
A Galois Lattice based Approach to Lexical Inheritance
Hierarchy Learning

Caroline Sporleder 1

Abstract. Lexical inheritance hierarchies are used widely as a
means of representing lexical information efficiently but there have
been few attempts to construct them automatically. This paper
presents a two-step construction algorithm in which a Galois lattice
is built and then pruned into an inheritance hierarchy. The pruning
step utilises a maximum entropy model. This is compared to a prun-
ing method which prunes nodes in the hierarchy randomly. To asses
the performance of the two methods an automatic evaluation method
has been implemented which matches an automatically derived hier-
archy to a manually built hierarchy for the same lexicon and defines
precision and recall as a distance function between the two hierar-
chies.

1 INTRODUCTION

Inheritance networks have long been used as a means for knowl-
edge representation in AI. In linguistics, their most prominent use
is to encode lexical knowledge. Grammar development over the last
decades has seen a shift away from large inventories of grammar
rules to richer lexical structures. As a consequence, lexicons de-
veloped within modern grammar theories likeHead-Driven Phrase
Structure Grammar(Pollard & Sag 1994 [14]) andCategorial Gram-
mar (Wood 1993 [19], Steedman 1996 [18]) can be very complex.
Representing lexical information as a simple list of lexical entries re-
sults in an undesirable amount of redundancy. For instance, in the
lexicon in figure 1, the attribute-value pairssubcat:transitiveand
past:+edoccur 4 times. Lexical inheritance hierarchies reduce un-
necessary redundancy by providing a way of capturing linguistic
generalisations. Thus, it makes sense to create a classTRANSITIVE

VERB and a classED-VERB from which transitive and regular verbs
can inherit (figure 2).

orth(ography) past past p(articiple) subcat(egorisation)

beat +0 +en transitive
take took +en transitive
hate +ed +ed transitive
love +ed +ed transitive
elapse +ed +ed intransitive
expire +ed +ed intransitive
rise rose +en intransitive

Figure 1. Simple lexicon
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Figure 2. Inheritance hierarchy for the lexicon in figure 1

Usually, inheritance hierarchies are constructed by hand but this is
time-consuming and often impractical for big lexicons. In addition,
automatic extraction of lexical information from corpora is becoming
more and more popular and it makes sense to go a step further and au-
tomate the hierarchical organisation of lexical data too. Constructing
hierarchies automatically or semi-automatically has the further ad-
vantage of facilitating a more systematic analysis of the lexical data
and in the ideal case it might even lead to the discovery of trends in
the data set that would otherwise go unnoticed.

This paper describes an approach to learning inheritance hierar-
chies from unstructured lexicons. That is, the input will be a list of
lexical entries, where each entry is characterised by a set of attribute-
value pairs. The output will be a lexical inheritance hierarchy.2 The
aim is to derivelinguistically plausiblehierarchies, i.e. the nodes in
the hierarchy should correspond to linguistically meaningful classes.

The approach described here splits the task into two steps: First,
a Galois lattice(also calledconcept lattice) is built for the lexicon.
This encodes all concepts contained in the data set, i.e. all possi-
ble word classes together with their properties. The lattice is then
pruned into an inheritance hierarchy. This approach reduces the au-
tomatic construction of a hierarchy to a classification problem: Find-
ing a good learning method amounts to finding a classifier that cor-
rectly predicts which nodes in the lattice should be pruned and which
should be retained. The linguistic plausibility of a class is proba-
bly influenced by several factors. Therefore it seems that what is
needed is a classifier that is able to combine many —not necessar-
ily independent— contextual factors.

A maximum entropy classifier was chosen for this purpose since

2 Lexical inheritance hierarchies can be monotonic or non-monotonic. In
non-monotonic hierarchies, a class can override properties of a superclass.
This paper only deals with monotonic hierarchies but an extension to non-
monotonic hierarchies is possible.



maximum entropy classifiers can incorporate many contextual prop-
erties and these do not have to be independent. The classifier is
trained in a supervised training step using training data provided by
a manually built hierarchy.

2 BACKGROUND

The use of Galois lattices in machine learning and natural language
processing is not new.

Formal Concept Analysis(FCA, Ganter & Wille 1999 [9]) uses
Galois lattices (calledconcept latticesin FCA) to identify and anal-
yse conceptual structures in data sets.

Carpineto and Romano 1993 [4] employ a Galois lattice to deter-
mine the classes of new objects. The class assigned to a new object
is the most similar, consistent class in the Galois lattice. The lattice
is always complete — no nodes get pruned. Carpineto and Romano
1996 [5] discusses an extension of this approach which allows for the
incorporation of structural background knowledge.3

Basili et al. 1997 [2] use Galois lattices to learn verb subcate-
gorization frames. After extracting sets of subcategorization frames
from a corpus, a Galois lattice is constructed for each verb. The con-
cepts in the lattice are (sets of) subcategorization frames. Some sets
may be noisy or linguistically inadequate. Useful sets of subcate-
gorization frames are chosen by applying two selection measures,
which take into account the lattice structure and the linguistic proba-
bility of the individual subcategorization frames in a set.

In ontology construction, Galois lattices have been used by Godin
et al. 1998 [10], who employ a Galois lattice to built and maintain
class hierarchies in object-oriented design.

For inheritance hierarchy induction, Galois lattices have been pro-
posed independently by Petersen 2001 [13]. While she, too, builds a
Galois lattice for the input lexicon and prunes it into a hierarchy, she
uses a pruning method that is different from the one proposed in this
paper in that it creates hierarchies where every attribute-value pair
occurs only once. This pruning method is also used by Godinet al.
1998 [10] for the different task of class hierarchy induction.

There have been few other attempts to induce lexical inheritance
hierarchies. The most comprehensive work to date is Barg 1996 [1].
Barg presents an algorithm for learning hierarchies for the DATR for-
malism (Evans & Gazdar 1990 [7]) using a transformation-based ap-
proach. The search through the space of permissible transformations
is guided by a set of evaluation criteria, which are ordered by pri-
ority. The criteria and their priority may vary for different linguistic
domains. Most criteria refer to the size and complexity of a hierarchy.

Cahill 1998 [3] presents a semi-automatic method for building
DATR hierarchies for multi-lingual lexicons. She focuses on in-
ferring morphological and phonological generalisations across lan-
guages. These generalisations are extracted automatically by apply-
ing a pattern-matching algorithm to the orthographic and phonologi-
cal forms of lexical entries while the general structure of the hierar-
chy (i.e. the partial order over nodes) is hard-wired.

Light 1994 [11] does not build hierarchies from scratch but inves-
tigates ways in which new entries can be inserted into an existing
hierarchy. He uses a greedy algorithm that inserts entries by min-
imising a redundancy criterion based on the number of parents and
attribute-value pairs of a node. Light’s algorithm does not create new
(non-terminal) classes and therefore cannot be used to learn a hierar-
chy from scratch.

3 In lexical inheritance hierarchies structural background knowledge often
occurs in the form oftypes. Types form the backbone oftyped inheritance
hierarchies.

3 LEARNING ARCHITECTURE

3.1 Galois Lattices

Given a set of instancesE (i.e. lexical entries), a set of features (i.e.
the different attribute-value pairs describing the entries)E0, and a
binary relationR ! E � E0, a Galois lattice is a partial order over
all pairs of the form(X;X 0), whereX � E, X 0 � E0 s.t.:

X = fx 2 Ej8x0 2 X 0; xRx0g
X 0 = fx0 2 E0j8x 2 X; xRx0g

The pair(X;X 0) is called aconcept, whereX is theextensionof
the concept (i.e. the set of lexical entries it comprises) andX 0 is its
intension(i.e. the set of attribute-value pairs that are shared by all
members of the concept’s extension).

For instance, figure 3 shows a small lexicon which contains in-
formation about the nativeness and the ability to carry stress for six
German prefixes. Figure 4 shows the Galois lattice for the lexicon.
Concepts contained in the lexicon and the lattice are, for example:

� the concept ofstressed-native-prefixes (Node 5):
(fun, entg, fNAT:+, STR:+g)

� the concept ofstressed-prefixes (Node 3):
(fun, ent, dis, desg, fSTR:+g)

� the concept ofunstressed-native-prefixes-whose-
orthography-is-ver (Node 7):
(fverg, fNAT:+, STR:-, ORTH:ver-g)

er ver un ent dis des

Orth er- ver- un- ent- dis- des-
Nat(ive) + + + + - -
Str(ess) - - + + + +

Figure 3. German prefixes: lexicon
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Figure 4. German prefixes: Galois lattice

Using Galois lattices for lexical inheritance construction is moti-
vated by the assumption that every node of a (monotonic) inheritance
hierarchy corresponds to a node in the Galois lattice derived from the
same lexicon. Two nodes correspond if they have the same extension
but they may differ in their intension because attribute-value pairs
are not repeated within a given inheritance path in (monotonic) in-
heritance hierarchies, but are repeated in a Galois lattice.
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This is illustrated by the manually built hierarchy for the prefix
lexicon (figure 5). Nodes 4, 5, and 6 are identical to their counterparts
in the Galois lattice. Node 7 in the manually built hierarchy has the
same extension as Node 7 in the Galois lattice (namelyver)4 but the
attribute-value pairsNAT:+ andSTR:- are lacking from its intension
because they can be inherited from Node 4.

Node 10Node 7 Node 8 Node 9 Node 11 Node 12

Node 4 Node 5

NAT: +
STR: -

NAT: +
STR: +

NAT: -
STR: +

Node 6

ORTH: ver- MORPH: er- ORTH: un- ORTH: ent- ORTH: des-ORTH: dis-

Node 1

Figure 5. German prefixes: manually built hierarchy

The assumption that each node of a hierarchy is contained in the
corresponding Galois lattice is not strictly true. Thus while every
class in the lattice has at least two subclasses this is not necessar-
ily the case for inheritance hierarchies. A class in an inheritance hi-
erarchy may sometimes only have one subclass. This is due to data
sparseness, i.e. a class is included in the hierarchy because the lin-
guist constructing the hierarchy knows that this class is a useful
generalisation over several subclasses even if the lexicon contains
only members of one of these subclasses. These classes are a prob-
lem for every data-driven machine learning technique but one would
hope that reasonably big lexicons contain only a small proportion of
single-child classes.5

3.2 Pruning

Once a Galois lattice has been built one has to decide which nodes
(i.e. concepts) should be pruned and which should be retained. For
example, in the German prefix example above (figure 4) the prun-
ing method should retain nodes 4, 5, and 6 (cf. the manually built
hierarchy in figure 5) rather than nodes 2 and 3.

A popular pruning method is based on the idea of minimal redun-
dancy of attribute-value pairs. For each attribute-value pair there is
guaranteed to be a unique highest introduction point and a hierarchy
is minimal with respect to attribute-value pairs if attribute-value pairs
are only retained at their highest introduction point and pruned else-
where. Nodes which do not function as highest introduction points
for any attribute-value pair will be stripped of all their attribute-value
pairs and then removed. This method is used by Petersen 2001 [13]
to derive lexical inheritance hierarchies.

While the notion of minimal redundancy has been employed in
some form in all previous approaches to inheritance hierarchy learn-
ing, it is not clear whether minimal redundancy is a particularly good
criterion. Lexical inheritance hierarchies should be first and foremost

4 Extensions are not shown in the lattice and hierarchy but should be obvious.
5 Non-monotonic inheritance poses another problem for Galois lattices since

the latter are inherently monotonic. One way in which this problem can
be addressed is by identifying a default value for every attribute-value pair
and ensuring that every lexical entry contains the default value as well as
the non-default value for each of its attribute-value pairs. A lattice derived
from a lexicon modified in this way can be pruned into a non-monotonic
hierarchy.

linguistically plausible and it is not evident that some form of min-
imal redundancy necessarily coincides with linguistic plausibility.
Therefore, the approach taken here uses a maximum entropy model
to prune the lattice. This approach allows one to prune a lattice on the
basis of many contextual properties not only on the basis of simple
redundancy criteria.

Maximum Entropy models have been applied to quite a lot of
tasks in natural language processing (see Ratnaparkhi 1998 [15] for
an overview). A maximum entropy model can be used to assign an
object to a class based on the object’s context. The context is repre-
sented in the form offeatures. The features can be quite complex and
do not have to be statistically independent. Each feature is assigned
a weight in a supervised learning step using a parameter estimation
algorithm. Weights are chosen in such a way that the entropy of the
model is maximised, i.e. maximum entropy models preserve maxi-
mal uncertainty and do not assume anything beyond the data. Once a
model has been trained the probability of an objecto belonging to a
classc can be calculated as follows:

P (o; c) =
1

Z

nY

i=1

�
fi(o;c)
i

wheren is the number of features (f), �i is the weight of featurefi,
andZ is a normalisation constant which ensures that the values of
P(o,c) lie between 0 and 1.

In the task of pruning Galois lattices, the objects to be classified
are the nodes in the lattice and the possible classes arepruneandre-
tain. So far, 14 contextual feature sets have been implemented. These
feature sets refer to the following properties of a node:

� Immediate Ancestors and Descendants:features referring to the
number of immediate ancestors and descendants.

� Terminal Descendants:features referring to the number of ter-
minal descendants.

� Attribute-Value Pairs: features referring to the number of
attribute-value pairs at the node, the average number of values per-
missible for each attribute of the node, the number of times that
each of the node’s attributes occurs in the lexicon (average), and
the number of attribute-value pairs for which the node serves as
highest introduction point.

� Level of Node:the level of the node in the hierarchy.

The features have been deliberately kept fairly unspecific, i.e. there
are no features that refer to specific attributes. Reference to particular
attributes has to be avoided if the model is to work across lexicons
and possibly also across languages.

At the moment, the features are still very simple. In particu-
lar, there are no features that refer to interdependencies between
attribute-value pairs. Eventually one would like to take dependence
between attribute-value pairs into account. For example, the exis-
tence of some kind of dependence between the attribute-value pairs
of a node should increase the probability of the node being retained.
Similarly one would also like to take more dependencies between
nodes into account. In particular, a node should be more likely to be
pruned if it inherits all or most of its attribute-value pairs from its
ancestors. But this also has not been implemented yet.6

6 Interdependencies between nodes can only be used on a relatively small
scale, since taking node interdependencies across the hierarchy into account
is computationally expensive. Another problem is that large contexts are
likely to cause data sparseness problems. One reason for training on nodes
rather than on larger graph fragments is that there are relatively few suitable
manually built hierarchies around and training on larger graph fragments
would significantly decrease the amount of available training data.
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To avoid the size of a hierarchy influencing the value of the con-
textual predicates, features have been normalised, where appropri-
ate, by dividing them by an average value for the hierarchy, e.g. the
contextual predicaterelative-levelreturns the level of the node di-
vided by the overall number of levels in the hierarchy. Also, since
maximum entropy features usually require contextual predicates that
return nominal data and most of the above functions range over con-
tinuous data, values have been quantised by breaking them up into
6 or 12 intervals. For example, therelative-levelcontextual predi-
cate returns 0, 20, 40, 60, 80 or 100 and a relative level of 0.10 is
translated torelative-level=20.

3.3 Evaluation

Assessing a pruning method involves evaluating the hierarchies de-
rived by it. Previous approaches to lexical inheritance hierarchy
learning used a manual evaluation technique, i.e. the derived hier-
archies were inspected and manually evaluated for plausibility (Barg
1996 [1], Light 1994 [11]). The easiest way to evaluate hierarchies
automatically is to count wrongly classified nodes (i.e. false positives
and false negatives) and calculate precision and recall on this basis.
However, it is possible that some wrongly classified nodes are worse
than others. Even if few nodes are correctly retained, the derived hi-
erarchy may still be relatively good if its nodes are very similar to
the nodes in a good hierarchy.

The approach adopted here matches the derived hierarchies to a
manually built hierarchy for the same lexicon. The graph matching
algorithm is error-tolerant, i.e. two nodes do not have to be identical
to be matched but sufficiently similar. Similarity between two nodes
is defined in terms of extensional and intensional overlap and two
nodes are matched if their similarity is above a user defined thresh-
old, which was set to 0.5, i.e. two nodes were matched if their exten-
sional and intensional overlap was more than 50%.

Since the hierarchies derived by the pruning methods described
below are guaranteed to besound, i.e. compiling them out7 will result
in the same lexicon as compiling out the manually built hierarchy, it
is not necessary to test for soundness in the evaluation step.

To assess the overall distance between two hierarchies,precision,
recall andf-scorehave to be calculated. The overall precision (prec)
of the learning algorithm is defined as the average of two basic preci-
sion measures:attribute-value pair precision(avp-prec), which mea-
sures how well the attribute-value pairs in the derived hierarchy rep-
resent the attribute-value pairs in the manually built hierarchy, and
node precision(node-prec), which measures the percentage of nodes
in the derived hierarchy that could be matched:8

avp-prec = # matched avps

# avps in derived hierarchy

node-prec= # matched nodes

# nodes in derived hierarchy

prec = avp-prec+node-prec
2

Attribute-value pair precisionand node precisionhave different
strengths and weaknesses, which can be levelled out by combining
the two measures to form an overall precision measure. Thus, node
precision depends largely on the matching threshold and once two
nodes have been matched the quality of the match is disregarded,

7 A hierarchy is compiled out by having each lexical entry inherit all proper-
ties from its ancestors, resulting is a set of fully specified lexical entries.

8 The termmatched avpsdescribes the number of attribute-value pairs that
could be matched, i.e. the number of shared attribute-value pairs in a
matched node summed over all matched nodes.

while attribute-value pair precision depends to a lesser degree on the
threshold as it takes the overall quality of matches into account but it
disregards the number of nodes in the hierarchy.

Overall recall (rec) is calculated in the same fashion, based on
attribute-value pair recall(avp-rec) andnode recall(node-rec):

avp-rec = # matched avps

# avps in manually built hierarchy

node-rec= # matched nodes

# nodes in manually built hierarchy

rec = avp-rec+node-rec
2

In general, it is much easier for a construction algorithm to do well
on terminal nodes than to do well on non-terminals. This is because
there are usually several attribute-value pairs that apply uniquely to
one lexical entry, for example attribute-value pairs referring to the or-
thography or phonology of an entry. These attribute-value pairs will
only occur in one place in the Galois lattice (namely in the terminal
node corresponding to the relevant lexical entry) and consequently
every pruning algorithm will get them right. To avoid precision and
recall being influenced by the terminal to non-terminal ratio, the eval-
uation metrics only take non-terminals into account.

Once precision and recall have been defined they can be combined
into a single measure, thef-score, which is defined as:

f-score= 2�prec�rec

prec+rec

Note, that the evaluation method assumes that there is one “ideal”
hierarchy, namely the manually built hierarchy for the lexicon. This
is of course a gross simplification: linguists usually cannot agree on
one ideal hierarchy per lexicon. But it is possible to identify a sub-
set of hierarchies which are regarded as relatively plausible. Because
lexical inheritance hierarchy construction is highly subjective, one
would expect the upper bound for this task to be noticeably below
100%.

4 EXPERIMENTS

The system is implemented to work with LKB grammars (Copestake
1999 [6]). For a first experiment with the maximum entropy pruner,
the (manually constructed) inheritance hierarchies supplied with Sag
and Wasow 1999 [16] and Quirino Sim˜oes [17] have been used. The
former encodes an English lexicon, the latter a Spanish lexicon.9

The hierarchies were compiled out and a Galois lattice was con-
structed for the compiled out lexicons. The Galois lattices were then
used to train a maximum entropy model. Maximum entropy train-
ing is only done on intermediate nodes (i.e. not on terminals or the
root node) because only those can be pruned. The root and terminals
have to be retained to ensure that the pruned hierarchy is sound, i.e.
does not add any information to or delete any information from the
original lexicon, and single-rooted. Intermediate nodes that occur in
the Galois lattice but not in the corresponding manual hierarchy are
negative training examples (i.e. belong to the classprune) while in-
termediate nodes that do occur in the manual hierarchy are positive
training examples (i.e.retain). Each of the two Galois lattices was
pruned using the maximum entropy model trained on the other lat-
tice. After the nodes were pruned, a second pruning step removed
redundant attribute-value pairs, i.e. attribute-value pairs that could
be inherited, from the retained nodes. If this resulted in empty nodes,

9 Since the maximum entropy features were deliberately kept knowledge-
poor, having lexicons for different languages should not cause any prob-
lems.
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these were removed, too. Finally the pruned lattices were matched to
the original hierarchies and evaluated.

Unfortunately, the two data sets provide very little positive training
data. This becomes evident when looking at the sizes of the Galois
lattices and manually built hierarchies shown in Figure 6. The first
column gives the number of terminal nodes (i.e. lexical entries), the
second the number of intermediate nodes and the third the overall
number of nodes. The Galois lattices are considerably larger than the
corresponding manually constructed hierarchies. Since the maximum
entropy models are only trained on intermediate nodes and there are
relatively few positive intermediate nodes, 98% of the training data
will be negative. This is further worsened by the fact that the two
lexicons contain a relatively large amount of single-child nodes. This
is probably due to the fact that both lexicons are relatively small.
Since these nodes are not contained in the Galois lattice they are
currently disregarded by the training algorithm. Thus, the number of
positive training instances is 29 for the English lexicon and 47 for the
Spanish lexicon.

terminal intermediate all

English manual 501 45 547
English Galois 501 1,852 2,354

Spanish manual 405 102 508
Spanish Galois 405 10,738 11,144

Figure 6. Number of nodes in manual hierarchies and Galois lattices

The straightforward way to use maximum entropy models is to
retain a node ifP (retain) > P (prune). However, since the hier-
archies used in this experiment are relatively small and since there
are many more negative training examples than positive ones, this
classification method leads to derived hierarchies in which nearly all
intermediate nodes are pruned. As an alternative ann-best approach
was taken in which then nodes with the highest retain probability are
retained, wheren is the number of intermediate nodes in the relevant
manually built hierarchy. Of course, this approach is not feasible in
the general case because the ideal number of intermediate nodes in
a hierarchy will not be known, but it may be possible to calculate an
average number of nodes (in relation to the number of lexical entries)
across several hierarchies.

The results for pruning the two grammars with then-best max-
imum entropy models are shown in figure 7. The pruning method
works much better on the English lexicon than on the Spanish lex-
icon. This is due to the fact that the English lexicon supplies less
positive training examples than the Spanish lexicon. Thus training
on the English grammar and testing on the Spanish grammar leads
to worse results than the other way round. It seems that the number
of training examples in the English grammar is too small to train the
model sufficiently well.

f-score precision recall interm. nodes

English 22.16% 18.59% 27.44% 51
Spanish 0.29% 0.62% 0.19% 25

Figure 7. Results for n-best maximum entropy pruning

The last column in figure 7 shows the number of intermediate

nodes retained by the pruning method. The parametern was set to
45 (English) and 102 (Spanish). Thus one would expect 45 retained
nodes in the English hierarchy and 102 in the Spanish hierarchy. In-
terestingly, this is not the case. For the English grammar more than
n nodes were retained. The reason for this is thatP (retain) was
identical for some nodes, which suggests that the maximum entropy
model is not discriminating well enough yet. For the Spanish gram-
mar the number of intermediate nodes is significantly lower thann.
While 102 nodes were initially retained the selection was so bad that
many of them had to be removed afterwards because they inherited
all their attribute-value pairs from their ancestors. This is another in-
dicator that the model applied to the Spanish lattice was not very
good.

For comparison, the lattices were also pruned randomly according
to one of two probability distributions. The first method uses a uni-
form distribution, i.e.:P (prune) = P (retain) = 0:5. The second
method retainsn intermediate nodes randomly, wheren is the num-
ber of intermediate nodes in the relevant manually built hierarchy.10

Random pruning was performed 100 times for each lexicon and the
results were averaged.

Figure 8 shows the results of uniform random pruning. The f-score
is lower than it is for maximum entropy pruning (at least for the En-
glish lexicon). While the random pruning method retains many more
nodes and therefore has a higher recall the precision is lower than for
maximum entropy pruning.

f-score precision recall interm. nodes

English (avg.) 18.37% 12.21% 37.19% 287
Spanish (avg.) 16.90% 12.01% 28.59% 556

Figure 8. Results for uniform random pruning

Figure 9 shows the results ofn-best random pruning. For the En-
glish lexicon the f-score improves but still is slightly lower than the
maximum entropy f-score. Somewhat surprisingly, the f-score drops
for the Spanish lexicon. This performance drop is probably related
to the fact that the ratio between intermediate nodes in the manually
built hierarchy and intermediate nodes in the Galois lattice is much
smaller than in the English lexicon: in the English lexicon, out of 100
Galois nodes 2.4 are contained in the manually built hierarchy, in the
Spanish lexicon only 0.9 nodes out of 100 are contained in the man-
ually built hierarchy. Consequently, selecting the “right”n nodes is
more difficult for the Spanish lexicon.

f-score precision recall interm. nodes

English 21.93% 23.65% 20.65% 43
Spanish 9.54% 11.36% 8.28% 100

Figure 9. Results forn-best random pruning

On the whole the very crude maximum entropy pruning method
shows some promise. While an f-score of about 20% may not look

10 Note, that in both cases the actual pruning rate will be higher than this if
pruning leads to nodes that can inherit all their attribute-value pairs from
their ancestors because this nodes will later be removed.
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impressive it has to be remembered that the upper score for the task
is probably well below 100% as linguists do not always agree on the
best hierarchy for a given lexicon. Also, linguists tend to make their
decisions on the basis of linguistic background knowledge and in-
tuition, things that are not available to automatic learning methods.
Consequently the task of learning linguistically plausible inheritance
hierarchies is probably fairly hard. And the fact that maximum en-
tropy pruning performs slightly better than then-best random prun-
ing method (for the English lexicon) seems to show that the maxi-
mum entropy model represents some useful generalisations.

5 CONCLUSION AND FUTURE WORK

This paper presented a first approach to using maximum entropy
models to induce lexical inheritance hierarchies. So far, the model
is still very simplistic but it shows some promise for the future. To
improve the performance of the model future research has to focus
on the following areas:

� More Training Data: The results could probably be substantially
improved if more (positive) training data was available. Construct-
ing a complete Galois lattice is infeasible for big lexicons but it
should be possible to approximate the lattice construction or in-
terleave it with the pruning step.

� Using a Prior: Maximum entropy models have problems with
highly unbalanced training data (Osborne 2002 [12]). The use of
a prior might counteract unbalanced data.

� Maximum Entropy Features: The feature set is still very small
and in particular it does not contain features that take interde-
pendencies in the data set into account. However, these interde-
pendencies are probably the most important factor in deciding
whether a node should be pruned.

� Continuous Values:Representing continuous data as intervals is
not optimal. Selecting a good interval size is difficult. An interval
that is too small will lead to data sparseness problems while an
interval that is too big may prevent the model from being discrim-
inative enough.Maybe techniques that have been used for decision
trees might be helpful (e.g. Fayyad & Irani 1993 [8]). In addition,
the fact that intervals are treated like nominal data means that ev-
ery sense of distance is lost. But it may be important that the in-
terval “40” is closer to “20” than to “80”. Therefore it might be
beneficial to look at ways of determining good interval sizes au-
tomatically or look for an alternative representation. Maybe some
other learning technique, like memory-based learning, might yield
better results for continuous data.

While the approach presented here was implemented and tested for
lexical inheritance hierarchies it should also be applicable to other
ontology learning tasks. Since a supervised learning technique is
used this would normally require the existence of suitable training
data. However, it may be possible to apply maximum entropy mod-
els that have been trained on lexical inheritance hierarchies directly
to other ontology learning problems, since the maximum entropy
features used for lexical inheritance hierarchies are deliberately kept
knowledge-poor, i.e. they do represent general properties of concept
representativeness etc. and not properties that are specific to linguis-
tics. However, whether this is indeed possible remains a bit specula-
tive at this stage.
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