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Abstract. Lexical inheritance hierarchies are used widely as a VERB

means of representing lexical information efficiently but there have

been few attempts to construct them automatically. This paper

presents a two-step construction algorithm in which a Galois lattice gy yvers ED-VERB  TRANSITVE VERE INTRANSITIVE VERB
is built and then pruned into an inheritance hierarchy. The pruning&,asm: @ pastp: +e Eubcat t@s Eubcat imra@
step utilises a maximum entropy model. This is compared to a prun- past: +ed

ing method which prunes nodes in the hierarchy randomly. To asses
the performance of the two methods an automatic evaluation method

has been implemented which matches an automatically derived hier;_, - TAKE HATE  LOVE ELAPSE  EXPIRE RISE

arCh_y -tO a manua”y built hlgrarchy for th_e same lexicon and defme orth: bea orth: tak E)rth: ha@ [orth: Ioﬂ; [onh: eI%E orth: e)@i erth: rise
precision and recall as a distance function between the two hierarpast: +o past: tool past: ros

chies.
Figure 2. Inheritance hierarchy for the lexicon in figure 1

1 INTRODUCTION

Inheritance networks have long been used as a means for knowl- Usually, inheritance hierarchies are constructed by hand but this is
edge representation in Al. In linguistics, their most prominent us&ime-consuming and often impractical for big lexicons. In addition,
is to encode lexical knowledge. Grammar development over the lagfutomatic extraction of lexical information from corpora is becoming
decades has seen a shift away from large inventories of grammafiore and more popular and it makes sense to go a step further and au-
rules to richer lexical structures. As a consequence, lexicons d&omate the hierarchical organisation of lexical data too. Constructing
veloped within modern grammar theories likead-Driven Phrase  hijerarchies automatically or semi-automatically has the further ad-
Structure Gramma(Pollard & Sag 1994 [14]) an@ategorial Gram-  vantage of facilitating a more systematic analysis of the lexical data
mar (Wood 1993 [19], Steedman 1996 [18]) can be very complex.and in the ideal case it might even lead to the discovery of trends in
Representing lexical information as a simple list of lexical entries rethe data set that would otherwise go unnoticed.

sults in an undesirable amount of redundancy. For instance, in the This paper describes an approach to learning inheritance hierar-
lexicon in figure 1, the attribute-value paissibcat:transitiveand  chies from unstructured lexicons. That is, the input will be a list of
past:+edoccur 4 times. Lexical inheritance hierarchies reduce un-exical entries, where each entry is characterised by a set of attribute-
necessary redundancy by providing a way of capturing linguistioyalue pairs. The output will be a lexical inheritance hierarchipe
generalisations. Thus, it makes sense to create aTRSSSITIVE  aim is to deriveinguistically plausiblehierarchies, i.e. the nodes in
VERB and a clas&Db-VERB from which transitive and regular verbs the hierarchy should correspond to linguistically meaningful classes.

can inherit (figure 2). The approach described here splits the task into two steps: First,
a Galois lattice(also calledconcept latticgis built for the lexicon.
| orth(ography)| past | past p(articiple)| subcat(egorisation]] This encodes all concepts contained in the data set, i.e. all possi-
beat +0 +en transitive ble word classes together with their properties. The lattice is then
take took | +en transitive pruned into an inheritance hierarchy. This approach reduces the au-
hate +ed | +ed transitive tomatic construction of a hierarchy to a classification problem: Find-
love Yed | +ed transitive ing a good learning method amounts to finding a classifier that cor-
elapse +ed | +ed intransitive rectly predicts v_vhich nodes_ in t_he_lattice s_h(_)gld be pruned gnd which
expire Yed | +ed intransitive shom_JId be retained. The linguistic plau5|b|I|ty_ of a class is proba_-
rise rose | +en intransitive bly |nﬂugnced by_s_everal f_actors. Therefo_re it seems that what is
needed is a classifier that is able to combine many —not necessar-
ily independent— contextual factors.
Figure 1. Simple lexicon A maximum entropy classifier was chosen for this purpose since

2 Lexical inheritance hierarchies can be monotonic or non-monotonic. In
non-monotonic hierarchies, a class can override properties of a superclass.
This paper only deals with monotonic hierarchies but an extension to non-

L University of Edinburgh, Edinburgh, EH8 9LW, UK monotonic hierarchies is possible.




maximum entropy classifiers can incorporate many contextual prop3 LEARNING ARCHITECTURE
erties and these do not have to be independent. The classifier | 1 Galois Latti
trained in a supervised training step using training data provided b?‘ alois Latuces

a manually built hierarchy. Given a set of instanceg (i.e. lexical entries), a set of features (i.e.
the different attribute-value pairs describing the entrigs) and a
. . p : o= .
2 BACKGROUND binary relationR —+ E x E’, a Galois lattice is a partial order over

all pairs of the form( X, X'), whereX C E, X' C E' s.t.:

The use of Galois lattices in machine learning and natural language , , ,
processing is not new. X,: {z € E|v,x €X,zRy ,}
Formal Concept Analysi¢FCA, Ganter & Wille 1999 [9]) uses X'={2' € E'[Vz € X, zRa'}

Galois lattices (calledoncept latticesn FCA) to identify and anal-  ne pair(X, X') is called aconcept where X is the extensionof

yse conceptual structures in data sets. S the concept (i.e. the set of lexical entries it comprises) &nhds its
Carpineto and Romano 1993 [4] employ a Galois lattice to deteriptension(i.e. the set of attribute-value pairs that are shared by all
mine the classes of new objects. The class assigned to a new objgfktmbers of the concept’s extension).

is the most similar, consistent class in the Galois lattice. The lattice For jnstance, figure 3 shows a small lexicon which contains in-

is always complete — no nodes get pruned. Carpineto and Romangmation about the nativeness and the ability to carry stress for six
1996 [5] discusses an extension of this approach which allows for thgserman prefixes. Figure 4 shows the Galois lattice for the lexicon.

incorporation of structural background knowledge. Concepts contained in the lexicon and the lattice are, for example:
Basili et al. 1997 [2] use Galois lattices to learn verb subcate-

gorization frames. After extracting sets of subcategorization frame® the concept oétressed-native-prefixes (Node 5):
from a corpus, a Galois lattice is constructed for each verb. The con- ({un, ent}, {NAT:+, STR+})
cepts in the lattice are (sets of) subcategorization frames. Some setsthe concept ostressed-prefixes (Node 3):
may be noisy or linguistically inadequate. Useful sets of subcate- ({un, ent dis, deg, {STR+})
gorization frames are chosen by applying two selection measure®, the concept ofunstressed-native-prefixes-whose-
which take into account the lattice structure and the linguistic proba- orthography-is-ver (Node 7):
bility of the individual subcategorization frames in a set. ({ver}, {NAT:+, STR:-, ORTH:Ver-})

In ontology construction, Galois lattices have been used by Godin
et al. 1998 [10], who employ a Galois lattice to built and maintain
class hierarchies in object-oriented design.

| er Tver Tun Jent [ dis [ des |

For inheritance hierarchy induction, Galois lattices have been pro- Orth. er- | ver- | un- | ent- | dis- | des-
posed independently by Petersen 2001 [13]. While she, too, builds a Nat(ive) || + + * + - -
Galois lattice for the input lexicon and prunes it into a hierarchy, she Str(ess) || - | - M + +

uses a pruning method that is different from the one proposed in this

paper in that it creates hierarchies where every attribute-value pair Figure 3. German prefixes: lexicon
occurs only once. This pruning method is also used by Getlal.

1998 [10] for the different task of class hierarchy induction.

There have been few other attempts to induce lexical inheritance
hierarchies. The most comprehensive work to date is Barg 1996 [1]. Node 1
Barg presents an algorithm for learning hierarchies for the DATR for-
malism (Evans & Gazdar 1990 [7]) using a transformation-based ap-
proach. The search through the space of permissible transformations [ar. ] [sm:]
is guided by a set of evaluation criteria, which are ordered by pri-
ority. The criteria and their priority may vary for different linguistic
domains. Most criteria refer to the size and complexity of a hierarchy. Node 4 Node 5 Node 6

Cahill 1998 [3] presents a semi-automatic method for building g _*] o ]
DATR hierarchies for multi-lingual lexicons. She focuses on in-
ferring morphological and phonological generalisations across lan- /\ /\
guages. These generalisations are extracted automatically by appﬁ{{i Z[ffg ,Z'Z:eg N,f,iilf h:f:;e.u NZ:de *
ing a pattern-matching algorithm to the orthographic and phonologi:str:- ] [sm:- ] [STR» ] [yw ] [sm» ‘ ] [sm» ]
cal forms of lexical entries while the general structure of the hierar->"" "= LR R ORTrient - LORTR:ds: - LORTH: des
chy (i.e. the partial order over nodes) is hard-wired.

Light 1994 [11] does not build hierarchies from scratch but inves-
tigates ways in which new entries can be inserted into an existing
hierarchy. He uses a greedy algorithm that inserts entries by min-
imising a redundancy criterion based on the number of parents and ysing Galois lattices for lexical inheritance construction is moti-
attribute-value pairs of a node. Light's algorithm does not create newated by the assumption that every node of a (monotonic) inheritance
(non-terminal) classes and therefore cannot be used to learn a hiergjfizrarchy corresponds to a node in the Galois lattice derived from the
chy from scratch. same lexicon. Two nodes correspond if they have the same extension

3 In lexical inheritance hierarchies structural background knowledge ofterPl'|t they may differ in their intension because attribute-value pairs

occurs in the form ofypes Types form the backbone tfped inheritance ~ @re not repeated within a given inheritance path in (monotonic) in-
hierarchies heritance hierarchies, but are repeated in a Galois lattice.

Figure 4. German prefixes: Galois lattice




This is illustrated by the manually built hierarchy for the prefix linguistically plausible and it is not evident that some form of min-
lexicon (figure 5). Nodes 4, 5, and 6 are identical to their counterpartémal redundancy necessarily coincides with linguistic plausibility.
in the Galois lattice. Node 7 in the manually built hierarchy has theTherefore, the approach taken here uses a maximum entropy model
same extension as Node 7 in the Galois lattice (nawet) but the  to prune the lattice. This approach allows one to prune a lattice on the
attribute-value pairsiAT:+ andSTR:- are lacking from its intension  basis of many contextual properties not only on the basis of simple
because they can be inherited from Node 4. redundancy criteria.

Maximum Entropy models have been applied to quite a lot of
Node 1

tasks in natural language processing (see Ratnaparkhi 1998 [15] for
/’\ an overview). A maximum entropy model can be used to assign an

Node 4 Node 5 Node 6 object to a class based on the object’'s context. The context is repre-
NAT: +] NAT: +] [NATr ] sented in the form dieatures The features can be quite complex and
STR: - STR: + STR: + .. . . .
do not have to be statistically independent. Each feature is assigned
/\ A A a weight in a supervised learning step using a parameter estimation

[N(si?rs:ver—] [N;dol imr] [N;;eT::unJ E’; #‘; ] E;‘:::lis ] [N;;i:fdesj algorithm. We_ights are chosen in such a way that the entropy of the
model is maximised, i.e. maximum entropy models preserve maxi-
mal uncertainty and do not assume anything beyond the data. Once a
model has been trained the probability of an objebtlonging to a
Figure 5. German prefixes: manually built hierarchy classc can be calculated as follows:

P(o,c) = % Haif"(o’c)
The assumption that each node of a hierarchy is contained in the =1
corresponding Galois lattice is not strictly true. Thus while everywheren is the number of feature$){ a; is the weight of featuref;,

class in the lattice has at least two subclasses this is not necessaind Z is a normalisation constant which ensures that the values of
ily the case for inheritance hierarchies. A class in an inheritance hiP(o,c) lie between 0 and 1.

erarchy may sometimes only have one subclass. This is due to datain the task of pruning Galois lattices, the objects to be classified
sparseness, i.e. a class is included in the hierarchy because the lisre the nodes in the lattice and the possible classgsraneandre-

guist constructing the hierarchy knows that this class is a usefulain. So far, 14 contextual feature sets have been implemented. These
generalisation over several subclasses even if the lexicon contairisature sets refer to the following properties of a node:

only members of one of these subclasses. These classes are a prob- ) )

lem for every data-driven machine learning technique but one would® Immediate Ancestors and Descendantgeatures referring to the

hope that reasonably big lexicons contain only a small proportion of number of immediate ancestors and descendants.
single-child classe$. e Terminal Descendants:features referring to the number of ter-

minal descendants.
e Attribute-Value Pairs: features referring to the number of
3.2 Pruning attribute-value pairs at the node, the average number of values per-

] ) ) . ) missible for each attribute of the node, the number of times that
Once a Galois lattice has been built one has to decide which nodes gach of the node’s attributes occurs in the lexicon (average), and

(i-e. concepts) should be pruned and which should be retained. For {he number of attribute-value pairs for which the node serves as
_example, in the Germap prefix example above (figure 4) the PrUN- highest introduction point.

ing method should retain nodes 4, 5, and 6 (cf. the manually buily | avel of Node:the level of the node in the hierarchy.

hierarchy in figure 5) rather than nodes 2 and 3.

A popular pruning method is based on the idea of minimal redun- The features have been deliberately kept fairly unspecific, i.e. there
dancy of attribute-value pairs. For each attribute-value pair there igre no features that refer to specific attributes. Reference to particular
guaranteed to be a unique highest introduction point and a hierarchgttributes has to be avoided if the model is to work across lexicons
is minimal with respect to attribute-value pairs if attribute-value pairsand possibly also across languages.
are only retained at their highest introduction point and pruned else- At the moment, the features are still very simple. In particu-
where. Nodes which do not function as highest introduction pointdar, there are no features that refer to interdependencies between
for any attribute-value pair will be stripped of all their attribute-value attribute-value pairs. Eventually one would like to take dependence
pairs and then removed. This method is used by Petersen 2001 [1Bptween attribute-value pairs into account. For example, the exis-
to derive lexical inheritance hierarchies. tence of some kind of dependence between the attribute-value pairs

While the notion of minimal redundancy has been employed inof a node should increase the probability of the node being retained.
some form in all previous approaches to inheritance hierarchy learnSimilarly one would also like to take more dependencies between
ing, it is not clear whether minimal redundancy is a particularly goodnodes into account. In particular, a node should be more likely to be
criterion. Lexical inheritance hierarchies should be first and foremospruned if it inherits all or most of its attribute-value pairs from its

ancestors. But this also has not been implementefl yet.

4 Extensions are not shown in the lattice and hierarchy but should be obvious

5 Non-monotonic inheritance poses another problem for Galois lattices sincé Interdependencies between nodes can only be used on a relatively small
the latter are inherently monotonic. One way in which this problem can scale, since taking node interdependencies across the hierarchy into account
be addressed is by identifying a default value for every attribute-value pair is computationally expensive. Another problem is that large contexts are
and ensuring that every lexical entry contains the default value as well as likely to cause data sparseness problems. One reason for training on nodes
the non-default value for each of its attribute-value pairs. A lattice derived rather than on larger graph fragments is that there are relatively few suitable
from a lexicon modified in this way can be pruned into a non-monotonic manually built hierarchies around and training on larger graph fragments
hierarchy. would significantly decrease the amount of available training data.




To avoid the size of a hierarchy influencing the value of the con-while attribute-value pair precision depends to a lesser degree on the
textual predicates, features have been normalised, where appropthreshold as it takes the overall quality of matches into account but it
ate, by dividing them by an average value for the hierarchy, e.g. théisregards the number of nodes in the hierarchy.
contextual predicateelative-levelreturns the level of the node di- Overall recall fec) is calculated in the same fashion, based on
vided by the overall number of levels in the hierarchy. Also, sinceattribute-value pair recal(avp-req andnode recall(node-reg:
maximum entropy features usually require contextual predicates that
return nominal data and most of the above functions range over con-avp-rec =
tinuous data, values have been quantised by breaking them up into

# matched avps
# avps in manually built hierarchy

. . . tched d
6 or 12 intervals. For example, thelative-levelcontextual predi- ~ node-rec= o——frmelchednods
cate returns 0, 20, 40, 60, 80 or 100 and a relative level of 0.10 is
_ _ rec — avp-rectnode-rec
translated toelative-level=20 - 2

. In general, it is much easier for a construction algorithm to do well
3.3 Evaluation on terminal nodes than to do well on non-terminals. This is because

Assessing a pruning method involves evaluating the hierarchies &nere are usually several attribute-value pairs that apply uniquely to

rived by it. Previous approaches to lexical inheritance hierarch;Pne lexical entry, for example attribute-value pairs referring to the or-

learning used a manual evaluation technique, i.e. the derived hiefhography or phonology_of an entry_. The§e attribute-yalue pairs'will
archies were inspected and manually evaluated for plausibility (Barg"Y occur in one place in the Galois lattice (namely in the terminal
1996 [1], Light 1994 [11]). The easiest way to evaluate hierarchied'0de corre_spondlng to th? relevant Ie>_<|cal entry) gnd co_n§equently
automatically is to count wrongly classified nodes (i.e. false positiveseVery pruning algorithm will get th_em right. To aV(_)'d precision and
and false negatives) and calculate precision and recall on this basiEc@!l being influenced by the terminal to non-terminal ratio, the eval-
However, it is possible that some wrongly classified nodes are worskation metrlc_s 'only take non-terminals |nto.account. .
than others. Even if few nodes are correctly retained, the derived hi- Oncg precision and recall have ?eer_‘ deflned they can be combined
erarchy may still be relatively good if its nodes are very similar to N0 @ Single measure, tiiescore which is defined as:
the nodes in a good hierarchy. f-score= 2Xpreexrec

The approach adopted here matches the derived hierarchies to a preetree
manually built hierarchy for the same lexicon. The graph matching Note, that the evaluation method assumes that there is one “ideal”
algorithm is error-tolerant, i.e. two nodes do not have to be identicahierarchy, namely the manually built hierarchy for the lexicon. This
to be matched but sufficiently similar. Similarity between two nodesis of course a gross simplification: linguists usually cannot agree on
is defined in terms of extensional and intensional overlap and tw@ne ideal hierarchy per lexicon. But it is possible to identify a sub-
nodes are matched if their similarity is above a user defined threshset of hierarchies which are regarded as relatively plausible. Because
old, which was set to 0.5, i.e. two nodes were matched if their extentexical inheritance hierarchy construction is highly subjective, one
sional and intensional overlap was more than 50%. would expect the upper bound for this task to be noticeably below

Since the hierarchies derived by the pruning methods described00%.
below are guaranteed to beundi.e. compiling them odtwill result
in the same lexicon as compiling out the manually built hierarchy, it
is not necessary to test for soundness in the evaluation step. 4 EXPERIMENTS

To assess the overall distance between two hierarghiiesision  The system is implemented to work with LKB grammars (Copestake
recall andf-scorehave to be calculated. The overall precisipre) 1999 [6]). For a first experiment with the maximum entropy pruner,
of the learning algorithm is defined as the average of two basic precthe (manually constructed) inheritance hierarchies supplied with Sag
sion measuresttribute-value pair precisiofavp-preg, which mea-  and Wasow 1999 [16] and Quirino Sa®s [17] have been used. The
sures how well the attribute-value pairs in the derived hierarchy repformer encodes an English lexicon, the latter a Spanish leXicon.
resent the attribute-value pairs in the manually built hierarchy, and The hierarchies were compiled out and a Galois lattice was con-
node precisior{node-preg, which measures the percentage of nodesstructed for the compiled out lexicons. The Galois lattices were then

in the derived hierarchy that could be matcfied: used to train a maximum entropy model. Maximum entropy train-
ing is only done on intermediate nodes (i.e. not on terminals or the

avp-prec = avps;#i;,nng‘?jgda;israrchy root node) because only those can be pruned. The root and terminals

# matehed nodes have to be retained to ensure that the pruned hierarchy is sound, i.e.
node-prec= o ey does not add any information to or delete any information from the
prec _ Mp_pmcgmde_prec original lexicon, and single-rooted. Intermediate nodes that occur in

the Galois lattice but not in the corresponding manual hierarchy are
Attribute-value pair precisiorand node precisiorhave different hegative training examples (i.e. belong to the clrsgg while in-

strengths and weaknesses, which can be levelled out by combinirk rmgdiate nodes that do_occur in the manual hiergrchy_are positive
the two measures to form an overall precision measure. Thus, noc} aning ex_amples (|.en_eta|n). Each of the two (_BaI0|s lattices was
precision depends largely on the matching threshold and once tWBruned using the maximum entropy model trained on the other lat-

nodes have been matched the quality of the match is disregardeH,Ce' After the _nOdeS were PT““e_d' a se_cond pruning _Step removed

redundant attribute-value pairs, i.e. attribute-value pairs that could

7 A hierarchy is compiled out by having each lexical entry inherit all proper- be inherited, from the retained nodes. If this resulted in empty nodes,

ties from its ancestors, resulting is a set of fully specified lexical entries.

8 The termmatched avpslescribes the number of attribute-value pairs that © Since the maximum entropy features were deliberately kept knowledge-

could be matched, i.e. the number of shared attribute-value pairs in a poor, having lexicons for different languages should not cause any prob-
matched node summed over all matched nodes. lems.




these were removed, too. Finally the pruned lattices were matched twodes retained by the pruning method. The parameteas set to
the original hierarchies and evaluated. 45 (English) and 102 (Spanish). Thus one would expect 45 retained
Unfortunately, the two data sets provide very little positive trainingnodes in the English hierarchy and 102 in the Spanish hierarchy. In-
data. This becomes evident when looking at the sizes of the Galoiterestingly, this is not the case. For the English grammar more than
lattices and manually built hierarchies shown in Figure 6. The firstn nodes were retained. The reason for this is tRétetain) was
column gives the number of terminal nodes (i.e. lexical entries), thedentical for some nodes, which suggests that the maximum entropy
second the number of intermediate nodes and the third the overathodel is not discriminating well enough yet. For the Spanish gram-
number of nodes. The Galois lattices are considerably larger than thear the number of intermediate nodes is significantly lower than
corresponding manually constructed hierarchies. Since the maximuwhile 102 nodes were initially retained the selection was so bad that
entropy models are only trained on intermediate nodes and there areany of them had to be removed afterwards because they inherited
relatively few positive intermediate nodes, 98% of the training dataall their attribute-value pairs from their ancestors. This is another in-
will be negative. This is further worsened by the fact that the twodicator that the model applied to the Spanish lattice was not very
lexicons contain a relatively large amount of single-child nodes. Thiggood.
is probably due to the fact that both lexicons are relatively small. For comparison, the lattices were also pruned randomly according
Since these nodes are not contained in the Galois lattice they ar® one of two probability distributions. The first method uses a uni-
currently disregarded by the training algorithm. Thus, the number oform distribution, i.e..:P(prune) = P(retain) = 0.5. The second
positive training instances is 29 for the English lexicon and 47 for themethod retain® intermediate nodes randomly, wherés the num-
Spanish lexicon. ber of intermediate nodes in the relevant manually built hieratthy.
Random pruning was performed 100 times for each lexicon and the
results were averaged.

| terminal | intermediate] all I

English manual 501 45 547 Figure 8 shows the results of uniform random pruning. The f-score
English Galois 501 1,852 | 2,354 is lower than it is for maximum entropy pruning (at least for the En-
Spanish manual 405 102 508 glish lexicon). While the random pruning method retains many more
Spanish Galois 405 10,738 | 11,144 nodes and therefore has a higher recall the precision is lower than for
maximum entropy pruning.
Figure 6. Number of nodes in manual hierarchies and Galois lattices | f-score | precision| recall | interm. nodes]|
English (avg.) || 18.37% | 12.21% | 37.19% 287
The straightforward way to use maximum entropy models is t Spanish (avg.)| 16.90%| 12.01%]| 28.59% 056

retain a node ifP(retain) > P(prune). However, since the hier-
archies used in this experiment are relatively small and since there
are many more negative training examples than positive ones, this
classification method leads to derived hierarchies in which nearly all
intermediate nodes are pruned. As an alternative-best approach
was taken in which the nodes with the highest retain probability are
retained, where is the number of intermediate nodes in the relevant  Figure 9 shows the results ofbest random pruning. For the En-
manually built hierarchy. Of course, this approach is not feasible irglish lexicon the f-score improves but still is slightly lower than the
the general case because the ideal number of intermediate nodesiraximum entropy f-score. Somewhat surprisingly, the f-score drops
a hierarchy will not be known, but it may be possible to calculate arfor the Spanish lexicon. This performance drop is probably related
average number of nodes (in relation to the number of lexical entriesip the fact that the ratio between intermediate nodes in the manually
across several hierarchies. built hierarchy and intermediate nodes in the Galois lattice is much
The results for pruning the two grammars with thdest max- ~ smaller than in the English lexicon: in the English lexicon, out of 100
imum entropy models are shown in figure 7. The pruning methodaalois nodes 2.4 are contained in the manually built hierarchy, in the
works much better on the English lexicon than on the Spanish lexSpanish lexicon only 0.9 nodes out of 100 are contained in the man-
icon. This is due to the fact that the English lexicon supplies lesg/ally built hierarchy. Consequently, selecting the “righthodes is
positive training examples than the Spanish lexicon. Thus trainingnore difficult for the Spanish lexicon.
on the English grammar and testing on the Spanish grammar leads

Figure 8. Results for uniform random pruning

to worse results than the other way round. It seems that the number. : H f-score | precision | recall | interm. nodes||
of training examples in the English grammar is too small to train the || English || 21.93% | 23.65% | 20.65% 43
model sufficiently well. Spanish|| 9.54% | 11.36% | 8.28% 100
| f-score | precision]| recall | interm. nodes]| ) )
= Figure 9. Results fom-best random pruning
English || 22.16% | 18.59% | 27.44% 51
Spanish|| 0.29% 0.62% | 0.19% 25

Figure 7. Results for n-best maximum entropy pruning On the whole the very crude maximum entropy pruning method

shows some promise. While an f-score of about 20% may not look

10 Note, that in both cases the actual pruning rate will be higher than this if
pruning leads to nodes that can inherit all their attribute-value pairs from
The last column in figure 7 shows the number of intermediate their ancestors because this nodes will later be removed.
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5 CONCLUSION AND FUTURE WORK

[3
This paper presented a first approach to using maximum entropy
models to induce lexical inheritance hierarchies. So far, the model[4]
is still very simplistic but it shows some promise for the future. To
improve the performance of the model future research has to focus
on the following areas: [8]

¢ More Training Data: The results could probably be substantially [6]

improved if more (positive) training data was available. Construct-
ing a complete Galois lattice is infeasible for big lexicons but it 8]
should be possible to approximate the lattice construction or in-
terleave it with the pruning step.

Using a Prior: Maximum entropy models have problems with (9]
highly unbalanced training data (Osborne 2002 [12]). The use of

a prior might counteract unbalanced data. [10]
Maximum Entropy Features: The feature set is still very small
and in particular it does not contain features that take interde-
pendencies in the data set into account. However, these interd 1)
pendencies are probably the most important factor in decidin
whether a node should be pruned.

Continuous Values:Representing continuous data as intervals is
not optimal. Selecting a good interval size is difficult. An interval
that is too small will lead to data sparseness problems while a[]13]
interval that is too big may prevent the model from being discrim-
inative enough.Maybe techniques that have been used for decisift#]
trees might be helpful (e.g. Fayyad & Irani 1993 [8]). In addition,

the fact that intervals are treated like nominal data means that eV~
ery sense of distance is lost. But it may be important that the in-
terval “40” is closer to “20” than to “80”. Therefore it might be [16]
beneficial to look at ways of determining good interval sizes au-
tomatically or look for an alternative representation. Maybe somél’]
other learning technique, like memory-based learning, might yielcil8]
better results for continuous data.

(12]

[19]

While the approach presented here was implemented and tested for
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lexical inheritance hierarchies it should also be applicable to other
ontology learning tasks. Since a supervised learning technique is
used this would normally require the existence of suitable training
data. However, it may be possible to apply maximum entropy mod-
els that have been trained on lexical inheritance hierarchies directly
to other ontology learning problems, since the maximum entropy
features used for lexical inheritance hierarchies are deliberately kept
knowledge-poor, i.e. they do represent general properties of concept
representativeness etc. and not properties that are specific to linguis-
tics. However, whether this is indeed possible remains a bit specula-
tive at this stage.



