowledge enginnering

Direct knowledge extraction

Figure 1 . Two techniques to make knowledge explicit

In this paper, we study the second type of knowledge
management (direct knowledge extraction). We focus on
knowledge management of a design project in order to
define, what we call, design project memory (PM). A project
memory can be defined as lessons and experiences from
given past projects [16] . Keeping track of this knowledge
can be considered as a direct extraction from several
knowledge sources: documents, data bases, drawing and
prototypes, meetings, activities (Figure 2 .).

Figure 2 . Traceability of design activities

We present in this paper, traceability of engineering
designer’s activity. Our aim is to extract knowledge from
designer’s activity without perturbing him. So, we study a
Web architecture that helps to define a scenario of a
designer’s behavior, regarding a given problem, by keeping
track of used functionalities and issued information and data.
Before presenting this architecture, we describe in the
following section, the structure of a project memory in
design.

2 DESIGN KNOWLEGDE

2.1 Knowledge modelling in design
engineering

Continuous capitalisation in engineering design consists in
memorising specific information that will be later on reuse in
future product designs. This information is extracted from
different knowledge during design process. This dynamic
knowledge of the collaborative design activity is then formalised
in a static project memory (Figure 3 .). The extraction and the
formalisation have to be done with a maximum of transparency
for designers. Thus, they would not have to manage any extra
task in the design activity.

Product model
definition

Project
memory

Requirements
list

Expert knowledge
integration

Technology

Machining
Structure
analysis

Knowledge issued from the
collective design activity

Statique field
Dynamic field

Figure 3 . Information capitalisation in engineering design.

This paper does not aim at presenting a global solution for
all kinds of engineering information that must be capitalised but
focuses on:

! Product data.
! Design process data.
! Design rationale data.

2.1.1 Product modelling for integrated design
Design activity is currently managed by a large group of
designers that must share their points of view in order to
have the product definition emerged from common decisions.
Based on this Concurrent Engineering concept [26] , one
goal of our research works on product and process modelling
is to support the progressive product definition issued from
multiple points of view knowledge integration (Figure 3 .).
In other words several designers have to share their
knowledge (structural analysis, technological information,
machining knowledge, etc.), to define and to integrate new
data on the product definition. In this way, we aim to proof
that the product and particularly its geometry can be totally
specified by knowledge integration from the requirements
list. Thus, each data is well justified and can be really taken
into account in design reuse.

Design activity is a progressive mapping of product
functions to product technologies. These technologies are
relating to mechanical components, machining technology,
etc. According to the literature, three design phases
(conceptual, embodiment and detail design) have been
commonly accepted. Nevertheless, these phases are managed
sequentially [20] , using axiomatic mapping [27] or
concurrently [2] .

Based on an integrated design method, our product
modelling tries to support strong links between functions and
detailed product data [10] [22] . This model is quite similar
to the mostly feature-based presented by [12] [13] or [1] .
Indeed, feature presented as “a semantically endowed object
that accompany product development from the customer
request through to product release” [24] is very useful to
define the multiple views product breakdown (cf. 2.1.2).

Casing

Shaft

Ca/Sh

Sh/Ca

Sh/Ext

Ca/Ext

Turning pair
function

Casing

Shaft

Guider en rotation
l’arbre/carter

Cas/Shaft

Shaft/Cas

System

Te
ch

no
lo

gi
c

V
ie

w

Functional and structural product model Multiple points of view product model for knowledge integration

Energetic Flows
•conduction
•semi-conduction
•isolation

Shaft

Sh/R1_1

Ball_Bearing_1

B/ Sh _1

B/ Sh _2

Sh /R1_2

Pl/Pl

Sh /R1_3

B/ Sh _3

Cyl/Al

Pl/Pl

Te
ch

no
lo

gi
c

V
ie

w Cylinder_1

Plane_1

Plane_2

To
le

ra
nc

in
g

an
d

G
eo

m
et

ri
ca

l V
ie

w
s

Axe_1

Norm_3

Norm_2

Perpendicularity

Multiple view axis

Designers ’ knowledge translation to
geometrical and tolerancing data.

Facing operation

Sliding operation

To
ol

in
g

V
ie

w

Figure 4 . Product models as data support in conceptual, embodiment and detailed design

2.1.2 A strong link between functions and
structure

For conceptual and embodiment design, a function-structure
model is presented. This model is a mix of several models that
describe the functional and structural representations of the
product. This representation is on the one hand based on bond-
graph theory to treat every kind of energetic field in the product.
On the other hand the representation includes graphics and rules
issued from Value Engineering tools as FAST diagram
(Function Analysis System Technique). This model as presented
on Figure 4 is used to progressively map product functions to
product structure. Each function of the FAST diagram is linked
to an energetic field that is kept coherent using the bond-graph
theory.

2.1.3 A multiple points of view product definition
For embodiment and detail design a model for multiple view
breakdown of the product is used. These feature-based

decompositions complete the product definition adding new
data and new constraints from specific points of view as
Machining,

Structural Analysis, etc. The model for multiple points
of view is fully described in [28] . As shown on figure 4, this
model represents on the one hand the structural breakdown
according to the function-structure product model. This view
is called the Technologic view. On the second hand, it is easy
to create and represent new views (new decompositions) of
the product (e.g.: the Tooling view).

Finally, to have the product geometry emerged, the
multiple product views are translated to both tolerancing and
geometric views. These two common views appear then as
the result of knowledge integration. We showed in this
section, how viewpoint can be useful to represent product
definition. Other viewpoint representation, especially those
studied [16] in knowledge representation can be used for
that.

2.1.4 Computer based support for product
modelling

In order to create the project memory and the continuous
capitalisation (see section 3), it is necessary to manage a lot of
product models. This management must also be computer-based
in order to improve the transparency of the capitalisation.
Therefore, extra functionality (see section 2.1.4) are added to an
already-tested Co-operative Design Modeller (CoDeMo).

CoDeMo [23] has been developed to support the product
modelling previously presented. It actually supports every
product data that are managed via a server agent. Each designer
can access and modify the product models via a client
application. Computer developments of CoDeMo are based on
C++ libraries provided by ILOG4 Company. The functionality
and features of CoDeMo (Figure 5 .) can be summarised as
follow:

! To aid the creation of a product model using a Graphic
User’s Interface (GUI);
! To display the product data according to several
representations (functional, geometrical…);
! To manage the database and propagate data constraints.
Change notifications mean that each creation, deletion or
modification are propagated from the server to every client;
! To support a Client/Server architecture in order to assist
the co-operative work. The connections are currently done
with RPC protocol but will be upgraded using CORBA
technology.
!

3D viewer

Multiple representations

 2D viewer

Client-Server

Product model
management

Figure 5 . Functionality of a Computer-Supported Co-operative
Design Modeller.

2.1.5 Extra functionality for continuous
capitalization

In the objectives of continuous capitalisation, two extra
developments have been specified on CoDeMo. On the one
hand (Erreur ! Source du renvoi introuvable.), both product
and process models have to be linked. This link has to be
computer supported. On the other hand it would be interesting
to manage product model via XML language (see section 3).

4 www.ilog.com.

To link product and process models would be benefit
in order to manage every modification applied on the product
definition. This management would step by step create an
history of the product model evolution during the design
process.

2.2 Modelling of Design Process
In order to have a better understanding of product
development process and design activities, it is often
necessary to provide details of their organisation, progress
and behaviour [10] . In this section, we detail briefly various
modelling languages (IDEFØ, IDEF3, Petri nets, GRAI nets
and UML State Diagram) before making a rapid comparison
and argue of our choice for GRAI nets.

2.2.1 Process modelling language
With IDEFØ [8] , we get a modelling language with an
efficient and simple use. It provides a good graphical
representation of key elements of an activity. The activity is
described with a box containing an active verb characterising
the activity nature. A network of arrows links the boxes and
details the relationship between activities. In this
relationship, activities exchanges information or objects.

IDEF3 is the issue of a research project on information
integration for concurrent engineering [17] . The authors
propose the description of process flow, precedence and
causality relationship of activities and their logical junctions.
The description of process flow uses the process flow
network and is complemented with a representation of object
state transition network. These two components allow to
capture the behaviour and performance of process.

Petri nets [18] provide a structured description of
process behaviour and allow performance assessment with
associated mathematics tools. They are composed of two
types of nodes: place and transition. The nodes are connected
by direct arrows which specify the sequencing logic of the
process. The place nodes could describe states of information
or objects. The transition nodes represent operations or
activities which are carried out on information or object.

GRAI nets [21] are based on three concepts: state or
result, activity and support. States describe inputs and
outputs (material or informational) of a transformation
carried out by an activity. Activities represent operations
performed between two successive states. Supports define all
resources nature used by the activity. The graphical
formalism could be translated in mathematical formalism
thanks to the vectorial nature of states and supports : ∂i : (qi-1,
xi) → qi . GRAI nets provide specific models dedicated to
discrete activity description, offering a satisfying
characterisation of activity and having strong developments
in terms of decision-making modelling.

Unified Modelling Language (UML) is a modelling
language based on object oriented technology [7] . This
language gathers the various object approaches to enable
software engineering modelling. For process modelling, the
UML State diagram benefits from the reference and
standardised approach of object oriented technology. It

provides a state-event language and allows the modelling,
analysis and specification of processes.

The GRAI nets combine the main quality of the previous
modelling languages but require some developments in order to
take into account all dimensions of engineering design. With the
clarification of activity nature between states, the model benefits
from logical link with the product modelling [10] . Based on the
information captured in GRAI nets, we are able to represent the
behaviour knowledge and process sequencing and actions of
design team, etc.

2.2.2 Modelling of key elements of design process
 [10] specify an extension of GRAI nets oriented to product
development process modelling. He identifies three kinds of
activities: design, execution and decision-making. The input and
output states detail the information transformed by activities.

Trigger 4
Objective 4 Design

constraint 4

Objective 5

Constraint 5
Criteria 5

Decision variable 5

State 3 Design 4 State 4

Resources 4
• Human
• Material
• Informational

State 5

De
ci

si
on

5

R
es

ou
rc

es
5

Trigger 5
Trigger 4

Objective 4 Design
constraint 4

Objective 5

Constraint 5
Criteria 5

Decision variable 5

State 3State 3 Design 4 State 4State 4

Resources 4
• Human
• Material
• Informational

State 5State 5

De
ci

si
on

5

R
es

ou
rc

es
5

Trigger 5

Figure 6 . Sequencing of design and decision-making activities

1- The design activity (Figure 6 .) can be defined by its
iterative, creative and basically human character. It includes the
understanding and analysis of problems, and the search for,
creation, synthesis and proposal of solutions. The design activity
is characterized by:

! the information transformed by the activity, which is
represented by an input and an output state;
! the activity supports, which are of three types: material,
informational and human resources;
! the specific support of the design activity, which is the
design framework i.e. objectives and design constraints.

2- The execution activity is characterized by its procedural and
often programmable or computational nature. It can describe the
detail design of a part, the drafting of a document, etc. The
execution activity is characterized by:

! the information transformed by the activity, which is
represented by an input and an output state;
! the activity supports, which are of three types: material,
informational and human resources.

3- As design, the decision-making activity (Figure 6 .) has a
basically human character but it is purely decisional. This
activity makes choices and decisions and selects alternatives in
the development process. The decision-making activity is
characterised by:

! the information transformed by the activity, which is
represented by an input and an output state;
! the activity supports, which are of three types: material,
informational and human resources;

! the specific support of the decision-making activity,
which is the decision-making framework i.e. objectives,
decision variables, constraints and criteria.

2.2.3 Link between product and process
Regarding the product development process, our aim is to
capitalize the design history. This design history will be
based on product and process modeling detailed above. It
will provide a support to designers with the key elements of
design project. The product dimension will be based on
CoDeMo with a progressive history of product definition.
The process dimension will provide a detailed description of
activities, the organization and planning of the project
according to [25] and [6] viewpoints.

The continuous capitalization will ensure a quick and
efficient knowledge capture. The capitalization of knowledge
related to product will be transparently done for designer
through CoDeMo. The process modeling will provide a
detailed description of transformed flow, activity support,
sequencing, behavior, etc. Thus based on these three
dimensions of capitalization will obtain a strong environment
of capture, modeling and reuse of design knowledge.

2.3 Design rationale
Design rationale can be defined as the rationale space for
problem solving. This space concerns individual and
collective dimensions. Generally, discussions, alternative
choices, problem solving are fleeting knowledge in a project.
Nowadays the challenge is to define methods and tools in
order to represent the rationale of a project and to memorize
it. This type of knowledge can be characterized as:

Problem definition: subjects, type, elements.
Problem solving: participants, methods used and
potential choices.
Solution evaluation: rejected solutions and arguments,
advantages and disadvantages.
Decision: solution and arguments, advantages and
disadvantages.

Several methods have studied how to capitalize
problem solving knowledge by emphasizing the problem
treated, the potential solving choices and arguments. We note
for example in one hand, IBIS, QOC, DRAMA that represent
the design rationale as decision space and in another hand
DIPA and DRCS that suggest a problem solving modeling.
Reader can have more details in [16] about these methods.

In this paper, we study relations between in one hand
design rationale and in another hand, product and process
models. So, we do not present design rationale capture
process. For more details, see [4] .

Problème

Proposition Proposition

Argument Argument Argument

Décision

Environment and organization

Process

Techniques
Tools

Methodes

Directives
Procedures

Goals
Constraints
Requirements

Competencies
References

Carter

Arbre

Ca/Ar

Ar/Ca

Ar/Ext

Ca/Ext

Guider en rotation
l’arbre/carter

Carter

Arbre

Cart/Arbre

Arbre/Cart

compresseur

Vu
e

Te
ch

no
lo

gu
e

q3

déc4 obj4 cc

rhu4 , rma4, rin4

q5

ad5

déc5

rhu5
rma5
rin5

obj5

co5
cr5

vd5

Guider en rotation
l’arbre/carter

q4ac4

Relationships

Product representation Design Rationale

Roles

Problème

Proposition Proposition

Argument Argument Argument

Décision

Environment and organization

Process

Techniques
Tools

Methodes

Directives
Procedures

Goals
Constraints
Requirements

Competencies
References

Carter

Arbre

Ca/Ar

Ar/Ca

Ar/Ext

Ca/Ext

Guider en rotation
l’arbre/carter

Carter

Arbre

Cart/Arbre

Arbre/Cart

compresseur

Vu
e

Te
ch

no
lo

gu
e

q3

déc4déc4 obj4 cc

rhu4 , rma4, rin4

q5

ad5

déc5

rhu5
rma5
rin5

obj5

co5
cr5

vd5

q5q5

ad5ad5

déc5

rhu5
rma5
rin5

obj5

co5
cr5

vd5

obj5

co5
cr5

vd5

Guider en rotation
l’arbre/carter

Guider en rotation
l’arbre/carter

q4q4ac4ac4

RelationshipsRelationships

Product representation Design Rationale

Roles

Figure 7 . Project memory structure

2.4 Structure of project memory in design
A project memory in design must consider the different part, we
noted above. This type of knowledge can be organized as:

The project organization :
! Participants, their competencies, their roles in the
project and relationships
! Process, task organizations, constraints and
requirements

The project environment:
! Project goal
! References, rules, methods and directives
! Tools and techniques

Project realization :
! Design rationale
! Product description

These elements have mutual influences that is important to
emphasize in a project memory (Erreur ! Source du renvoi
introuvable.).

After presenting the different parts of a project memory,
the next section describes how some of these knowledge as
environment, organization, product knowledge and especially

problem solving may be extracted directly from designer’s
activity.

3 DIRECT KNOWLEDGE CAPITALISATION
FROM THE ACTIVITY
Currently, designers mostly work by using design software
(ex: CAD/CAM), etc. , They even use innovation tools for
creating new ideas (ex: TechOptimizerTM). Our idea, is to
extract the behaviour of designer by observing his activity
when he uses software to solve a given problem. This
behaviour can be kept as scenarios of used functions,
corresponding data and documents produced, interactions (e-
mails, data exchanges, …), etc. We specify a web
architecture (described in the next section) that allows the
observation of the designer activity [11] . XML can also be
used in order to structure data extracted as a behaviour
model. A knowledge engineer can then analyse behaviour
models and represent environment and problem solving
elements in the project memory. Figure 8 . illustrates this
process.

The observation of experts’ activity and problem
solving has been largely used in knowledge engineering for
knowledge extraction [3] . This technique is inherited from
cognitive psychology and ergonomics. In this technique, the
observer needs some elements related to the global project,
before starting the observation. For instance, observer needs
information about the step of the process the expert treats

and corresponding constraints and requirements of the problem.
In order to bring out these elements, the designer is first invited
to identify the task he carries out when he uses software. This
identification allows to establish the link between the behaviour
model we observe and the project organizations and
corresponding environment (design process model, actors, roles,
constraints and requirements).

Acquisition Analysis

ModellingReuse Knowledge
EngineerDesigner

Project
Memory

Event

State 3 Task Sate 4

Sate 5

Ta
sk

Event

Corresponding
methods, tools, rules,

product parts,
problem solving

Function

Input

Output

Product

Tool Function

Interaction

Output

XML
Web

Acquisition Analysis

ModellingReuse Knowledge
EngineerDesigner

Project
Memory

Event

State 3 Task Sate 4

Sate 5

Ta
sk

Event
Event

State 3State 3 Task Sate 4Sate 4

Sate 5Sate 5

Ta
sk

Event

Corresponding
methods, tools, rules,

product parts,
problem solving

Function

Input

Output

Product

Tool Function

Interaction

Output

Function

Input

Output

Product

Tool Function

Interaction

Output

XML
Web

Figure 8 . Designer activity observation

We present in the following the Web architecture we
defined for this aim. We show also how it can be used not only
for designer’s activity observation but also for knowledge
restitution.

3.1 Web architecture
In this paragraph, we present the main elements of the
experimental platform developed for this project. The « project
memory » is an application localized in one place in the set of
entities participating to the project. Its role consists in
recovering information linked to designers’ activities. These
information received are heterogeneous. We have selected the
XML language as the federal language.

Our project memory software is based on both XML and
Web technologies. In a first version, we have favoured the Java
language because it proposes efficient solutions to insure
interactions with XML and Web topics [5] . To manipulate
directly an XML document, the SAX interface (Simple API for
XML) has been required in the XML community because it
proposes an event framework. To each step of the analysis
process, SAX releases an event associated to the XML element
of the document. An other approach, the DOM interface
(Document Object Model) has been proposed by the W3C.
DOM proposes an object representation of a XML document
and provides tools for the manipulation of trees. The XML
document in its totality is redefined in the memory. More
specifically, the JDOM API is used in the Java community. It
proposes a great number of simplifications in the use of DOM
by a transformation of all DOM interfaces and DOM class in
real Java classes. In a Web context, the Java main proposal is
the Servlet concept that has allowed the use of all Java classes in
the development of complex applications linked to Web servers.

As summary, with the first version of our demonstrator,
designers use a simple Web browser corresponding to Web
applications localized on the central site (mail, agenda,

document’s transfer, …). For the technical point of view, this
first version has been realized with an Apache Tomcat Web
server and several Java Servlets [15] .

The version 2 of our demonstrator is still under
development. However, we have already validated several
elements increasing the functionality of the first version of
our demonstrator. The main limitation concerns distant
applications used by designers. It is indeed probable that on
each site, particular applications will be used. In this case,
we have to insure the information circulation to the central
site. Brought solutions depend on the applications.

3.1.1 Case 1: a Web software in a distant site
A designer uses a Web application on its site. This first case
is easy to manage. We modify HTML pages by adding
Javascript functions. Thus, information are normally
transmitted to the local Web server. After information
recovery, the demonstrator broadcasts these data to the first
Web server.

3.1.2 Case 2: not Web open applications
In the case of software developed for our project, it is
possible to add a module of data recovery. We have
implemented three approaches to insure the transfer of
information to the central site. The first approach consists in
an opening network connection (socket TCP/IP). We have
used this solution for applications generally written in C or
Pascal language. The second approach has been used for
applications written in object language and especially in
Java. The recovery module is a Java RMI client (Remote
Method Invocation) that communicates with a RMI server
localized on the central site. This RMI server is an additional
element of our demonstrator. The third approach, more
recent, is based on concepts of Web Services. A Web-
Service is an application based on protocols of Internet that
provides a specific service by respecting XML exchange
format. It can also be seen as an accessible transaction by the
exchange of XML documents between two sites. Web-
Services represent the most promising solution for the
integration of distributed services in a strongly
heterogeneous context. Indeed, current solutions have some
restrictions. The DCOM solution from Microsoft imposes the
choice of the Windows platform. Java RMI and Java EJB
(Enterprise Java Beans) support only the Java language.
Finally, CORBA, the OMG solution uses only ORB. The
main result research with the use of Web-Services is
therefore a real interoperability of all applications.
Components of Web-Services [14] are mainly SOAP
(Simple Object Access Protocol), WSDL (Web Description
Service Language), WSFL (Web Service Flow Language)
and UDDI (Universal Description, Discovery and
Integration).

3.1.3 Case 3: other cases
In the case of the use of a closed software proposed by a
company, the solution consists by asking an extension of this
software to be able to provide information from designer’s
activities.

3.2 The representation of the memory using
the Web architecture

The project memory can be represented as a number of XML
documents. These documents can be also linked to other data
bases produced by specific product design (for instance
CoDeMo) and process management tools. XML documents
represent in fact, a flexible indexation of these documents.
Automatic links (XLL) can be used to establish this flexible
indexation and relations between all the parts of the project
memory. The style sheets XSL is a good support to present the
memory in different way corresponding to the needs of the user.
The representation of the project memory can be illustrated
Figure 9 .

XML XML XML
XLL XLL

XLL

XSLXML XML XML
XLL XLL

DocumentDocument

XSL

Casing /Shaft

Part : CasingPart : Casing

Shaft/ Casing

Part : ShaftPart : Shaft

System: jointSystem: joint

Te
ch

no
lo

gi
st

 V
ie

w

Pin joint

Multiple views axis

Sliding : Bearing 1Sliding : Bearing 1

Sliding: Bearing 2Sliding: Bearing 2

To
ol

in
g

V
ie

w

déclencheur 4 Objectif 4Contraintes
de conception 4

Objectif 5

Contraintes 5
Critères 5

Variable de décision 5

État 3 Activité de
conception 4

État 4

Ressources 4

État 5

Ac
tiv

ité
 d

e
dé

ci
si

on
 5

R
es

so
ur

ce
s

5

déclencheur 5

XML XML XML
XLL XLL

XLL

XSLXML XML XML
XLL XLL

DocumentDocumentDocumentDocument

XSL

Casing /Shaft

Part : CasingPart : Casing

Shaft/ Casing

Part : ShaftPart : Shaft

System: jointSystem: joint

Te
ch

no
lo

gi
st

 V
ie

w

Pin joint

Multiple views axis

Sliding : Bearing 1Sliding : Bearing 1

Sliding: Bearing 2Sliding: Bearing 2

To
ol

in
g

V
ie

w

Casing /Shaft

Part : CasingPart : Casing

Shaft/ Casing

Part : ShaftPart : Shaft

System: jointSystem: joint

Te
ch

no
lo

gi
st

 V
ie

w

Pin joint

Multiple views axis

Sliding : Bearing 1Sliding : Bearing 1

Sliding: Bearing 2Sliding: Bearing 2

To
ol

in
g

V
ie

w

déclencheur 4 Objectif 4Contraintes
de conception 4

Objectif 5

Contraintes 5
Critères 5

Variable de décision 5

État 3 Activité de
conception 4

État 4

Ressources 4

État 5

Ac
tiv

ité
 d

e
dé

ci
si

on
 5

R
es

so
ur

ce
s

5

déclencheur 5
déclencheur 4 Objectif 4Contraintes

de conception 4

Objectif 5

Contraintes 5
Critères 5

Variable de décision 5

État 3État 3 Activité de
conception 4

État 4État 4

Ressources 4

État 5État 5

Ac
tiv

ité
 d

e
dé

ci
si

on
 5

R
es

so
ur

ce
s

5

déclencheur 5

Figure 9 . A XML representation of the project memory

As we noted above, the activity observation can be also used to
recognize knowledge from the memory. In fact, we plan to use a
probability algorithm based on scenarios of activities in order to
recognize the context of the designer and to propose a
contextual access to the memory and problem solving part. The
project memory can be viewed as a case base in which the
environment, process and product knowledge represent the case
definition and design rationale represents the case solution. So,
similarity research algorithm can be used for case recognition.
In project memory, the similarity can be based in different
elements of the context depending on the current activity. So,
the similarity algorithm must be flexible enough to support this
type of recognition. Note also that some context elements can be
included in the solution beside problem solving. We plan to test
an algorithm based on the probability for this aim. In fact,
information extracted from activity observation are used for
knowledge recognition. Probability algorithm are used to
compare these information with the project memory definition
in order to recognize similar projects. The weight of the
corresponding scenario is also incremented. So, designer can be
assisted by the project memory.

4 CONCLUSION
Learning from past projects allows designers to avoid previous
errors and to solve problems. A number of methods defined
techniques to memorize lessons and experiences from projects.
We study in this paper a traceability approach that allows to

extract knowledge directly from designer’s activities. The
basic principle of this approach is to observe a designer
facing to a problem. We use web technologies in this aim, in
order to establish a behavior model of the designer by
extracting and linking functions and data he uses and
produces. This behavior model can be then analyzed (by the
knowledge engineer) and structured in a project memory.

Our thesis is in the one hand, to keep track of
knowledge without disturbing designers’ activities and in the
other hand, guarantee a structured and intelligent access to
the memory. For that, the direct knowledge extraction as we
defined, can be also used to recognize knowledge from the
memory and offer a contextual restitution of knowledge. In
fact, the behavior model can describe some elements of the
current context and needs of the designer. These elements
can be matched with the memory in order to extract similar
projects that can help the designer to solve his problem. We
plan to use similarity algorithm used in the Case Based
Reasoning and Human Computer Interface techniques, for
this aim.

In a project memory different types of knowledge must
be represented: environment description, process, product
and design rationale. These elements can be structured using
internal and specific representation usually adopted in
engineering design. The project memory can point these
elements as an intelligent index based on problem solving
that is the main part of traceability. With this type of
representation, we do not introduce heterogeneous
representation coming primly from the cognitive and
artificial intelligence science “as semantic network and
cognitive models”.

5 REFERENCES
[1] Anderl R., Mendgen R., “Modelling with constraints:
theoretical foundation and applications”, Computer Aided Design,
Vol. 28, n°3, pp 155-166, 1996

[2] Andreasen M.M., Hein L., “Integrated product development”,
Springer-Verlag, London, 1987

[3] Aussenac N. – Conception d’une méthodologie et d’un outil
d’acquisition des connaissances expertes, PhD report of the
university of Paul Sabatier, Toulouse, October, 1989.

[4] Bekhti S., Matta N., Andéol B. et Aubertin G. – Mémoire de
projet : Processus dynamique de modélisation des connaissance ,
Proceedings of Cooperation, Innovation and Technologies
CITE'2001, Troyes, 29-30 November 2001, p. 329-345.

[5] Bernadac J.C., Knab F., Construire une application XML,
Editions Eyrolles, Paris, 1999.

[6] Blessing L.T.M. (1996) Design process capture and support,
2nd Workshop on Product Structuring, Delft, The Netherlands

[7] P.A. Muller, Modélisation objet avec UML, Edition Eyrolles,
1997.

[8] G.J. Colquhoun, R.W. Baines, R. Crossley, A state of the art
review of IDEFØ, International Journal of Computer Integrated
Manufacturing, Vol. 6, n° 4, pp 252-264 (1993)

[9] Dieng R., Corby O., Giboin A., Golebiwska J., Matta N., Ribière
M., Méthodes et outils pour la gestion des connaissances, Dunod.,
2000.

[10] Eynard B., “Modélisation du produit et des activités de
conception. Contribution à la conduite et à la traçabilité du processus
d’ingénierie”, PhD thesis of the Bordeaux 1 University (France), 1999.

[11] Eynard B., Lemercier M., Matta N, Apport des technologies
internet et du langage XML dans la constitution de mémoires de projet
en conception de produit, Proceedings of Cooperation, Innovation and
Technologies, CITE'2001, November 2001.

[12] Kjelberg T, Scmelkel H., “Product Modelling and Information
Integrated Engineering Systems”, Annals of the CIRP, vol. 41, n°1, pp
201-204, 1992

[13] Krause F.-L., Kimura F., Kjelberg T., Lu S. C.-Y., “Product
modelling”, Annals of the CIRP, vol. 42, n°2, pp 695-706, 1993.

[14] Lemnercier M., Développements Avancés de Pages Web
Dynamiques , NOTERE'97 (Colloque International sur les Nouvelles
Technologies de la Répartition), p. 133-146, Pau, novembre 1997.

[15] Liu D., Xu W., A review of web-based product data management
systems , Computers in Industry, Vol. 44, 2001, pp. 252-262.

[16] Matta, N., Ribière, M., Corby, O., Lewkowicz, M., et Zacklad,
M. Project Memory in Design, Industrial Knowledge Management - A
Micro Level Approach. SPRINGER-VERLAG : RAJKUMAR ROY,
2000

[17] R.J. Mayer, T.P. Cullinane, P.S. DeWitte, W.B. Knappenberger,
B. Perakath, M.S. Wells, IDEF3 process description capture Method,
Information Integration for Concurrent Engineering - Compendium
Methods Report, Wright-Patterson Air Force Base, Ohio, USA (1992)

[18] T. Murata, Petri nets : properties, analysis and applications,
Proceedings of the IEEE, Vol. 77, n°4, pp. 541-580, (1989)

[19] I. Nonaka, H. Takeuchi: The knowledge-Creating Company:
How Japanese Companies Create the Dynamics of Innovation.
Oxford University Press, 1995

[20] Pahl G., Beitz W., “Engineering design : a systematic
approach”, Springer-Verlag, London, 1996

[21] L. Pun, Integrated discrete production control : analysis and
synthesis - A view based on GRAI nets ; Elsevier, Amsterdam
(1992)

[22] Roucoules L., “Méthodes et connaissances. Contribution au
développement d’un environement de conception intégrée”, PhD
thesis of the Institut National Polytechnique of Grenoble (France),
1999

[23] Roucoules L., Tichkiewitch S., “CoDE: a Co-operative
Design Environment. A new generation of CAD systems”, CERA
journal, Vol.8, n°4, pp 263-280, December 2000

[24] Shah J., “Assessment of Feature Technology”, Computer
Aided Design, vol. 23, n°5, June 1991

[25] J.J. Shah, D.K. Jeon, S.D. Urban, P. Bliznakov, M.T. Rogers,
“Database infrastructure for supporting engineering design
histories’, Computer Aided Design, Vol. 28, n° 5, pp 347-360, 1996

[26] Sohlenius G., “Concurrent Engineering”, Annals of the CIRP,
vol. 41, n°2, pp 645-655, 1992

[27] Suh N.P., “The principles of design”, Oxford University
Press, New York, 1990

[28] Tichkiewitch S., “Specification on integrated design
methodology using a multi-view product model”, ESDA
Proceedings of the 1996 ASME System Design and Analysis
Conference, PD-Vol. 80, 1996

	Continuous capitalization of design knowledge
	INTRODUCTION
	DESIGN KNOWLEGDE
	Knowledge modelling in design engineering

	Continuous capitalisation in engineering design consists in memorising specific information that will be later on reuse in future product designs. This information is extracted from different knowledge during design process. This dynamic knowledge of the
	
	Product modelling for integrated design
	A strong link between functions and structure
	A multiple points of view product definition
	Computer based support for product modelling
	Extra functionality for continuous capitalization

	Modelling of Design Process
	Process modelling language
	Modelling of key elements of design process
	Link between product and process

	Design rationale
	Structure of project memory in design

	DIRECT KNOWLEDGE CAPITALISATION FROM THE ACTIVITY
	Web architecture
	Case 1: a Web software in a distant site
	Case 2: not Web open applications
	Case 3: other cases

	The representation of the memory using the Web architecture

	CONCLUSION
	REFERENCES

