Inductive-Deductive Databases
for Knowledge Management

Marcelo A. T. Aragao, Alvaro A. A. Fernandes

Department of Computer Science

University of Manchester
Oxford Road, Manchester M13 9PL, UK

{m.aragao|a.fernandes}@cs.man.ac.uk

Abstract. The growing awareness by organizations that
knowledge is a key asset has led to an intense interest in tools
that support knowledge management tasks. Ideally, such tools
will support not only the discovery of knowledge by induc-
tive exploration of data but also the fluent exploitation of
that knowledge to produce actionable information. This pa-
per expresses a position that a logic-based approach to the
integration of knowledge discovery and deductive query an-
swering offers significant advantages in terms of effectiveness
and usability. Adopting a knowledge management perspec-
tive throughout, the paper describes an engine that exhibits
integrated inductive and deductive inference capabilities and
briefly considers the issues that arise in such an integration
endeavour. A proof-of-concept implementation of the engine
has been built and the paper uses it to suggest the poten-
tial benefits accruing from the position adopted. This is done
by describing the deployment of the prototype in a classical
knowledge management workflow. The paper aims to con-
tribute an approach to logic-based knowledge management
tools that have the potential for high levels of effectiveness
and usability as a direct consequence of the uniformity in both
the representations used and in the algorithmic treatment by
means of which data, knowledge and information are made
used of or derived from those representations. In this respect,
the goal is to support in as fluent as possible a manner a more
comprehensive set of knowledge management workflows than
has hitherto been possible.

1 Introduction

The last few decades have delivered efficient, reliable and
relatively inexpensive technologies for the management and
exploitation of data stocks. This has helped consolidate the
view of data stocks as primary assets of modern organizations.
More recently, there has been a surge of interest in treating
knowledge' too as a primary asset [6]. By definition, the main
purpose of data and knowledge is to feed the processes com-
prising information production.

From this viewpoint, actionable information is the ultimate
goal in the value-adding chain that has roots in data and

L In this paper, by knowledge is meant ezplicit knowledge, i.e.,
knowledge that can be formally represented for use in information
production processes.

knowledge stocks. Nonetheless, it is increasingly clear that, in
most organizations, an ever larger proportion of the available
data stocks lies largely unexploited. Correspondingly, most
organizations now realize that the amount of knowledge they
effectively exploit is far smaller than it needs to be if they
are to remain competitive. Therefore, organizations are now
more conscious than ever that valuable, actionable informa-
tion might be waiting to be uncovered in the data stocks they
already hold or can easily acquire.

Increases in knowledge stocks, on the other hand, are much
harder to achieve, as technological support for that is not yet
in place. This paper is motivated by the desire to contribute
to the foundations of a class of knowledge management tools
that are likely to prove particularly useful in this context.

Although database technology has delivered the means to
manage and exploit data stocks and recent progress in knowl-
edge discovery from databases justifies a certain degree of
optimism, there is still no detailed proposal for an integrated
platform for the combined management and exploitation of
data and knowledge stocks. For instance, the link between
knowledge discovery and knowledge management is very much
under-explored [19]. This paper presents one such proposal,
which we refer to as inductive-deductive databases (IDDBs).

A proof-of-concept implementation of the algorithms and
policies contributed by Section 4 has been carried out? and
the motivating example discussed in Section 2 runs exactly as
described. Note, however, that no claim is made that this pro-
totype implementation is a contribution on its own. Rather,
it has been built solely for the purpose of allowing the poten-
tial effectiveness and (in some respects) usability of IDDBs,
as opposed to their potential efficiency, to be experimented
with. This is precisely how the prototype is used in Section 2,
viz., to provide more concrete motivation for the benefits that
might accrue from the contributions of the paper.

The remainder of the paper is structured as follows. Sec-
tion 2 uses a prototype implementation of the combined in-
ference engine to present an extended example and show how
the databases characterized in Section 4 constitute a step in
the direction of providing suitable platforms for organizations
that aim at faster rates of growth in their knowledge stocks.

2 Available for download at http://www.cs.man.ac.uk/ aragaom/
iddb-1.tar.gz

This section assumes the reader possesses basic knowledge of
logic programming and deductive databases [3], including the
syntactic conventions in those areas. Technical background
is introduced in Section 3. Section 4 characterizes IDDBs by
presenting the algorithms that model the operation of their
combined inference engines. Section 5 discusses how the ID-
DBs defined in Section 4 can comprise more than a single
inductive engine. Related work is discussed in Section 6. Fi-
nally, Section 7 points at both work that is underway and at
future work that the contributions of the paper make possible
while drawing a few conclusions stemming from the latter.

2 Deploying IDDBs in Knowledge
Management

Data and knowledge stocks feed the processes of information
production and must be refreshed, adjusted, adapted and,
ultimately, increased if information stocks are to underpin fu-
ture competitiveness in organizations. The simplified dataflow
diagram in Figure 1 illustrates how diverse and interdepen-
dent data, knowledge and information management tasks are.
One key challenge arising from the complexity illustrated in
Figure 1 lies in devising platforms that can fluently support
most of those tasks and foster purposeful growth and exploita-
tion of all the stocks involved. This section exemplifies how
IDDBs might be used in a range of tasks depicted in Figure 1
with levels of effectiveness and fluency that are a direct con-
sequence of the uniformity in both the representations used
and in the algorithmic treatment by means of which data,
knowledge and information are made used of or derived from
those representations.

develop
acquire
capture

create
deploy

discover
knowledge S
I disseminate

assess share apply

appraise use
evaluate enact
S B execute
preserve exploit
store
secure
conserve
update retain
evolve o
improve
maintain
refresh

| transfer |

communicatg

compile
formalize
standardize verify

explicate validate

i

information

Figure 1. Information Management Activities (inspired by [11])

The authors have built a prototype IDDB to begin explor-
ing the validity of this claim. The prototype implements the
engine and policies formalized in Section 4. The remainder of
this section consists of a summarized, step by step, description
of how a workflow involving the exploitation and growth of
data and knowledge stocks for the production of actionable
information can be carried out using the prototype IDDB.
Each step is annotated with reference to the tasks in Figure 1
that the step contributes to.

Step 1: [preserve] Suppose an organization records data
about its employees (the convention is followed in the paper
that metadata, e.g., schema expressions are signalled by an
initial ‘$).

$employee (<name>,<position>,<degree>,<graduate_from>).
$involves (<position>,<skill>).
employee (mary, programmer, maths, oxford).

involves (programmer, databases).

The fragment above shows that, for each employee, their
name, position, degree, and the university from which they
graduated is recorded. The skills (e.g., databases) that each
position involves are also recorded.

Step 2: [develop] Assume now that the organization de-
cides to implement a personnel policy of allocating employees
to positions that minimize the need for training.

$suitable (<name>,<position>).

suitable (Employee,Position):-
competent (Employee,Skill),
involves(Position,Skill).

The policy can be roughly described by the rule above. It de-
fines an employee as suitable for a position if s/he is competent
in the skills involved. The rule is asserted in the intensional
part of the database.

Step 3: [develop, apply] However, for this policy to be
effective, one must be able to characterize the competences
that employees possess. In particular, because the definition
of how competences arise is taken to be complex and to suf-
fer from volatility, the organization decides to characterize
competent/2 as an inducible concept (signalled by an initial
‘¢ ’). There is a need, therefore, to induce a definition for it in
terms of skills. To do so, examples are needed. So, a sample
of employees is invited to reply to a survey about what skills
they consider themselves to have. The results of the survey
are used to augment with an additional attribute the data
stocks about those employees that replied to the survey.

&competent (<name>,<skill>).
competent (fiona, databases).

This can take the form of asserted positive examples of
such as indicated above. Note that, if the in-
duction algorithm cannot learn from positive data only (as is
the case with mFOIL [7] used in the prototype IDDB built by
the authors), a set of negatives examples can be methodically
generated (as is the case in the prototype) by appealing to the
closed-world assumption inherited by IDDBs from databases
in general.

Step 4: [develop, preserve, transfer] Given the current
background knowledge, the positive examples obtained from
the survey and, possibly, negative examples valid under the
closed-world assumption, the prototype learns the definition
below for competent/2 . The request for the definition to be
learned is signalled by an initial ‘?- ’ (as is a request for a
query to be answered). The prototype responds with the def-
inition of competent/2 below.

competent/2

?- competent (Employee, Skill).

competent (Employee,Skill) : -
employee (Employee,Position, _Degree,_Graduate),
involves(Position,Skill).

Note that, of course, the prototype takes quite a simplistic
view of how language bias is specified (as can be verified in
Section 4). A more expressive implementation would allow
more sophisticated mechanisms for specifying language biases,
ideally with single-task granularity.

Note also that assuming, e.g., a policy for assimilation of in-
ductive outcome that updates the knowledge stocks with the
new definition and re-partitions appropriately the set of de-
ducible and inducible predicates symbols, the stock of knowl-
edge grows as a result of the system’s having learned the
definition above. Because of the uniform representation and
algorithmic treatment, the new knowledge is fluently made
available for information production.

Note, finally, that if, instead of submitting an explicit learn-
ing task as above, the user had requested the performance of
the deductive task ?-suitable(Employee,Position), then,
the definition above would be learnt on the fly, because
the deductive evaluation of suitable/2 depends on that of
competent/2, so, if the latter lacked a definition one would be
inductively derived there and then. In other words, the imple-
mented prototype behaves lazily and suspends the deductive
process to induce a definition for the required predicate and
resumes the former once the latter has been obtained. In such
cases, the user is warned that query answering required learn-
ing a new concept.

Step 5: [develop] Suppose now that a new-blood policy
to hire recent graduates comes into force. The organization
therefore announces several positions and the applications re-
ceived are stored as indicated below.

$applicant (<name>,<degree>,<graduate_from>) .
applicant (zoe,cs,oxford) .

Step 6: [develop] If the organization were to want to de-
rive from the new data stocks information about the potential
competences of the applicants so as to gauge to which posi-
tions they might be allocated, then the current definition of
competent/2 would not suffice. Since recent graduates are un-
likely to have acquired the high-end skills that are targetted,
changing the data capture is also not a solution. The orga-
nization therefore decides to refresh the current definition of
competent/2 and make it sensitive to the universities the ap-
plicants originate from.

The idea is to build upon traditional strengths of differ-
ent institutions to infer that their graduates are likely to be
competent in such areas as the institutions are strong in. For
example, graduates in computer science from Stanford are
likely to have high-end skills in database technology, and this
data could be captured from a variety of sources (e.g., the
Stanford CS web site) and stored as indicated below.

$strong_at (<graduate_from>,<degree>,<skill>).
strong_at (stanford,cs,databases) .

Step 7: [update, develop, apply] A new learning task
can then be devised as follows. The example sets can be aug-
mented by examples derived from the original applications

of current employees. These employees and their respective
skills are well-known in the organization, and an inductive
task that takes those as positive instances will tend to reflect
the organization’s past decisions to hire.

The current definition for competent/2 is dismissed by re-
partitioning the set of inducible and deducible predicates
so as to include competent/2 in the former and suitable,
employee, involves, strong_at, and applicant in the latter.
Since the goal at this point in the workflow is to refresh the
characterization of competent/2 in the light of the enhanced
background knowledge about the strengths of the applicant’s
academic roots, it is sensible to drop the previously learned
definition. Then, submitting the inductive task again causes
the knowledge about competences to be refreshed as per the
new definition shown below.

?- competent (Employee, Skill).

competent (Employee,Skill) : -
employee (Employee,Position, _Degree, Graduate),
involves (Position,Skill).
competent (Applicant,Skill):-
strong_at (Graduate,Degree,Skill),
applicant (Applicant,Degree,Graduate) .

Step 8: [transfer] Finally, assuming this defini-
tion to be retained, the answer to a query such as:
?-applicant (Applicant, _,_),suitable(Applicant,
Position) can be used as actionable information with which
to allocate applicants to positions while respecting the
policies in place. Therefore, in the example above, every time
the allocation policy has to be applied, a deductive task can
provide the necessary information. Correspondingly, every
time the notion of competence, upon which an allocation
policy is based, has to be developed, an inductive task can
exploit the current stocks of data and knowledge available in
order to create or update it.

Note that, data stocks have increased in Steps 3, 5 and 6.
Knowledge stocks have increased in Step 2, by explicit asser-
tion, and in Steps 4 and 7, by automated induction. Finally,
information stocks have grown throughout, as both data and
knowledge stocks are handled in an integrated manner. This
extended example runs exactly as described in the proof-of-
concept prototype that the authors have built and made avail-
able.

This section has exemplified the broad functionality of ID-
DBs with reference to Figure 1 in order to provide some ev-
idence for the claim that IDDBs hold the promise of fluent
and effective data, knowledge and information management.
In the next two sections, first the background to IDDBs is
presented and then IDDBs themselves are characterized in
some detail.

3 Background

The representation language used in this paper is Datalog,
described in detail in [3]. Recall that Datalog is a function-
free Horn-clausal language, with well-understood model- and
proof-theories. Datalog can be extended with negated atoms
in the body (e.g., by stratification). This paper assumes the
notion of a deductive database [3], defined to be a set S of

Datalog clauses partitioned into an intensional part (consist-
ing entirely of safe rules —i.e., rules in which every variable oc-
curring in the head occurs in at least one literal in the body),
called the intensional database and denoted by IDBg, and
an extensional part (consisting entirely of ground facts) called
the extensional database and denoted by EDBg. For tech-
nical reasons, in a deductive database S, the predicate sym-
bols occurring in the head of clauses in IDBg are not al-
lowed to occur in the head of clauses in EDBgs. Furthermore,
queries can only involve predicate symbols in IDBg. There-
fore, querying EDBg must be done indirectly. It is customary
to assume that each predicate symbol in EDBgs has a corre-
sponding implicitly-defined select-all view in IDBg and not
to distinguish two predicate symbols that are related in this
way. Given a finite set S of Datalog clauses, recall that its
Herbrand universe HUs is the set of individual constants
in S and its Herbrand base H Bg is the set of atoms formed
from the predicate symbols in S and the terms in HUs, and
since S is finite, so are HUs and HBs. If S is a deductive
database, then EDBs C HBs. A query Qs over a deductive
database S is a rule body formed with the predicate symbols
in S. Classically, an answer Agg to a query over a database
is a set of substitutions of variables in Qs with elements from
HUs so as to characterize atoms in the unique least Her-
brand model LHMs associated with S and @Qs. In this
paper, the assumption is made that the subset of LH Mg
corresponding to Qs is returned rather than the substitu-
tions that characterize them. Henceforth, subscripts are often
omitted if the context is clear. The query evaluation process
over deductive databases is tractable and has been extensively
studied in both a bottom-up and a top-down direction [3].
In this paper, a query evaluation algorithm over deductive
databases is assumed and referred to as deduce. Any one of
many such algorithms described in the literature [3, 5, 13]
may serve as a denotation for deduce. Thus, the remainder of
the paper assumes to be well defined an expression such as
A := deduce(Q, (IDB, EDB)) that assigns to A the answer
to a query @ over a deductive database IDB U EDB.

Inductive logic programming (ILP) [17] can be seen as
an approach to the provision of inductive functionality that
shares the underlying foundations of deductive databases.
This paper confines itself to Datalog as the representation lan-
guage and adopts throughout the example setting of ILP [17].
Thus, given a set B of clauses, taken to be background
knowledge, and sets ET and E~ of positive and nega-
tive examples, respectively, such that some elements in ET,
and all elements in E~, are false in LHMp, the goal is to
find a set H of clauses, referred to as the hypothesis, such
that all elements in E are true in LH Mgy and all elements
in E~ are false in LHMpyg. This concept learning process
has been extensively studied in both a bottom-up and a top-
down direction [17, 20]. In this paper, a concept learning al-
gorithm over deductive databases is assumed and referred to
as induce. Any one of many such algorithms described in the
literature [10, 16] may serve as a denotation for induce. Thus,
the remainder of the paper assumes to be well defined an ex-
pression such as H := induce(L, (B, E*, E™)) that assigns to
H a hypothesis conforming to the language bias L that, given
background knowledge B, covers all the positive examples in
E™ and none of the negative ones in E~.

4 Inductive-Deductive Databases

This section builds upon the wealth of research into deductive
databases and into ILP to characterize a class of databases
(represented as sets of Datalog clauses) that exhibits deduc-
tive and inductive inference capabilities.

Given deduce and induce functions as described in Section 3,
the new functionalities provided by the class of databases
contributed by the paper are embodied in an information-
extracting algorithm that outputs data (represented as Dat-
alog facts) by the application of deduce and knowledge (rep-
resented as Datalog rules) by the application of induce. The
main challenge involved lies in devising and implementing a
strategy to partition, in the dynamic way required, the data
and knowledge stocks that are input to each inferential step.
The main benefit derived is the integration of deductive and
inductive inference into a continuum that underpins knowl-
edge management workflows approximating the schema in
Figure 1.

Let IT = (A, I) denote a partition of a set of predicate
symbols (each with a fixed arity — denoted, for a predicate
symbol p, by arity_of(p)) into two sets. The set A is the set
of predicate symbols defined to be available for deduction as
would be classically understood in a deductive database con-
text. One can think of it as characterizing the relation names
in a database schema, and hence, as the names of concepts in
the belief set that underpins deductive processes. The set I is
the set of predicate symbols targetted for induction as would
be classically understood in language biases of ILP tasks. Let
the set I of inducible predicate symbols in IT = (A, I) be de-
noted by inducibles_in(II). Finally, given a Datalog clause C' of
the form A < Bi,..., By, let head_of (C') denote the atom A,
and given an atom A, let predicate_of (A) denote the predicate
symbol of A.

An inductive-deductive database (IDDB) is a triple S
= (II,K,D) where K denotes a stock of knowledge in the form
of an intensional database, D denotes a stock of data in the
form of an extensional database, and II = (A,) is a pair of
predicate-symbol partitions as described above. Given a list
ti,...,t, of atoms where each t;,1 < i < n, denotes either a
deductive or an inductive task, an algorithm can be defined
over an initial IDDB Sy = (Ilo,Ko,Dp) that, for each task in
ti,...,tn, effects the transition of S;_; into a new IDDB S;
= (I1;,K;,D;), 1 <i < n and returns an outcome O, where O
is the information derived from the task.

One such algorithm is given in Figure 2. It can perform
a single task, as in lines 3 to 14, or it can perform task flows
sequentially, as in lines 15 to 18. In this last case, the outcomes
of each task are accumulated, as in line 18. The base case is
trivial, as in lines 1 to 2.

The information derived by the algorithm is data (i.e., Dat-
alog facts) if the task is deductive, and knowledge (i.e., Data-
log rules) if the task is inductive. The decision as to whether
it is a deductive task or an inductive one is made in line 4,
according to the predicate partition in use. Hence, a deduc-
tive task is performed from lines 6 to 9, while an inductive
task is performed from lines 11 to 14.

The algorithm in Figure 2 makes use of four auxiliary func-
tions, which are better thought of as implementing policies
regarding the user’s view on the epistemological status of the
set of concepts captured in II. In particular, policies must

perform(Tasks,(II,K,D)) =
1 case (Tasks maTcHeEs [1)
2 tHEN RETURN ((II,K,D),0)
3 ELSE (Tasks MATcHES [Task])
4 1F predicate_of (T'ask) ¢ inducibles_in(IT)
5 THEN
6 (IDB,EDB) := set_deductive_basis(II, K ,D)
7 Outcome := deduce(Task,(IDB,EDB))
8 (ITy,K1,D1) := assimilate_deductive_outcome(Task,(II, K, D) ,Outcome)
9 rReTURN ((I11,K1,D1),Outcome)
10 ELSE /* predicate_of (T'ask) € inducibles_in(II) */
11 (B,E*T,E~) := set_inductive_basis(Task,(II,K,D))
12 Outcome := induce(Task,(B,ET,E™))
13 (I1;,K1,D1) := assimilate_inductive_outcome(Task, (I, K, D) ,Outcome)
14 reTurN ((II;,Kq,D1),Outcome)
15 grLse (Tasks maTcHEs [First | Rest])
16 ((II;,K1,D1),0,) := perform([First],(II,K,D))
17 ((Il2,K2,D2),02) := perform(Rest, (111 ,K1,D1))
18 RETURN ((II2,K2,D2),01 U O2)
19 Esac
Figure 2. An Algorithm for Performing Tasks Over Inductive-Deductive Databases

be in place to determine at each inference step, what is to
count as the basis for that inference step and what is to be
done with its outcome. For example, a policy is needed to
decide what, if any, induced knowledge can be used in sub-
sequent deductive inferences. The spectrum varies from total
permissiveness (i.e., all induced clauses are always uncondi-
tionally automatically assimilated into knowledge stocks) to
total skepticism (i.e., no induced clause is ever automatically
assimilated), with — as might be expected — intermediate, and
more realistic and useful, points (e.g., automatically assimi-
late only those induced clauses that survive evaluation hurdles
regarding one or more of accuracy, relevance, significance, jus-
tifiability, understandability, novelty, etc.).

The outcome of deductive inferences can also be the subject
of a policy regarding assimilation. This might model materi-
alization of queries, for example, although one would expect
the default case to be no assimilation at all. More interest-
ingly, a policy is needed to establish the basis for a deductive
step. In particular, if clauses in the intensional database are
allowed to refer in their bodies to predicates that need to be
learned (e.g., for refreshment, assuming that the knowledge
they capture is volatile), then one needs to consider inducing
these before they can be used in answering a query. This can
be done lazily, on an on-demand basis, regardless of whether
the deductive engine proceeds top-down or bottom-up. Alter-
natively, one might want to cache (or even materialize) the
entire (or selected portions of the) latent knowledge stock as
lemmas.

For illustration purposes, Figure 3 presents example poli-
cies. With respect to what is to count as the basis for each
deductive inference step, set_deductive_basis implements a pol-
icy of total inclusiveness and maximum recency, i.e., it al-
ways automatically exploits all the latest knowledge. Thus, a
new definition for each predicate currently in inducibles_in(II)
is induced and unioned to the intensional database, as in
lines 3 to 8, in order to avoid that a deductive task fails or
blocks because one predicate lacks definition or has an out-
dated one. Although this policy may be onerous, it does allow
for sequence, iteration, alternation and interleaving of deduc-
tive and inductive steps, thereby providing great flexibility to

users. The pseudo-code in Figure 3 is at a level of abstrac-
tion higher than that in which lazy, on-demand induction of
concepts might be specified, but the prototype implementa-
tion used in Section 2 deploys exactly such an implementation
strategy. With respect to what is to be done with the outcome
of a deductive inference step, assimilate_deductive_outcome im-
plements a policy of zero assimilation, i.e., irrespective of the
task and its outcome, the results of deductive inferences are
never automatically assimilated, asin line 1 of Figure 3. With
respect to what is to count as the basis for each inductive in-
ference step, set_inductive_basis implements a policy suitable
for concept description, i.e., taking as background the stock
of current data and knowledge, modulo what is targetted for
induction, in line 1, as positive examples any facts that are
known to be instances of the target concept, in line 2, and
as negative examples, appealing to the closed-world assump-
tion [3] that deductive databases abide by, (possibly a subset
of) the facts in the Herbrand base of the concept that are not
known to be instances of the concept, in line 3. With re-
spect to what is to be done with the outcome of an inductive
inference step, assimilate_inductive_outcome implements a pol-
icy of total permissiveness, i.e., irrespective of the task and its
outcome, the results of inductive inferences are always auto-
matically unconditionally assimilated, i.e., the target concept
is removed if it exists, in lines 1 and 2, and the new defini-
tion is inserted, in lines 3 and 4. Note that no claim is made
that any of these policies are in any way guaranteed to have
desirable consequences only. Clearly, many issues are raised
that demand further investigation. It is important to stress
that policies are, by definition, user-specific and the granu-
larity with which they are put in place needs to be carefully
thought through in each case. Options vary from very fine
(e.g., a task may be accompanied by a policy that is set or
chosen to hold with scope bound to that task alone) to very
coarse (e.g., policies are hardwired into the implementations).
It may also be the case that policies are devised by, and put in
place for, groups of, rather than individual, users. This flexi-
bility can be explored, e.g., in incremental data mining and in
deploying sophisticated knowledge assimilation techniques.

set_deductive_basis(Il, K ,D) =

-
o

RETURN (IDB,EDB)

assimilate_deductive_outcome(T'ask, (I, K, D) ,Outcome) =

V)< A xzg ETY

L' EDB :={x € D | predicate_of (head_of (z)) ¢ inducibles_in(IT) }
2 IDB := { z € K | predicate_of (head_of(z)) ¢ inducibles_in(TI) }
3 ror EacH II 1n inducibles_in(II) /* assuming arity of(Il) = n */

4 BEGIN

5 B := IDBUEDB

6 Et = {z | z € deduce(+ n(V1,...,Vn), (K,D))}

7 E- :={ze HB(K U D) | z € HB({n(V4,.

8 IDB := IDB U induce(n(V1,...,Vs),(B,Et,E7))

9 END

ReTURN (II,K,D) /* e.g., independently of T'ask and Outcome */

set_inductive_basis(7(V1,...,V,),(II,K,D)) =

AN x¢g ET}

B :={xz € K U D | predicate_of (head_of (z)) ¢ inducibles_in(II) }
Et :={z | © € deduce(+ 7(Vi,...,Vn), (K,D)}

3 E- :={ze HB(K U D) |z € HB{r(Vi,...,Va) <})

4 Rrertury (B,ET,E7)

e}ssimilate_inductive_outcome (w(Vi,...,Vn),I,K,D),Outcome)

Ki := KU { z € Outcome | predicate_of (head_of (z)) = IT }
2 Dy :=D\ {z € Outcome | predicate_of (head_of (z)) = II }
3 I := inducibles_in(IT) \ {7}
4 Ay := (II\ induciblesin(ID) U {r}
5 RETURN ((A1, 1), Ki, Di1) /* e.g., new knowledge persists unconditionally */
Figure 3. Example Policies for Exploiting and Assimilating Data and Knowledge
4.1 The IDDB Prototype the prototype brought to light interesting issues. Firstly, com-

A prototype of an inductive and deductive database was im-
plemented in Prolog. The prototype implements the algorithm
in Figure 2 and, with additional performance improvements,
the policies in Figure 3 on top of a service layer that en-
ables storage and retrieval of Datalog clauses. For the deduc-
tive function, it uses the deductive database described in [5],
while, for the inductive function, it uses the implementation
of mFOIL described in [10].

The architecture of the prototype separates, via well-
defined call interfaces, inference functions and policies, so that
their replacement can be carried out non-disruptively and all
other parts of the algorithms remain unchanged. Section 5
shows how this can be done.

For instance, different inductive algorithms may be used
interchangeably provided that they adhere to the interface
defined by the function induce.

The prototype was tested with the example in Section 2,
and shown to be more effective than the separate applica-
tion of SLD-resolution and mFOIL, because it enables an
increase in data and knowledge stocks which are not com-
parably achievable otherwise. For example, a deductive task
may derive answers that are only obtainable if some concept
is induced on-the-fly (in which case the epistemological status
of any output is clearly signalled).

The prototype qualifies as a proof-of-concept that combin-
ing deductive and inductive inferences is effective. Moreover,
its development demonstrates that combining inference modes
need not be more complex than the inference functions and
policies already are. This is the central insight borne out by
the implementation of the IDDB prototype described in this
paper.

Although the primary goal is not efficiency and scalability,

bining deductive and inductive inference does not necessarily
increase the overheads, in terms of time complexity, inherent
to the inference functions. Secondly, this combination would
not scale up if inputs to and outputs from the inference func-
tions were passed by copy, thus requiring that larger amounts
of data (or knowledge) be kept and copied in memory. The al-
gorithm in Figure 2 is defined in this way, but only for clarity
of exposition. The prototype addresses scalability issues more
efficiently. The inference functions were wrapped in such way
that its parameters and temporary results can be accessed
on demand, so as to make the prototype as scalable as the
inference functions it instantiates. Finally, improvements in
the inference functions and policies are likely to propagate to
the combined inference database engine, as illustrated above
by the use of lazy evaluation to implement a sophisticated
preparation policy for deduction. Based on this, it is possible
to claim that the efficiency and scalability obtained for the
combination of inference modes is not necessarily worse than
for the implementations of the inference functions individu-
ally. Therefore, the choice of good implementations for the
inference functions and policies is likely to pay off in terms of
efficiency and scalability.

Another feature of the prototype is that data and knowl-
edge are assigned an explicit epistemological status so that its
use during inference is kept coherent. The prototype main-
tains a partition of the set of predicate symbols to control
this, and it is this partition that is allowed to vary from task
to task.

Further work is needed, and indeed is planned, to explore in
detail both the abstract and the concrete issues arising from
the ideas presented in this paper.

5 Extending IDDB Engines

An extended version of the IDDB prototype was implemented
which, in addition to concept learning (based on mFOIL), also
supports conceptual clustering. Support for clustering was in-
cluded without affecting the existing functionalities, due to
the modular architecture of the prototype.

This was done by assuming the expression T := clus-
ter(F, (B,C)) to be well defined which, given background
knowledge B, conforming to the features defined in F and
the set of instances in C, assigns to 7' the conceptual clus-
ters derived with respect to the similarity function provided
by the algorithm that instantiates it. Then, the algorithm in
Figure 2 was extended to output conceptual clusters (repre-
sented as Datalog rules) by applying the inference function
denoted by cluster, as follows:

1. another partition is introduced where elements are the
predicate symbols targetted for clustering, i.e., containing
the names of relations whose instances may be clustered;

2. preparation and assimilation policies are intro-
duced as the functions set_clustering_basis and as-
similate_clustering_outcome, respectively. For example,
set_clustering_basis may generate an axiomatization for
the relations is.a and a-kind-of, that can be used as
background knowledge, while assimilate_clustering_outcome
may transform and assimilate the clustering information
as a set of Datalog clauses; and

3. a clustering algorithm is selected that implements the func-
tion cluster. The implementation of COBWEB [9] used is
by Joerg-Uwe Kietz, available publically in [14].

This extension represents an improvement in terms of usabil-
ity for the prototype, in the sense that it supports knowledge
discovery via supervised or via unsupervised learning. Thus,
a broader class of knowledge management applications can be
supported.

In order to evaluate the extended prototype, it was ap-
plied to one of such application, i.e., the construction and
use of taxonomies. A Lotus Discovery Server [4] tutorial also
uses this application to illustrate its potential as a knowledge
management platform.

A taxonomy can provide organizations with a common busi-
ness language and can serve as a navigational aid to finding
business information. This allows its workers to drill down
through abstraction levels until they find a class that describes
information they need. In this example, key words and expres-
sions (e.g., obtained from internal documents, white papers
and web pages via information retrieval techniques) are rep-
resented extensionally as terms in Datalog facts that stand for
the source documents. The preparation policy selects this set
of Datalog facts and generates an axiomatization for the re-
lations is_a and a_kind_of. Both are passed as inputs to the
conceptual clustering algorithm (as, respectively, the set of
instances and the background knowledge), while the cluster-
ing features are passed as arguments at task submission time.
The assimilation policy converts the output of the cluster-
ing algorithm into Datalog rules that represent, declaratively,
the structure and behaviour of the induced taxonomy. Then,
the extended prototype can support, via deductive inference,
browsing taxonomy hierarchies and classifying new instances
accordingly.

In this context, the extended prototype was able to emulate
the Lotus Discovery Server in building a working taxonomy
from key expressions extracted from documents. No claim re-
garding accuracy or quality of the taxonomy derived is made
here, because the extended prototype is based on a simpler al-
gorithm for clustering, viz., COBWEB. Nevertheless, the ex-
tended prototype seems to provide tangible benefits in terms
of fluency and effectiveness that would otherwise be unlikely
to accrue from non-logical approaches.

Benefits regarding fluency are noticeable when specifying
both taxonomy construction and exploitation as inferential
tasks, hence, allowing them to be submitted in flexible and
varied ways, as required. The prototype can support these
tasks seamlessly. This may be useful for building taxonomies
on demand in specific circumstances, either incrementally, so
as to reduce engineering effort, or periodically, for refreshing
taxonomic knowledge.

Benefits regarding effectiveness are noticeable when com-
bining taxonomic knowledge with existing knowledge stocks
because both are uniformly represented as Datalog clauses.
There are also benefits in exploring taxonomic knowledge
through deductive inference, since recursive, ad-hoc queries
can be used to relate concepts that are not explicitly asserted
in the taxonomy. These features would be hard to support
with less expressive mechanisms without significant additional
programming effort.

6 Related Work

The contributions of this paper are motivated by ideas stem-
ming from the intersection of concerns such as integrating
more tightly databases and data mining, providing a scal-
able platform for knowledge discovery in the large, extending
databases with the ability to perform inductive inferences,
and others. Common to these research areas is the need to
integrate the querying of models of data and the induction of
such models from data. If one views querying as deduction,
the way is open for a logic-based approach to integrating ac-
quisition and exploitation. This paper follows more closely
the application-driven view taken in [8]. In fact, the contribu-
tions of this paper constitute a detailed and concrete, albeit
preliminary, exploration of the issues raised in [8].

Note that, despite the natural interest in doing so, for rea-
sons of space, this section is silent about initiatives in which
tools are brought together but not integrated at the represen-
tation level nor at that of the core engine (e.g., a data mining
tool, such as Darwin, and a database management system,
such as Oracle).

A few other proposals to extend database technology with
inductive capabilities have shaped, or are related to, the con-
tributions of this paper. The first such proposal introduced
the idea of inductive database-relations. In [1], some of the re-
lations over a deductive database may be left undefined and
uninstantiated. This is similar to the partitioning in this pa-
per of the predicate symbols into a set of inducible and a set
of deducible ones. Little consideration is given in [1] to cer-
tain issues that this paper addresses in some detail, e.g., how
to adjust data and knowledge stocks in the wake of, possibly
interleaved and implicit, deductive and inductive steps. For
this reason, while [1] has been inspirational, the similarities
of that work with the one reported here do not run deep.

Another system that bears some resemblance to the work
described here is Mobal [15]. Mobal can be seen as a knowl-
edge acquisition environment that brings together several in-
ductive logic programming schemes into an integrated whole
and provides sophisticated services, such as theory restructur-
ing, that the engine described in this paper is silent on.. While
the overall functionality delivered by Mobal is impressive, it is
also fixed and closed insofar as it is hard-coded behind a user
interface. Mobal is not an instance of a database system (e.g.,
it lacks bottom-up query evaluation and integrity constraint
mechanisms) and is not flexible enough that it can be adapted
to be deployed as one. In contrast, IDDBs are database sys-
tems. They are also so designed as to be easily and cleanly
extended. Thus, endowing IDDBs with more than just a single
induction scheme is straightforward as discussed in Section 5.
It is difficult to judge the degree of effort required to extend
Mobal with the database features that it currently lacks. A
final point of contrast is that while this research is based
on Datalog, the logic underlying MOBAL goes beyond the
tractability boundaries that Datalog was carefully designed
not to cross. The practical implications of this fact could be
significant, insofar as, while there is no meta-logical impedi-
ment for the database engines envisaged in this report to be
efficiently implemented, the opposite can be said of systems
such as MOBAL that are based on more expressive logics.

Recon is a data mining system described in [18]. The archi-
tecture of Recon includes a deductive database, a rule induc-
tion component (which outputs deductive database clauses)
and a visualization component. Data is stored in relational
databases and SQL is used to retrieve the data used as the
inductive basis for the rule induction component. The rules
generated in this way can then be tested against the source
database and against the knowledge stored in the deductive
database. This means that rules can be refined before be-
ing assimilated into the deductive database for further use.
Visualization plays an important role in refining discovered
knowledge. Query results can also be materialized temporar-
ily for improved performance. Recon’s main contribution is an
environment that allows an interactive discovery and refine-
ment of knowledge before assimilation, if needed. Recon, like
MOBAL, offers a fixed and closed set of functionalities that
are hard coded behind a user interface, hence, Recon exhibits
many of MOBAL'’s shortcomings. The user must intervene ex-
plicitly to move permanent data to temporary stores before
knowledge discovery can be performed. Discovered knowledge
is also placed in temporary stores before it can be assimilated.
Therefore, it is up to users to manage the flow of data and
knowledge between physical stores, and this can compromise
the fluency with which they can perform complex task flows.

Seminal ideas on inductive databases were proposed in [2,
12]. The contributions of this paper differ from those in
that they are formulated from a logical perspective in which
databases are seen as sets of logical clauses, whereas the in-
ductive databases of [2, 12] conceive of knowledge stocks as
patterns, more generally, and not logical clauses, more specif-
ically, as this paper does. Also, [2, 12] make explicit an eval-
uation function on acquired knowledge and endow the former
with queryable status. Such an evaluation function could be
easily incorporated into the engine described here and mak-
ing it queryable would be a means to provide evidence upon
which assimilation polices might be configured. Another cru-

cial distinction is that while this paper uses Datalog as its
representation language, [2, 12] leave the latter unspecified,
with most examples taking the form of propositional associ-
ation rules. While the approach described here stands upon
a well-defined and well-behaved logical framework, it is not
clear at this stage what foundations the inductive databases
proposed in [2, 12] stand upon.

7 Future Work and Conclusions

Work is already underway to extend the contributions de-
scribed here in two main directions. On the other hand, the
authors are also finalizing a generalized framework for spec-
ifying different policies for assimilation and exploitation of
inductive and deductive outcomes. This will allow IDDBs to
be seen as a class of systems whose instances can be deter-
mined by particular choices of inferential capabilities on the
one hand, and assimilation and exploitation policies on the
other.

Future issues that will be explored include studying, the
formal, as well as empirical, motivations for different assim-
ilation and exploitation policies; exploring the benefits of a
tightly-coupled approach in which the two inference engines
are subsumed by a unified one; and extending the range of
knowledge discovery tasks beyond the modelling stage (to in-
clude, e.g., data preparation and model evaluation).

Preliminary though it is, this paper’s characterization of
a database platform integrating query answering and induc-
tion is nevertheless more detailed and concrete than any other
past attempt with similar aims and scope. In particular, is-
sues regarding the dynamic epistemological status of subsets
of clauses are clearly highlighted here for the first time. The
paper makes it clear that studying and developing policies
for the assimilation and exploitation of the outcome of both
deductive and inductive tasks is likely to be a major issue,
albeit one that no previous related work has frontally ad-
dressed. For example, depending on the expressiveness of the
logical language used, intermediate learning steps may intro-
duce inconsistencies that are avoided in the case of IDDBs by
sticking to (potentially stratified) Datalog.

To conclude, the contributions of this paper can be sum-
marized as follows:

1. a formal characterization of IDDBs as a class of Datalog-
based logical structures that subsume deductive databases;

2. an algorithm for performing tasks over IDDBs that flu-
ently integrates deductive and inductive inference capabil-
ities based on logic programming;

3. a characterization of the issues arising in the context of
attempts to exploit and assimilate induced knowledge in
knowledge management workflows;

4. an algorithm that embodies simple policies for exploiting

and assimilating data and knowledge as an example of how
the broader issues raised in this respect might be tackled,;
5. an extended example of how IDDBs could deliver effec-
tiveness and usability in practical knowledge management
situations.
6. a description of how IDDBs can comprise more than one
inductive framework.

Acknowledgement Marcelo A. T. Aragdo is on leave from
the Central Bank of Brazil and gratefully acknowledges the

scholarship awarded to him by the Department of Computer
Science of the University of Manchester.

References

(1]
2]

(10]

(11]

[12]

14]

(15]

[16]

(17]

(18]

Francesco Bergadano, ‘Inductive Database Relations’, IEFEE
TKDE, 5(6), 969-971, (1993).

Jean-Francois Boulicaut, Mika Klemettinen, and Heikki Man-
nila, ‘Querying Inductive Databases: A Case Study on the
MINE RULE Operator’, in Proc. 2nd PKDD, eds., J. Zytkow
and M. Quafalou, volume 1510 of LNCS, pp. 194-202.
Springer, (1998).

Stefano Ceri, Georg Gottlob, and Letizia Tanca, Logic Pro-
gramming € Databases, Springer, 1990.

Lotus Corporation. Lotus discovery server. more information
available at http://www.lotus.com/products/discserver.
nsf.

Subrata Kumar Das, Deductive Databases and Logic Pro-
gramming, Addison Wesley, 1992.

Thomas H. Davenport and Laurence Prusak, Working
Knowledge, HBS Press, 2000.

Saso Dzeroski and Ivan Bratko, ‘Handling noise in inductive
logic programming’, in Proceeding of the 2nd International
Workshop on Inductive Logic Programming, ed., Stephen
Muggleton, Tokyo, Japan, (June 1992). ICOT. TM-1182.
Alvaro A. A. Fernandes, ‘Combining Inductive and Deduc-
tive Inference in Knowledge Management Tasks’, in Proc. Ist
Workshop on the Theory and Practice of Knowledge Man-
agement, pp. 1109-1114. IEEE Press, (2000). In Proc. 11th
Intl. Workshop DEXA.

D. H. Fisher, ‘Conceptual Clustering, Learning from Exam-
ples, and Inference’, in Proceedings of the jth International
Workshop on Machine Learning, (1987).

Nada Lavra¢ and Saso Dzeroski, Inductive Logic Program-
ming: Techniques and Applications, Ellis Horwood, 1994.
Ann Macintosh. Adaptive workflow to support knowledge in-
tensive tasks. http://www.aiai.ed.ac.uk/"alm/KAMSLIDES/
index.htm, September 1998.

Heikki Mannila, ‘Inductive Databases and Condensed Rep-
resentations for Data Mining’, in Proc. 1997 ILPS, ed.,
J. Maluszynski, volume 13, pp. 21-30. MIT Press, (1997).
Jack Minker, ‘Logic and databases: A 20 year retrospective’,
in Proceedings of the International Workshop on Logic in
Databases (LID’96), volume 1154 of Lecture Notes in Com-
puter Science, pp. 3-57, San Miniato, Italy, (July 1996).
Springer-Verlag.

MLnet. Resource: Software. available at http://www.mlnet.
org/.

K. Morik, S. Wrobel, J.-U. Kietz, and W. Emde, Knowledge
Acquisition and Machine Learning - Theory, Methods, and
Applications, Academic Press, 1993.

Stephen Muggleton, ‘Inverse Entailment and Progol’, New
Generation Computing, 13, 245-286, (1995).

Stephen Muggleton and Luc de Raedt, ‘Inductive Logic Pro-
gramming: Theory and Methods’, JLP, 19(20), 629-679,
(1994).

Evangelos Simoudis, Brian Livezey, and Randy Kerber, ‘In-
tegrating inductive and deductive reasoning for data min-
ing’, in Advances in Knowledge Discovery and Data Mining,
eds., Usama Fayyad, Gregory Piatetsky-Shapiro, Padhraic
Smyth, and Ramasamy Uthurusamy, 353-373, MIT Press,
Cambridge, (March 1996).

Eric Tsui, Brian J. Garner, and Steffen Staab, ‘The role of
artificial intelligence in knowledge management’, Knowledge
Based Systems, 13(5), 235-239, (May 2000).

Stefan Wrobel, ‘Inductive Logic Programming’, in Principles
of Knowledge Representation, ed., G. Brewka, 151-189, CSLI
Pub., (1996).

