
Workshop on Knowledge Management and Organizational
Memories

Rose Dieng (INRIA ,France), Nada Matta (UTT, France), Stefan Decker (Universität Karlsruhe,
Germany), Knut Hinkelmann(GmbH, Germany), Ann Macintosh(International Teledemocracy
Centre, United Kingdom), Juergen Mueller(Deutsche Telekom AG, Germany), Agostino Poggi
(Dipartimento di Ingegneria dell Informazione, Italy), Ulrich Reimer(Swiss Life Information

Systems Research, Switzerland), Carla Simone(University of Torino, Italy),
Steffen Staab(AIFB ,Germany)

Knowledge Management and Organizational Memories

Knowledge Management (KM) is one of the key progress factors in organizations. It involves explicit and persistent
representation of knowledge of (geographically) dispersed groups of people in the organization, so as to improve the
activities of the organization. Although KM is an issue in human resource management and enterprise organization
beyond any specifictechnology questions, there are important aspects that can be supported or even enabled by
intelligent information systems. Especially AI and related fields provide solutions for important parts of
the overall KM problem.

- The know-how of an organization may consist of problem solving expertise in functional disciplines,
experiences of human resources, and project experiences in terms of project management issues, design
technical issues and lessons learned. The coherent integration of this dispersed know-how in a corporation,
aimed at enhancing its access and reuse, is called "corporate memory" or "organizational memory" (OM). It is
regarded as the central prerequisite for IT support of Knowledge Management and is the means for knowledge
conservation, distribution, and reuse. An OM enables organizational learning and continuous process
improvement.

- Identification and analysis of a company's knowledge-intensive work processes (e.g., product design or strategic
planning). Knowledge Engineering and Enterprise Modeling techniques can contribute to this topic. The
analysis of information flow and involved knowledge sources allows to identify shortcomings of business
processes, and to specify requirements on potential IT support.

Activities underlying knowledge management in an organization can comprise detection of needs, construction,
distribution, use and maintenance of the corporate memory. It demands abilities to manage disparate know-how and
heterogeneous viewpoints, to make it accessible and suitable for adequate members of the organization. When the
organization knowledge is distributed on several experts and documents in different locations all over the world,
the Internet or an Intranet inside the organization and World Wide Web (WWW) techniques can be a privileged
means for acquisition, modelling, management of this distributed knowledge.

The main objectives of KM/OM workshop is to discuss as well as the coherent integration of the dispersed know-
how in a corporation, knowledge capitalization, distribution, reuse, and knowledge engineering and enterprise
modeling techniques.

Program Committee

 Hans Akkermans, University of Twente (NL)
 Jean-Paul Barthès (UTC-Compiègne, France)
 John Debenham, University of Technology, (Sydney, Australia)
 Stefan Decker, Universität Karlsruhe (Germany)
 Rose Dieng, INRIA (France)
 John Domingue, Open University, (UK)
 Jean-Louis Ermine, CEA, (Paris, France)
 Jérôme Euzenat, INRIA Rhône-Alpes (Grenoble, France)
 Knut Hinkelmann, Insiders Information Management GmbH (Germany)
 Robert Jasper, Boeing, (USA)
 Ann Macintosh, International Teledemocracy Centre (United Kingdom)
 Dirk Mahling, University of Pittsburgh (USA)
 Nada Matta, University of Technology of Troyes/Tech-CICO (France)
 Frank Maurer, University of Calgary (Canada)
 Enrico Motta, Open University (UK)
 Juergen Mueller, Deutsche Telekom AG (Germany)
 Philippe Pérez, ATOS (France)
 Agostino Poggi, Dipartimento di Ingegneria dell Informazione (Italy)
 Joel Quinteton, LIRMM (France)
 Ulrich Reimer, Swiss Life Information Systems Research Group Postfach (Switzerland)
 Myriam Ribière, SRI (California, USA)
 David G. Schwartz, Bar-Ilan University (Israel)
 Rudi Studer, University of Karlsruhe, (Germany)
 Mike Uschold, Boeing (USA)
 Carla Simone, University of Torino (Italy)
 Steffen Staab, AIFB (Germany)
 Gertjan van Heijst, CIBIT (Utrecht, The Netherlands)

Table of Content

A Case-Based Reasoning Framework for EnterpriseModel Building, Sharing and Reusing
Yun-Heh ChEN6BURGERr, David ROBERTSON, Jussi STADER -- 5

Integrating Textual Knowledge and FormalKnowledge for Improving Traceability
Farid CERBAH, Jérôme EUZENAT --10

Learning from experience of incidents in public transportation : A new form of Experience reflection for
organizational learning

Cheila COLARDELLE & Jean-Luc WYBO --17

Multiple Views on Consensual Categories: A Contribution for Corporate Memory Management
Sylvie DESPRES--27

Agent Architecture and Interaction Protocols for Corporate Memory Management Systems
Federico BERGENTI, Agostino POGGI, Giovani RIMASSA---39

On the convergence of core technologies for knowledge management and organisational memories:
ontologies and experience factories

Yannis KALFOGLOU ---48

Unifying or reconciling when constructing Organizational Memory? Some open issues.
Carla SIMONE ---56

Structuring Organizational Memories using Multi- Dimensional Knowledge Networks
Tang-Ho LË, Luc LAMONTAGNE ---61

A Case-Based Reasoning Framework for Enterprise
Model Building, Sharing and Reusing

Yun-Heh Chen-Burger1 and David Robertson2 and Jussi Stader1

Abstract. Enterprise model development is essentially a labour-
intensive exercise. Human experts depend heavily on prior
experience when they are building new models making it a natural
domain to apply Case Based Reasoningtechniques. Through the
provision of model building knowledge, automatic testing and
design guidance can be provided by rule-based facilities. Exploring
these opportunities requires us not only to determine which forms
of knowledge are generic and therefore re-usable, but also how this
knowledge can be used to provide useful model building support.
This paper presents our experiences in identifying and classifying
the knowledge which exists in IBM’s BSDM Business Modelsand
applying AI techniques, CBR and Rule-Basedreasoning together
with a symbolic simulator, to provide more complete support
throughout the enterprise model development life cycle.

Key-words Enterprise Modelling, Model Development Life Cycle,
Case Based Reasoning, Business Modelling, Process Modelling,
Knowledge Management, BSDM, Formal Method.

1 Introduction

The main task of BSDM’s Business Modellingis to identify two con-
ceptual components: entities and dependencies. Entities are things
that a business needs to manage and dependencies are the relation-
ships between these things. Certain kinds of scenarios or relation-
ships between entities are common to many businesses. Hence, one
would expect that the corresponding BSDM Business Modelmaps
reflect these commonalities.

In practice, IBM provides a catalogue of such generic entity mod-
els [8]: some of them are standard and example models from the
method and some of them were specifically developed for selected
industries. Provided with these generic models, BSDM practition-
ers help clients build their business model by using this information
implicitly or explicitly. For BSDM consultancy, King[9] suggested
three possible ways of re-using generic/known models when address-
ing a new problem domain.

� Back-Pocket Approach:the clients are made aware of the existence
of these generic models, but they are only used to support con-
sultancy. The client will see little or none of the generic model. A
consultant keeps these generic models at the back of his/her mind
and tailors them to the clients’ special requirements.

1 AIAI, The University of Edinburgh, 80 South Bridge, Room
E32, Edinburgh EH1 1HN, UK, email: jessicac@aiai.ed.ac.uk,
jussi.stader@aiai.ed.ac.uk

2 Department of Artificial Intelligence, The University of Edinburgh,
80 South Bridge, Room E13, Edinburgh EH1 1HN, UK, email:
dr@dai.ed.ac.uk

� Reference Model Approach:supply the client with a relevant and
complete generic model with detailed description, together with a
contractual consultancy service which provides help for the inter-
pretation and use of the model.

� Software System Solution:provide developed software systems as
packages which are based on generic industrial models. These
software systems can then be used by the clients. The client may
or may not see the generic business model which was used to de-
velop the required software system.

The fact that similar practices are exhibited in many different busi-
nesses and business models are reusable in practice make them a
perfect domain candidate for applying CBRtechniques. Case-Based
Reasoning (CBR)[10] was inspired by observing human reasoning
when learning how to solve new problems by remembering solu-
tions that were applied to similar problems in the past, thus becoming
more competent in dealing with wider range of problems over time.
In the same way, a CBRsystem solves a new problem by comparing
it with old problems and their solutions, which are stored in the sys-
tem’s memory, a Case Library. Several CBRsystems have been built
to support design: Cadet[13][15] supports better conceptual design
for electro-mechanical devices; Cadsyn[12] provides guidance for
architectural design and adapts existing designs for new buildings;
Casecad[11] and AskJef[2] use multimedia technology to store and
present their cases to the user, the former in the domain of archi-
tectural design, the latter in the domain of human-machine inter-
face design. Other example CBR systems are Archie-II[5], Cadre[6],
Kritik-II [14] and Julia[7].

In the context of BSDM, the standard and example models from
the method and the generic models built for a particular industry can
be stored in the Case Library. The next step is to understand how one
can make use of these models and provide useful automatic support
for the modeller. BSDM also provides a semi-formal step-by-step
procedure for building a business model which includes modelling
rules, check lists and recommendations of different strength about
good modelling style. This knowledge also forms a natural source
for constructing error-checking and advisory rules. However, not all
model building knowledge can be formalised. For example, the rule
which requires the user to examine whether all of the important con-
cepts are included in the model can not be formalised and automatic-
ally checked by our logical rules. The initial BSDM business model
is a static model with system dynamic implications. To demonstrate
the dynamic aspects of the model, we have extended its original nota-
tion and enabled a model execution phase in our Business Model
Simulator. Both pieces of work are described in more detail in [4].

This paper presents how knowledge which is possessed by differ-
ent stake-holders: in the business modelling method, in the built in-
dustrial models, and in individual practitioners, can be captured and

formalised to provide coherent and comprehensive support through-
out the model development life cycle. It considers two issues: is such
knowledge generic and reusable, and how can this knowledge be
used to provide automatic support. The paper first describes how
Case Based Reasoningtechniques can be used to provide a common
platform for knowledge sharing. It then presents to which extent this
knowledge can be formalised and provide assistance for model build-
ing activities.

2 The Modelling Support Framework

Simulation

Model Rules

User-Defined
BSDM Model

Matching
Library

Assign Indices

Generic Model
Pattern

Case

Choose Best

ModifyGeneralise

of a business model development.

Verification*

Validation*

Assign Indices
Assessment Method

Similarity

Report

Match Rules

Hierarchy
Conceptual

Entity

* This function can be applied at any stage

User-Defined BSDM Model

Model Information + Indices

Generic Models

Matching for the Same User Model

Seeking for Another

The Best Matching

Similarity/Disimilarity Analysis
and Explanation

Generic

Models

KBST-BM

Generic Model Advisor

Figure 1. Architecture of Generic Model Advisor

Figure 1 shows the modelling framework which provides auto-
matic facilities to support the iterative plan-build-test-refinemodel-
ling development life cycle as shown in Figure 2.

RefinePlan Build Test

Figure 2. The Plan-Build-Test-Refine development cycle

Two integrated knowledge based support tools, Generic Model
Advisor(GMA) and Knowledge Based Support Tool for Business
Modelling(KBST-BM), have been built. Since a BSDM’s business
model is organised and presented in viewsand diagrams, these are the
”units” that GMA stores and retrieves. GMA identifies and assigns
indices (features which characterise a model) to the problem, i.e. the
user-defined BSDM model. These indices, together with the embed-
ded domain knowledge, in our case the Entity Conceptual Hierarchy
and Match Rules, are passed to the pattern matching algorithm which
compares the indices of the problem and those of the generic models

in the Generic Model Libraryto retrieve a set of reference models
which exhibit similar characteristics to the input model.

At this stage the retrieved similar generic models are not yet ex-
amined to determine which is a better match for the current problem.
For such a comparison, GMA provides a flexible Similarity Assess-
ment Functionwhich enables the deployment of a built-in heuristic
method or the users can dynamically make up their own evaluation
method to explore specific matches based on the identified indices of
the model.

The best matching case, according to the chosen similarity assess-
ment method and an analysis report of similarities and differences
between the user model and the retrieved reference model together
with suggestions about how to eliminate the causes of the differences,
are given to the user. The user can then read the report and/or ask
the system to present a different matching result for another generic
model. Matches are shown in the descending order of their scores in
the chosen similarity assessment method. A summary of all of the
matches shown to the user is produced separately which records the
similarity measurements of each match to give the user an overview
of all possible mappings and to allow revisiting of selected generic
models.

A user-defined model may be matched with more than one generic
models. The user can choose to modify his/her model and repeat the
above modelling cycle as a part of an iterative process. If the user
has decided to use the reference model as a basis to generate a new
model, the user can export the chosen reference model from the lib-
rary. At any stage of the model development, the user can choose to
use the verification and validation facilities provided by KBST-BM
to check for the completeness, soundness and appropriateness of the
built model.

When the user is sufficiently satisfied with his/her model, he/she
can retain this new model, i.e. write it back to GMA, by firstly gen-
eralising the new model, verifying and validating the generalised
model using the integrated tool KBST-BM, and then storing the new
generic model back to the Generic Model Library. The Case Based
Reasoning Cycleis now completed, and GMA’s knowledge can be
enriched and evolved through time via the inclusion of newly ac-
quired knowledge during operations. GMAdoes not provide an auto-
matic adaptation facility for two reasons. First, there is no absolute
standard which fits all businesses in determining whether or not a par-
ticular design is the most appropriateone for a business. Secondly,
although common practices are shared by many businesses, business
models are in general organisation-dependent and building a good
model requires understanding of the organisation’s operation and a
consensus within the organisation which may not be available or
formalisable due to the size and nature of the required knowledge[4].
Both issues have to be resolved before high quality automatic adapt-
ation can be provided.

The inner KBST-BMsystem box in the Figure 1 illustrates how
KBST-BMcan assist in completing the CBR cycle. It provides an in-
dependent verificationand validation (V&V)facilities (from the user)
and is included in the “Test” activity in the standard model develop-
ment process shown in Figure 2. This V&V approach and implement-
ation details of KBST-BMare given in [3].

3 Indexing, Matching and Similarity Assessment

Indices are features which can be used to distinguish models in the
case memory and to find appropriate matches between a given prob-
lem and previous models. In the context of a BSDM business model,
these distinguishing characteristics are embedded in the semantics of

entities, the architecture of a business model, and the business area
that a model describes.

Simply comparing the graphical representation of business mod-
els is not sufficient. For example, drawing an existing model upside-
down does not make it a different model, the semantics of the inter-
relationships (dependencies) between entities must be taken into
account. Furthermore, business contextual similarities may be dis-
guised. For instance, if a business model is a more elaborated or spe-
cialised version of another one (or vice versa), then these two models
normally will not have the same architecture (e.g. one may expand
parts of the model in some areas), and often they do not share the
same entities (e.g. using domain specific vocabularies instead). How-
ever, because they are essentially describing the similar business op-
erations, it will be useful to refer one to the other.

To be able to make meaningful comparisons between BSDM mod-
els, one must have an integral understanding of the business context
which is described in both the architecture of a model as well as the
business context that each entity represents. We capture part of this
context through typing of entities via a concept hierarchy.

3.1 Entity Conceptual Hierarchy (ECH)

BSDMprovides Entity Familieswhich provide entities in groups ac-
cording to where and how they can be used in a business model.
BSDM modellers use Entity Familiesas a starting point when trying
to identify entities for a new model. They also use it as a guideline to
check the architecture of the model. We organise information given
in the Entity Familiesin a taxonomic hierarchy, called the Entity Con-
ceptual Hierarchy.

Figure 3. A Part of Entity Conceptual Hierarchy (ECH)

Figure 3 shows a screen shot from GMA which captures a part of
the Entity Conceptual Hierarchywhich contains the suggested en-
tities for the top layer (layer 1) of a BSDM business model. Two
types of classes have been used to describe entities: the shaded rect-
angular boxes represent the Abstract Entity Types, and the clear rect-
angular boxes represent the Concrete Entity Types. Abstract Entity

Typesprovide a structure to allocate conceptual categories and nor-
mally describe more “general” concepts. Concrete Entitiespresent
more specialised concepts and include entities which are used in real
business models (as opposed to a generalised model). An arrow from
entity B to entity A indicates an is-a relationship from B to A, i.e. B
is-aA.

The Entity Conceptual Hierarchycaptures the semantics of all of
the entities (in the user and reference models) as well as the relation-
ships between them and it can be used to identify and match similar
entities used in the user and reference models.

3.2 Case Retrieving and Similarity Assessment

The Pattern Matching Algorithmcompares the contextual and archi-
tecture information of the given user model with that of all of the ref-
erence models stored in the Generic Model Library. Several types of
information is taken into account. Do these models describe a similar
business area? Are they capturing similar concepts? Do they follow
similar business rules? The contextual and architecture information
is stored in the business area, view, links, dependencies, and in the
entities.

Provided with knowledge embedded in ECH, one can now match
views, dependencies and entities to determine if two different mod-
els are sufficiently similar. To match entities, for instance, entities
which have the same name in both user and reference models pro-
duce a positive match. However, similar but variant entities (sibling
relationships in the ECH), or “stream-line” specialisations (e.g. par-
ent and child, or grandparent and grandchild relationships) may also
produce a positive match. When deciding which is a better match
between entities, the closer the relationship is between the two entit-
ies on the ECH, the better quality of a match it is.

A user model may include several generic models. On the other
hand, a generic model may include or partially overlap with the user
model. Figure 4 shows the possibilities how a user model may be
mapped to a generic model.

U

CASE I CASE I CASE II II

CASE IV

G G

Equivalent

CASE V

User model is included in the Generic Model

G U

G

U G

G

U G U G

User model is partially overlapping with the generic model

CASE VI

User model is not included in the generic model, but the generic model is fully included in the User Model

U

U U

CASE VII CASE VIII

Figure 4. Possible Matching between User Models and Generic Models

As our aim is to seek for the best or better match, naturally a 100%
match is always given the highest priority, therefore CASE I. The
second preference goes to a match in which an user model is fully
included by the selected generic model, hence CASE II and III. How-
ever, CASE II is superior than CASE III because its generic model is
more similar to the user model: it has a smaller difference compared
between the two models.

When a user model is not fully covered, we prefer a match where
the user model has a better coverage from the selected generic model,
hence CASE IV is superior to CASE V, VI and VII which are all
more superior than CASE VIII. In the case of V, VI and VII where
the coverage of commonality of the user model are similar, the qual-
ity of the matched generic model should be taken into account, i.e. a
generic model which is more similar to the user mode should be pre-
ferred. Since the generic model in CASE V is entirely included in the
user model, it is the most similar (or relevant) one to the user model,
CASE VI is in second place, and CASE VII is the least similar one to
the user model since it has a comparatively smaller common portion
with the user model.

Based on our preferences, five discriminating criteria are identi-
fied: the matching result of the captured business areas, the match-
ing ratio of links (dependencies) in the selected reference model, the
matching ratio of entities in the selected reference model, the match-
ing ratio of links (dependencies) in the user model and the matching
ratio of entities in the user model.

Given two matches, X and Y

match-data-link(X) = match-data-link(Y) and
else if match-view(X) = match-view(Y)) and

else if match-view(X) = match-view(Y)) and

else if match-view(X) = match-view(Y)) and
match-data-link(X) = match-data-link(Y) and

else if match-view(X) = match-view(Y)) and
match-data-link(X) = match-data-link(Y) and

match-case-link(X) = match-case-link(Y) and

else SELECT Y

match-data-link(X) > match-data-link(Y) then SELECT X

match-case-link(X) > match-case-link(Y) then SELECT X

if match-view(X) > match-view(Y) then SELECT X

match-data-entity(X) > match-data-entity(Y) then SELECT X

match-data-entity(X) = match-data-entity(Y) and

match-data-entity(X) = match-data-entity(Y) and

match-case-entity(X) > match-case-entity(Y) then SELECT X

HEURISTIC SIMILARITY ASSESSMENT FUNCTION

Figure 5. The Heuristic Similarity Evaluation Function

Figure 5 shows the heuristic evaluation method provided by GMA.
It provides a means to use the evaluation criteria in selecting a bet-
ter model which complies with the preference order demonstrated
earlier. This method produces good results using our test data (see
Section 4). Alternatively, the user can dynamically design their own
evaluation methods using Weighted City-Blockevaluation function
based on the above criteria, if they wish to explore specific aspects
of models in the library.

4 Evaluation

For evaluation purposes, we obtained a variety of BSDM models
from different domains. Part of a real industrial model which was de-
veloped by an international automobile company.3 One generic busi-
ness model for small and medium-sized restaurant was developed
based on interviews of three independent family restaurant (ex-
)owners to enlarge our testing base. We also captured example and
standard models from BSDMand stored them in our Generic Model

3 The company wishes to keep its identity confidential.

Library. In total, the library contains about a dozen of models de-
scribed in 15 different views, represented in 25 diagrams.

The evaluation was concerned with the following issues: (1) to
which extent can the tool provide a starting point to help build a new
model; (2) how capable is the tool in helping detect model errors
by retrieving the appropriate reference models; (3) how well can the
system help to retain new knowledge and store it for future reuse.
In other words, we are interested in determining how well the tool
can help to speed-start model building, encourage good modelling
practice and accumulate model building knowledge.

Althoff et al [1] proposed a useful evaluation framework to test
both the theoretical and practical aspects of a Case-Based Reasoning
system. Adapting their method, four types of tests were designed and
carried out. Firstly, by giving only very little information, a test was
carried out on GMA to determine if it can provide any useful assist-
ants by retrieving similar models. Secondly, to test the capability of
GMA to cope with “noisy” models, pre-determined portions of data
were deleted from the original models which were then used as in-
put for GMA. The result was used to compare with the expected (i.e.
perfect) result when the original model was used.

Thirdly, the above automobile industrial model was used as the
user-defined model. Since the automobile model was developed in-
dependently by and for a real business, it would be a good testing
vehicle to demonstrate if CBRtechniques can be used to contribute
to general business model building exercises. The intention was also
to determine whether or not GMA could retrieve similar cases from
the library, given sufficiently different model architecture and entity
names.

One vital step for a Case Based Reasoneris in its ability to retain
and reuse new knowledge. Therefore, the final test was to use GMA
as a modelling tool to develop, generalise, verify and validate (with
the help of KBST-BM) and retain a business model, and then export
it from the Generic Model Libraryas a new model. The results ob-
tained demonstrated that even when provided with only partial and
noisy models, the system was still able to retrieve all relevant refer-
ence cases where they existed in the library. We also observed that the
matching result was largely influenced by the matching of the view
name of the data model. However, in the absence of a matching view
name, GMA still retrieved good matching cases from the library. In
fact, out of the 10 different tests and 29 different sets of data, all of
the tests successfully retrieved the best and good matching cases.

Although the above tests are encouraging, it is possible to produce
scenarios where the system may not produce similarly successful
results, i.e. instead of using a correct partial model, it gives an er-
roneous model containing vital mistakes. For example, when a busi-
ness model uses an entirely wrong view name or a business model
which is grossly misrepresented. When the input model is given in
such a way it will misguide the system to believe that it is more sim-
ilar to another reference model, hence the retrieval case will probably
be incorrect. We, however, believe that the modellers normally have
sufficient judgement not to make such vital mistakes.

During the third test, i.e. given an input model with significant dif-
ferent architecture and entity names, GMA was also able to retrieve
all of the similar reference models for it, and present them in a reas-
onable order of preference. The testing result showed that although
some of our cases in the library are much less complicated and smal-
ler in scale and most of them indeed describe a different domain of
business, useful similarities (in the same business areas across sec-
tors) are still being identified using GMA. This also demonstrated the
fact that at this level of abstraction common practices are exhibited
in different business environments and can be reused.

KBST-BM integrates with GMA together provide an adequate
framework for CBR, i.e. automatic indexing input data, retrieving
relevant cases from library, comparing and analysing input with se-
lected cases, revising cases for current problem, verifying and val-
idating input, and retaining the new inputs for future reference. This
allows us to use the larger KBST-BM BSDMmodelling environment
in the adaptation phase of the CBRcycle. We tested this route using
the automobile and restaurant models.

5 Conclusion

Successful business model development requires both methodolo-
gical and application domain knowledge and experience. Unfortu-
nately, few people possess all of these capabilities. Our studies of
applying CBR and Rule-Based techniques which are based on a co-
herent underlying formal method shows how model building know-
ledge can be obtained, reused and used to provide automatic verific-
ation and validation facilities. We believe that with this support we
are able to enhance the level of knowledge sharing, and ability of
problem solving. More importantly, it adds to our understanding of
how this sort of seemingly informal method can fit into parts of the
design lifecycle which require formal models.

REFERENCES

[1] Klaus-Dieter Althoff, Eric Auriol, Ralph Barletta, and Michel Manago,
An AI Perspectives Report: A Review of Industrial Case-Based Reas-
oning Tools, An AI Perspective Report, AI Intelligence, P.O.Box 95,
Oxford OX2 7XL, 1995.

[2] J. Barber, S. Bhatta, A. Goel, M. Jacobsen, M. Pearce, L. Penberthy,
M. Shankar, and E. Stroulia, Integrating Case-Based Reasoning And
Multimedia Technologies For Interface Design Support, In Artificial In-
telligence In Design, Editor: J. G. Boston, Kluwer Academic Publisher,
1992.

[3] Yun-Heh Chen-Burger, Dave Robertson, and Jussi Stader, ‘Knowledge-
Based Automatic Verification and Validation for Business Mod-
els’, DARPA-JFACC Symposium on Advances in Enterprise Control,
(November 1999).

[4] Yun-Heh Chen-Burger, David Robertson, and Jussi Stader, ‘Formal
Support for an Informal Business Modelling Method’, The Special Issue
for The International Journal of Software Engineering and Knowledge
Engineering, (February 2000).

[5] E. Domeshek, J. Kolodner, and C. Zimring, ‘The Design of a Tool Kit
for Case-Based Design Aids’, Proceedings of the Third International
Conference on Artificial Intelligence in Design, (1994).

[6] B. Faltings, Case Reuse By Model-Based Interpretation, in Issues and
Applications of Case-Based Reasoning in Design, Editor: M. L. Maher,
P. Pu, Lawrence Erlbaum Associates, Hillsdale, N.J., 1997. pp. 30-60.

[7] T.R. Hinrichs, ‘Towards an Architecture for Open World Problem Solv-
ing’, Proceedings of CBR workshop, pp. 182–189, (1988). Morgan
Kaufmann, San Francisco.

[8] IBM United Kingdom Limited, 389 Chriswick High Road, London W4
4AL, England, Business System Development Method: Business Map-
ping Part1: Entities, 2nd edn., May 1992.

[9] Martin King, ‘Knowledge Reuse in Business Domains Experience with
IBM BSDM’, Technical report, Artificial Intelligence Application Insti-
tute, (1995).

[10] Janet Kolodner, Case-Based Reasoning, Morgan Kaufmann Publishers,
Inc., 2929 Campus Drive, suite260, SanMateo, CA, USA, 1993.

[11] M. L. Maher, B. Balachandran, and D. M. Zhang, Case-Based Reason-
ing In Design, Lawrence Erlbaum, 1995.

[12] M. L. Maher and A. Gomez de Silva Garza, ‘Developing Case-Based
Reasoning for Structural Design’, IEEE Expert, Intelligent Systems and
Their Applications, 11(3), (June 1996).

[13] S. Narashiman, K. Sycara, and D. Navin-Chandra, Representation and
Synthesis of Non-Monotonic Mechanical Devices, In Issues and Applic-
ations of Case-Based Reasoning in Design, Editor: M.L. Maher, P.Pu,
Lawrence Erlbaum Associates, Hillsdale, N.J., 1997.

[14] E. Stroulia and A. K. Goel, ‘Generic Teleological Mechanisms and
Their Use in Case Adaptation’, Proceedings of the Fourteenth Annual
Conference of the Cognitive Science, (1992). Northvale, N.J., Erlbaum.

[15] K. Sycara, R. Guttal, J. Koning, S. Narasimhan, and D. Navin-
chandra, ‘CADET: A Case-based Synthesis Tool for Engineering
Design’, International Journal for Expert Systems, 4(2), pp. 157–
188, (1992). http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cadet/ftp/
docs/CADET.html.

Integrating Textual Knowledge and Formal
Knowledge for Improving Traceability

Farid Cerbah1 and Jérôme Euzenat2

Abstract. This article deals with traceability in knowledge
repositories. More precisely, we concentrate on the role of
terminological knowledge in the mapping between (infor-
mal) textual requirements and (formal) object models. We
show that terminological knowledge facilitates the produc-
tion of traceability links and model generation, provided that
language processing technologies allow to elaborate semi-
automatically the required terminological resources. The pre-
sented system is one step towards incremental formalization
from textual knowledge. As such, it is a valuable tool for
building knowledge repositories.

1 INTRODUCTION

Knowledge management has for long been preoccupied by
the relationships between formal and informal knowledge.
The informal is richer and familiar to any user while the for-
mal is more precise and necessary to the computer. It is recog-
nized that linking formal knowledge to informal knowledge
has several benefits in the context of knowledge management
including, (1) establishing the context for formalized knowl-
edge and documenting it, and (2) providing a natural way to
browse through formalized knowledge. A software tool for
supporting link generation, like the one presented in this pa-
per, is an opportunity to kick off incremental, corpus-driven
formalization.
In the field of knowledge management, there have been at-
tempts to provide tools supporting the linking of knowledge
sources [11, 15, 18]. However, the computational support
provided was quite limited. The links had to be established
manually and thus were error-prone and time consuming (not
only the initial setting of the links but, above all, the updating
operations). Besides, the browsing capabilities from formal
knowledge to the informal documents were minimal (e.g., the
hyperlinks had only one target document). In the meantime,
several works focused on the advantages of using a corpus-
based terminology for supporting formal knowledge acquisi-
tion [4, 1, 2]. These contributions emphasize the central role
of terminological resources in the mapping between informal
text sources and formal knowledge bases. We put forth an ar-
chitecture, centered around a terminology extration and man-

1 Dassault Aviation - DPR/DESA - 78, quai Marcel Das-
sault 92552 cedex 300 Saint-Cloud - France – E-mail:
farid.cerbah@dassault-aviation.fr

2 Inria Rhône-Alpes - 655, avenue de l’Europe 38330 Monbonnot St
Martin - France – E-mail: Jerome.Euzenat@inrialpes.fr
http://www.inrialpes.fr/exmo/

agement tool, which enables to generate models from texts
and navigate from one to another through the terminology.
We describe a fully implemented system that provides high-
level hypertext generation, browsing and model generation
facilities. From a more technical viewpoint, we introduce an
original XML based model for integrating software compo-
nents.
The rest of the paper is organized as follows. Section 2 in-
troduces the main concepts of our approach and the basic
tasks that should be performed by a user support tool which
exploits terminological knowledge for improving traceabil-
ity. Section 3 gives a detailed and illustrated description of
the implemented system. Finally, section 4 briefly compares
our contribution to related works and the conclusion provides
some directions for further research.

2 PRINCIPLES

2.1 Traceability in software engineering and
knowledge repositories

In software engineering, it is often stressed that design and
implementation decisions should be “traceable”, in the sense
that it should be possible to find out the requirements im-
pacted, directly or indirectly, by the decisions. In a similar
way, when building a somewhat formal (or at least structured)
repository from document sources, the concepts in the formal
repository must be linked to their original sources in the texts.
This mapping is useful in many respects:

� It helps to ensure exhaustiveness: By following traceabil-
ity links, the user or a program can easily identify the con-
cepts which are not represented in the repository.

� It facilitates the propagation of changes: At any time in
the elaboration process, traceability information allows to
find out the elements impacted by changes (upstream and
downstream).

� When traceability is established with hyperlinks, the
browsing capabilities of the overall repository are in-
creased.

Moreover, in the context of generalized knowledge manage-
ment, traceability of elaborated knowledge from raw text pro-
vides both grounding and arguments for decisions.
In an object-oriented framework, many traceability links aim
at relating textual fragments of the documents in natural lan-
guage and model fragments. Putting on these links manually

Figure 1. Using terminological items to link textual requirements and object models

is a tedious and time consuming task and current tools for re-
quirement analysis or knowledge acquisition provide no sig-
nificant help for doing that job (except [15]).

2.2 The role of terminological resources

In many information systems where both textual knowledge
and formal knowledge are involved to describe related con-
cepts, terminology can play an intermediate role. As men-
tioned earlier, previous works in the fields of knowledge ac-
quisition and natural language processing have shown that
terminological resources extracted from corpora can help in
the incremental formalization processes from texts to formal
models. There exists other demonstrative examples in related
domains, such as product data management and software en-
gineering.
For example, in the DOCSTEP project [9], which deals with
product data management, terminological resources are used
to connect multilingual technical documentation and items
of product trees. Hyperlinks are established between term oc-
currences in documents and corresponding objects in product
trees.
In software engineering, the role of terminological knowl-
edge in the modeling process has often been pointed out
[19, 12, 3]. One of the first step in the modeling process con-
sists in a systematic identification of the technical terms (sim-
ple and compound nouns) in the documents, namely the ter-
minology used to describe the problem. Some of these tech-
nical terms represent concepts which will be subsequently
introduced in the formal models. These terms can be seen as
an intermediary level between the textual requirements and
the formal models. (see figure 1).

2.3 Functional view of a system that exploits
terminology

A system that takes advantage of terminological resources
may involve techniques pertaining to several technological
areas, and particularly natural language processing, informa-
tion retrieval and knowledge management:

Terminology Extraction. In technical domains, many pre-
cise and highly relevant concepts are linguistically rep-
resented by compound nouns. The multi-word nature of
the technical terms facilitates their automatic identification
in texts. Relevant multi-word terms can be easily identi-
fied with high accuracy using partial syntactic analysis [4],
[13] or statistical processing [6] (or even both paradigms
[8]). Terminology extraction techniques are used to auto-
matically build term hierarchies that will play the interme-
diate role between documents and models.

Document and Model Indexing. The technical terms are
used for indexing text fragments in the documents. Fine
grained indexing, i.e paragraph level indexing, is required
while most indexing systems used in information retrieval
work at the document level. Besides, most descriptors used
in this kind of indexing are multi-word phrases. The terms
are also used for indexing the model fragments (classes,
attributes . . .).

Hyperlink Generation. The terminology driven indexing
of both texts and models with the same terminology is
the basis of the hyperlink generation mechanisms. Futher-
more, hyperlink generation should be controlled interac-
tively, in the sense that the user should be able to exclude
automatically generated links or add links that have not
been proposed by the system.

Model Generation. It is quite common that the concept hi-
erarchies mirror the term hierarchies found in the docu-
ments. This property can be used to generate model skele-
tons which will be completed manually.

These features are implemented in the system presented in
the next section.

3 A USER SUPPORT TOOL FOR
IMPROVING TRACEABILITY

The implemented system consists of two components, XTerm
and Troeps. XTerm deals with the document management
and linguistic processing functions, more particularly ter-
minological extraction and the document indexing. Troeps

Figure 2. The integrated system based on XTerm and Troeps.

deals with knowledge management and model indexing. The
model generation function is spread over both components.

3.1 Terminology extraction with XTerm

XTerm [5] is a natural language processing tool that provides
two services to end users:

� Terminology acquisition from documents. It analyzes a
French or English technical documentation in order to
build a hierarchy of potential technical terms. The user can
explore and filter the extracted data via a graphical inter-
face.

� Terminology-centred hypertext navigation. XTerm can be
seen as a hypertext browser. The extracted terms are sys-
tematically linked to their textual contexts in the docu-
ments. The user can easily access the textual fragments
containing term occurrences.

Starting with a document collection, XTerm scans all doc-
ument building blocks (paragraphs, titles, figures, notes) in
order to extract the text fragments. These word sequences are
then prepared for linguistic processing. Additionally, it pro-
vides the mechanisms for indexing and hyperlink generation
from technical terms to document fragments. Hyperlink gen-
eration is a selective process: To avoid overgeneration, the
initial set of links systematically established by the system
can be reduced by the user.
The first linguistic processing step is POS tagging. We used a
rule based tagger based on the Multex morphological parser

[17]. POS tagging starts with morphological analysis which
assigns to each word its possible morphological realizations.
Then, contextual desambiguation rules are applied to choose
a unique realization for each word. At the end of this process,
each word is unambigeously tagged.
As mentioned in section 2.3, the morpho-syntactical struc-
ture of technical terms follows quite regular formation rules
which represent a kind of local grammar. For instance, many
French terms can be captured with the pattern “Noun Prepo-
sition (Article) Noun”. Such patterns can be formalized with
finite state automata, where transition crossing conditions are
expressed in terms of morphological properties. To identify
the potential terms, the automata are applied on the tagged
word sequences provided by the POS tagger. A new potential
term is recognized each time a final state is reached. During
this step, the extracted terms are organized hierarchically. For
example, the term “flight plan” (“plan de vol” in figure 2) will
have the term “plan” as parent and “modified flight plan” as
a child in the hierarchy.
The candidate set obtained after this step is still too large.
Additional filtering mechanisms are involved to reduce that
set. Grouping rules are used to identify term variants. For in-
stance, in French technical texts, prepositions and articles are
often omitted for the sake of concision (the term “page des
buts” can occur in the elided form: “page buts)”3. Term vari-
ants are systematically conflated into a single node in the term

3 Whose English literal translations are respectively: “page of the
waypoints” and “page waypoints”. A plausible equivalent term in
English could be “Waypoint page”.

Figure 3. System architecture

hierarchy.
XTerm is highly interactive. Many browsing facilities are
provided to facilitate the manipulation of large data sets (ex-
tracted terms + text fragments). XTerm can be used as an
access tool to documentation repositories.

3.2 Knowledge modeling with the Troeps
system

Troeps [14, 21] is an object-based knowledge representation
system, i.e. a knowledge representation system inspired from
both frame-based languages and object-oriented program-
ming languages. It is used here for expressing the models.
An object is a set of field-value pairs associated to an iden-
tifier. The value of a field can be known or unknown, it can
be an object or a value from a primitive type (e.g. character
string, integer, duration) or a set or list of such. The objects
are partitioned into disjoint concepts (an object is an instance
of one and only one concept) which determines the key and
structure of its instances. For example, the “plan” concept
identifies a plan by its number which is an integer. The fields
of a particular “plan” are its time constraint which must be
a duration and its waypoints which must contain a set of in-
stances of the “waypoint” concept.
Objects can be seen under several viewpoints, each corre-
sponding to a different taxonomy. An object can be attached
to a different class in each viewpoint. For instance, a particu-
lar plan is classified as a “flight plan” under the nature view-
point and as a “logistic plan” under the functional viewpoint.
This is unlike other object systems, which usually allow only
one class hierarchy.
Object-based knowledge representation provides various fa-
cilities for manipulating knowledge among which filtering
queries (which find objects of a concept satisfying fields and
attachment constraints), similarity queries (function of field

values or attachment classes) involving a distance measure,
value inference (through default values, procedural attach-
ment, value passing or filtering), position inference (classi-
fication and identification) in which the possible positions of
an object or a class in a taxonomy are computed.
Troeps knowledge bases can be used as HTTP servers whose
skeleton is the structure of formal knowledge (mainly in the
object-based formalism) and whose flesh consists of pieces
of texts, images, sounds and videos tied to the objects. Turn-
ing a knowledge base into a HTTP server is easily achieved
by connecting it to a port and transforming each object refer-
ence into an URL and each object into a HTML page. If HTML

pages already document the knowledge base, they remain
linked to or integrated into the pages corresponding to the
objects. The Troeps user (through an Application Program-
ming Interface) can explicitly manipulate each of the Troeps
entities. The entities can also be displayed on a HTTP client
through their own HTML page. The Troeps program gener-
ates all the pages on demand (i.e. when a URL comes through
HTTP). The pages make numerous references to each others.
They also display various documentation (among which other
HTML pages and lexicon) and give access to Troeps features.
From a Troeps knowledge server it is possible to build com-
plex queries grounded on formal knowledge such as filtering
or classification queries. The answer will be given through
a semantically sound method instead of using a simple full-
text search. Moreover, it is possible to edit the knowledge
base. The system presented here takes advantage of this last
feature.

3.3 Communication between the components

The communication between the linguistic processing envi-
ronment and the model manager is bidirectional: Upon user
request, XTerm can call Troeps to generate class hierarchies

Figure 4. Class generation and traceability through hyperlinks

from term hierarchies. Conversely, Troeps can call XTerm to
provide the textual fragments related to a concept (via a tech-
nical term).
For example, figure 4 illustrates the class generation pro-
cess from a hierarchy of terms carefully validated by the user
(a hierarchy rooted in the term “Plan”). The class hierarchy
constructed by Troeps mirrors the hierarchy of the validated
terms (under the root “Plan”).
At the end of the generation process, the created classes
are still linked to their corresponding terms, which means
that the terminology-centred navigation capabilities offered
by XTerm are directly available from the Troeps interface.
As illustrated by figure 4, the Troeps user has access to the
multi-document view of the paragraphs which concern the
“Flight-Plan” concepts4. From this view, the user can consult
the source documents if required.
Data exchanges between XTerm and Troeps are based on the
XML language (see figure 3). Troeps offers an XML interface
which allows to describe a whole knowledge base or to take
punctual actions on an existing knowledge base. This last fea-
ture is used in the interface where XTerm sends to Troeps
short XML statements corresponding to the action performed
by the user. These actions correspond to the creation of a new
class or a subclass of an existing class and the annotation
of a newly created class with textual elements such as the
outlined definition of the term naming the class. For exam-
ple, to generate classes from the term hierarchy rooted at the
term “plan”, XTerm sends to Troeps an XML stream contain-
ing a sequence of class creation and annotation statements.

4 More precisely, this view displays the paragraphs where the term
“flight plan” and its variants occur.

XML representation of object models . We give below an ex-
tract of this sequence, corresponding to the creation of classes
“Flight-Plan” and “Current-Flight-Plan”:

<trp:ADD>
<trp:CLASS>

<trp:CLASSDSC name="Flight-Plan">
<trp:CLASSREF name="Plan"/>

</trp:CLASSDSC>
</trp:CLASS>

</trp:ADD>

<trp:ADD>
<trp:CLASS>

<trp:CLASSDSC name="Current-Flight-Plan">
<trp:CLASSREF name="Flight-Plan"/>

</trp:CLASSDSC>
</trp:CLASS>

</trp:ADD>

<trp:ANNOTATE label="comment">
<trp:CLASSREF name="Flight-Plan"/>

<trp:CONTENT>
A flight plan is a sequence of waypoints...

</trp:CONTENT>
</trp:ANNOTATE>

The term definition filled out in the XTerm description of the
term is added as a textual annotation in the class description.
After these automated steps, the classes can be completed
manually.

This XML interface has the advantage of covering the com-
plete Troeps model (thus it is possible to destroy or rename
classes as well as adding new attributes to existing classes).
Moreover, it is relatively standard in the definition of formal-
ized knowledge so that it will be easy to have XTerm gener-
ating other formats (e.g. XMI [16] or Ontolingua) which share
the notion of classes and objects.
More details about this approach of XML-based knowledge
modeling and exchange are given in [10].

4 RELATED WORK

Terminology acquisition is one of the most robust language
processing technology [4, 13, 8] and previous works have
demonstrated that term extraction tools can help to link in-
formal and formal knowledge. The theoretical apparatus de-
picted in [4], [1] and [2] provides useful guidelines for inte-
grating terminology extraction tools in knowledge manage-
ment systems. However, the models and implemented sys-
tems suffer from a poor support for traceability, restricted to
the use of hyperlinks from concepts and terms to simple text
files. On this aspect, our proposal is richer. The system han-
dles real documents, in their original format, and offers vari-
ous navigation and search services for manipulating “knowl-
edge structures” (i.e., documents, text fragments, terms, con-
cepts . . .). Moreover, the management services allow users to
build their own hypertext network.
With regard to model generation, our system and Terminae
[2] provide complementary services. Terminae resort to the
terminologist to provide a very precise description of the
terms from which a precise formal representation, in descrip-
tion logic, can be generated. In our approach, the system does
not require users to provide additional descriptions before
performing model generation from term hierarchies. Model
generation strictly and thoroughly concentrates on hierarchi-
cal structures that can be detected at the linguistic level using
term extraction techniques. For example, the hierarchical re-
lation between the terms “Flight Plan” and “Modified Flight
Plan” is identified by XTerm because of the explicit relations
that hold between the linguistic structures of the two terms.
Hence, such term hierarchies can be exploited for class gen-
eration. However, XTerm would be unable to identify the hi-
erarchical relation that hold between the terms “vehicle” and
“car” (which is the kind of relations that Terminae would try
to identify in the formal descriptions). As a consequence, the
formal description provided by our system is mainly a hier-
archy of concepts while that of Terminae is more structural
and the subsumption relations is computed by the description
logic system.
A recent contribution in the field of knowledge manage-
ment is that of [20] which provides automatic indexing of
mail messages in a corporate context. However, the indexing
mechanisms do not involve terminological resources.
In the field of software engineering, object-oriented methods
concentrate on the definition of formal or semi-formal for-
malisms, with little consideration for the informal-to-formal
processes [19, 12, 3]. However, to identify the relevant re-
quirements and model fragments, designers should perform
a deep analysis of the textual specifications. The recommen-
dations discussed in section 2.2 on the use of terminological
resources can be seen as a first step.
The transition from informal to formal models is also ad-
dressed in [22]. The approach allows users to express the
knowledge informally (within texts and hypertexts) and more
formally (through semantic networks coupled with an ar-
gumentation system). In this modeling framework, knowl-
edge becomes progressively more formal through small in-
crements. The system, called “Hyper-Objet substrate”, pro-
vides an active support to users by suggesting formal descrip-
tions of terms. The integrated nature of this system allows to
make suggestions while the users are manipulating the text,

and to exploit already formalized knowledge to deduce new
formalization steps. Our system, whose linguistic processing
component is far more developed, could be coherently em-
bedded in this comprehensive modeling framework.
Our work is also related to the WEB!KB system [7] whose
goal is to automatically build large knowledge bases by ana-
lyzing the World Wide Web. The system starts with a prede-
fined domain model, composed of classes and relations be-
tween them. Potential instances are identified on the Web
using machine learning techniques. ”Informal instances” of
predefined classes and relations may correspond to Web
pages, hyperlinks or text fragments. Our approach concen-
trates on the extraction of model fragments whereas this work
focuses on instance identification. No linguistic processing is
involved in this system. Textual material is simply viewed
as bag of words (without stemming). However, some learn-
ing techniques developed in this context could be adapted for
model generation.

5 CONCLUSION

Structured knowledge repositories are by nature highly rela-
tional and the various relations that hold between knowledge
fragments are often expressed through hyperlinks. However,
hypertext editing is an expensive and time-consuming activ-
ity which, nowadays, is hardly processed automatically, even
partially. Our approach emphasizes the need for an active
support to hypertext editing. We have presented a fully im-
plemented system that helps users to link formal models to
their informal sources.
We assumed in this work that the sources had a low degree of
formality, roughly documents with a poorly structured con-
tent. Further investigation will adress the problem of link
generation from semi-formal sources such as SGML and XML

documents. With the success of XML, the availability of such
semi-formal sources tends to increase. We think that link gen-
eration can be significantly improved when the sources are
semi-formal. In particular, XML tagging provides useful infor-
mation about the content structure that allows to accurately
identify the potential link anchors.
We also adressed in this work the issue of model generation
from informal sources. We proposed robust class generation
mechanisms that take advantage of term hierarchies automat-
ically built with NLP techniques. Further work will adress
automatic generation of more complex knowledge structures
such as relations between classes and attributes.

ACKNOWLEDGEMENTS

This work has been partially realized in the GENIE II pro-
gram supported by the French ministry of education, research
and technology (MENRT) and the DGA/SPAé.

REFERENCES
[1] N. Aussenac-Gilles, D. Bourigault, A. Condamines, and

C. Gros, ‘How can knowledge acquisition benefit from ter-
minology ?’, in Proceedings of the 9th Knowledge Acquisi-
tion for Knowledge Based System Workshop (KAW ’95), Banff,
Canada, (1995).

[2] B. Biébow and S. Szulman, ‘Une approche terminologique
pour la construction d’ontologie de domaine à partir de textes
: TERMINAE’, in Proceedings of 12th RFIA Conference, pp.
81–90, Paris, (2000).

[3] G. Booch, Object-Oriented Analysis and Design with Applica-
tions, Addison-Wesley, 2d edn., 1994.

[4] D. Bourigault, ‘Lexter, a terminology extraction software for
knowledge acquisition from texts’, in Proceedings of the 9th
Knowledge Acquisition for Knowledge Based System Work-
shop (KAW ’95), Banff, Canada, (1995).

[5] F. Cerbah, ‘Acquisition de ressources terminologiques – de-
scription technique des composants d’ingénierie linguistique’,
Technical report, Dassault Aviation, (1999).

[6] K. W. Church and P. Hanks, ‘Word association norms, mu-
tual information and lexicography’, Computational Linguis-
tics, 16(1), 22–29, (1990).

[7] M. Craven, D. DiPasquo, D. Freitag, A. McCallum,
T. Mitchell, K. Nigam, and S. Slattery, ‘Learning to construct
knowledge bases from the World wide Web’, Artificial Intelli-
gence, Special Issue on Intelligent Internet Systems, 118(1-2),
69–113, (2000).

[8] B. Daille, ‘Study and implementation of combined techniques
for automatic extraction of terminology’, in The Balancing
Act: Combining Symbolic and Statistical Approaches to Lan-
guage, eds., J.L. Klavans and P. Resnik, MIT Press, Cam-
bridge, (1996).

[9] K. Elavaino and J. Kunz, ‘Docstep — technical documentation
creation and management using step’, in Proceedings of SGML
’97, (1997).

[10] Jérôme Euzenat, ‘XML est-il le langage de représentation de
connaissance de l’an 2000 ?’, in Actes des 6eme journ´ees lan-
gages et mod`elesà objets, pp. 59–74, Mont Saint-Hilaire, CA,
(2000).

[11] B. Gaines and M. Shaw, ‘Documents as expert systems’, in
Proceedings of 9th British society expert systems conference,
ed., Cambridge University Press, pp. 331–349, (1992).

[12] I. Jacobson, Object-Oriented Software Engineering: A Use
Case Driven Approach, Addison-Wesley, 1992.

[13] J. S. Justeson and S. M. Katz, ‘Technical terminology: Some
linguistic properties and an algorithm for identification in text’,
Natural Language Engineering, 1(1), 9–27, (1995).

[14] O. Mariño, F. Rechenmann, and P. Uvietta, ‘Multiple perspec-
tives and classification mechanim in object-oriented represen-
tation’, in Proceeding of 9th ECAI, pp. 425–430, Stockholm,
(1990).

[15] P. Martin, Exploitation de graphes conceptuels et de docu-
ments structur´es et hypertextes pour l’acquisition de connais-
sances et la recherche d’information, Ph.D. dissertation, Uni-
versité de Nice-Sophia Antipolis, 1996.

[16] OMG, ‘XML Metadata Interchange (XMI)’, Technical report,
OMG, (1998).

[17] D. Petitpierre and G. Russell, ‘MMORPH – the Multext
morphology program’, Technical report, Multext Deliverable
2.3.1, (1995).

[18] F. Rechenmann, ‘Building and sharing large knowledge bases
in molecular genetics’, in Proceedings of 1st International
Conference on Building and Sharing of Very Large-Scale
Knowledge Bases, pp. 291–301, Tokyo, (1993).

[19] J. Rumbaugh, Object-Oriented Modeling and Design,
Prentice-Hall, 1991.

[20] D. Schwartz, ‘When email meets organizational memories’,
International journal of human-computer studies, 51(3), 599–
614, (1999).

[21] Projet Sherpa, ‘Troeps 1.2 reference manual’, Technical report,
Inria, (1998).

[22] F. Shipman and R. McCall, ‘Supporting incremental formal-
ization with the hyper-object substrate’, ACM Transactions on
information systems, 17(2), 199–227, (1999).

Learning from experience of incidents in public transportation
A new form of Experience reflection for organizational learning

Cheila COLARDELLE & Jean-Luc WYBO

Ecole des Mines de Paris, Pôle Cindyniques
P.O. box 207, F-06904 Sophia Antipolis (France)

Colardelle@cindy.cma.fr

Abstract
Experience reflection is a management method in which people having participated in the
management of an action (an incident or an accident) analyze the development of the situation,
learn lessons and apply decisions to avoid problems in the future. The following article
describes a reflection review process, which is distinct from the typical processes, in that it
focuses on a new form: the positive experience reflection (PER). The PER method uses the
development of a real event as an opportunity to collect individual experience of several actors
and assemble them into a collective experience. It was successfully validated in 1999 when
applied to several rail incidents of the RATP, the French collective transportation company
operating in the region of Paris.
The PER method accentuates the need for capitalization of all types of experience and know-
how, by proposing a simple and structured way in which these can be shared and perpetuated
among all actors of a particular system at any given time.
By means of three main graphic supports, the PER allows for a reliable analysis of past
incidents and near miss incidents. It traces the unfolding in time and propagation in space of
each incident and potential incident situations. It equally allows for a reliable and complete
evaluation of the degree of danger and status of the failing system. The dynamic evolution of
dangerous situations is thus better understood and the actors’ reaction to the system breakdown
and crisis management skills is also greatly improved.

Keywords: Experience reflection, tacit knowledge, organizational learning, rail incidents

1. Introduction
The development of emergency management experience depends largely on debriefing sessions
and individual learning from operations. Debriefing consists of the analysis of the crisis and
lessons learnt from the evaluation of decisions and actions. Individual learning is the result of
the analysis that each manager carries out of events, decisions and actions, from his point of
view (hierarchical level, position during the incident, etc.).
Collective learning is mainly based on an experience reflection1 (ER) process. It is a post
operational evaluation activity that is used to learn from incidents, accidents and crisis to reduce
their occurrence. ER is composed of four phases: collect events, analyze events, learn lessons
and apply new decisions.

1 From the French expression “Retour d’experience”

The ER process is practiced widely today and is commonly viewed as one of the unavoidable
building blocks in all effective security plans.
The ROE process makes it possible:
• To react to the probability of risks by avoiding the repetition of past errors,
• To react to the gravity of risks by studying how to limit danger,
• To intervene more effectively during the evolution of crisis situations.

The ER process, as we know it today, was practiced informally by the RATP as early as the
beginning of the 20th century. By the early 90’s, the ROE method was officially established as
a compulsory procedure when analyzing rail incidents. Since the last 5 years, procedures are
established by the RATP to store information about incidents and accidents in a database.

Although the ER process significantly reduced the probability of occurrence and the gravity of
the effects of rail incidents in general, it was however, far from being fully effective.
One of the reasons was that the ER consisted of applying a “ bottom-up approach” by
identifying technical problems and supplying solutions at the design and operational levels.
The benefits that the field agents received from the ER process were insignificant if not non-
existent, limiting the effectiveness of the ER in practice.
The idea and birth of the positive experience reflection (PER) method was thus imminent. There
was a need for a more interactive ER method, placing emphasis on the sharing of experience
between actors belonging to a dysfunctional system.

2. The Positive Experience Reflection method
The PER method takes into account the complexity of the systems to which it is applied, one of
the reasons being that danger cannot be fully assessed in isolation. This is the law of Cindynics
reticularity, one of the concepts proposed by G. Y. Kervern [Kervern 94]: all the layers of a
system must be considered in order to fully grasp the correlation between complexity and
vulnerability.
The complexity of the system can be represented by the analysis of three sub-systems:
• Human: employees of all activities;
• Organizational: documents and procedures;
• Technological: technical equipment and machinery.

Fig. 1: The three sub-systems

Human

Organizational Technological

We present the application of the PER method to:
• The derailing of a rail gravel car, in the process of renewal of rail lines2.
• The malfunction of electrical devices3 (remote-controlled switchboards).

These two incidents merited special attention in that:
• They were considered by the actors of the system as being “normal”, an acceptable part

of the system, due to the frequency with which they occur (twice a year, on the average).
Our aim was to highlight the fact that these types of incidents, no matter how apparently
negligible, generate substantial losses in the long term and should therefore be
diminished if not altogether eradicated from the system.

• These particular incidents had taken place a little over a month before the beginning of
this study, therefore the actors still had the incidents “fresh in their minds”, making
interchange of experience all the more interactive,

The PER method has been developed to be applied to any past, present and future incident or
malfunction4. Five separate but complementary steps make up the PER method:
• Step 1: Perception. The maximum amount of data dealing with the incident is collected

from available sources to constitute a comprehensive database on the incident. The data
sources are: observation of the work environment, written reports, interviews,
departmental meetings, informal conversations, etc. This step is the most time and
energy-consuming one due to the length of investigation and the variety of dispersed
accounts.

• Step 2: Analysis. The data is vetted and a questionnaire is compiled, which provides
questions covering a string of key events5 in the systems breakdown. The questionnaire
(series of key events) is presented to two categories of actors: those that were directly
involved and those that were not present when the incident unfolded. The incidents are
dissected in order to identify key events that led to their occurrence. Once each key
event is identified, it is detailed into the 4 phases of what we call a “ particle of
experience”: a situation, a decision, an action and its effect.

• Step 3: Validation. After having been interviewed individually, the actors receive the
results of their interview (a set of particles of experience) and approve or modify them.
Lastly, a collective meeting of all the actors of the system is convened in which the final
results are discussed and, if necessary, modified. This is the “mirror effect” stage,
practiced at individual and collective levels.

• Step 4: Modeling and support to the sharing of experience. Three graphic support
methods are used: the String of Key Events Graph used mainly in step 3, the Fault Tree
and the Cindynics HyperSpace, used in step 5.

• Step 5: Proposal of measures. Practical measures are proposed for the three sub-
systems: Human/Organizational/Technological, based on the experience of actors.

3. Formalization of experience
The first method that can be used is to store incidents or accidents as elementary items. This is

2 in French: “Déraillement d’une ballastière lors du renouvellement des voies ballastées”.
3 in French: “Dysfonctionnement des sectionneurs d’isolement télécommandes”.
4 Past: referring to the use of past written or oral records; Present: incidents which have just taken place; Future: study
of procedures.
5 From the French expression “Fil Conducteur”.

the approach chosen in most databases of accidents, because it is appropriate for statistical use
and for epidemiology of accidents. An analysis of accidents and incidents in different databases
shows that each type of accident corresponds to a series of events that differ by the context, the
development or the consequences. A study of mental representation of actors in the
development of risk management activities [Therrien 98] has permitted the identification of a
generic structure for the development of the incident or accident, based on key events. A more
detailed analysis shows that each of these meaningful events is associated with a decision cycle:
identification of context and event, situation analysis and actions. These key events are more
frequent than incidents, as each incident or accident is very often the succession of such key
events.
They constitute, with the associated decision cycles, the basis of experience of actors that they
use for the management of new incidents. Analogy is the main reasoning process used with
experience: if the actor has already experienced the same event in a similar context, he uses the
memory of his analysis and actions, weighted by the corresponding effects (decrease or increase
of danger) to take a decision in the current situation.

Our objective is to develop a methodology to collect experience and to promote its sharing
amongst actors. We therefore use a key event, the associated decision cycle and the evaluation
of effects to propose the concept of a particle of experience. It represents the smallest element
of experience that still holds onto its properties, that still renders information without distortion
and hence preserves most of the complexity of the situation.
A particle of experience is composed of four main aspects:
• Situation: what was happening at that particular moment in time (event & context),
• Decision: after analyzing the situation, what decisions concerning actions are taken,
• Action: what is the action taken,
• Effect: what is the effect of the action taken until the next key event.
This structure is an adaptation of the model proposed by H.A. Simon [Simon 96] for the
representation of the decision process.

Fig. 2: Particle of Experience: key event and decision cycle

From this generic model, we have defined the set of data corresponding to the two types of
incidents that we have studied. Once all the relevant information has been identified, a
questionnaire is drawn up. The questionnaire serves to identify the key events in the unraveling
of the incident. Each key event (particle of experience) is presented on one page, to serve as a
basis of discussion.
The questionnaires are completely anonymous, having no mention of the names or functions of
the actors that participate. The aim is to eliminate the fear of being reprimanded and to thus

situation

decision

action

effects

create a free and open dialogue. As we will see later, this proved to be effective.
The objective of this questionnaire is to make it possible to communicate on common ground
with the actors of the system and to collect particles of experience.

The collection of particles of experience is achieved in three steps:
• One of the actors initiates the process by telling the story of the incident development,

using the questionnaire. This story is formalized as a set of particles of experience.
• Each of the other actors is interviewed on the basis of the current set of particles of

experience (one at a time), to collect his individual experience: did he experienced a
similar key event? Does he have proposals to manage differently the same key event?
This step represents an opportunity to collect positive experience from actors.

• When all actors have been interviewed, the full set of particles of experience that has
been assembled constitutes the collective experience.

In order to facilitate the collection of particles of experience and the validation along the
capitalization process, a graphical representation has been designed: the string of key events
(SKE).

This SKE graph (Fig. 3) is used after individual interviews and, later, during collective
interviews in order to confirm as closely as possible the accuracy and hence the reliability of the
data. The string of key events is designed to guide the actors in their line of reasoning, in order
for their answers to be complete and structured.

To collect the positive experience reflection, the actors are going through each key event and are
asked what they would have done in a similar situation. Two kinds of possibilities were
identified:
• Possible positive action: action that could have been applied in order to avoid/stop to the

system breakdown. Had it been applied, this action may have made it possible to avoid
the occurrence of the incident altogether. This is a possible action that the actors would
want to encourage;

• Possible negative action: this relates to feasible action that could have been applied, but
that would have led to another incident or that may have even aggravated the
deterioration of the system. This is a possible action that actors would want to avoid.

Emphasis is placed not only on what actually happened, but also, and more importantly, on
what could have happened. Each of the actors interviewed is able to provide his or her know-
how freely and share this experience with other participants.

4. Validation
After each interview, the actors receive a copy of the questionnaire results in the form of a SKE
Graph that traces:
• The exact events that took place during the period in which the system malfunctioned in

the form of real particles of experience (i.e. tracing what really happened).
• The possible positive and negative events that could have occurred in a similar situation

in the form of hypothetical particles of experience.

We call this step “mirror effect meeting”. It was applied to each actor, on a one-to-one basis (to
an actor after his or her individual interview) and in a group meeting that was held after all the
actors had partaken in the individual interviews.

This collective validation step allows for the coming together of actors in the same department,
actors belonging to different departments, and those with different functions and
responsibilities, who would not normally meet or be seen together. It allows for communication
between the actors, elicitation of tacit knowledge and sharing of positive experience because
each actor is encouraged to submit and review possible actions and solutions.

Individual and collective learning thus takes place and the actors acquire an increased sense of
team spirit. This was confirmed by a number of actors after the collective “mirror effect
meeting”: the actors felt motivated by this participative process and expressed the feeling that
they had at long last been able to communicate their feelings, to interchange ideas, be heard and
even to learn from the experience of others.

5. Modeling and support to the sharing of experience
The efficiency of the PER method is supported by three graphic representations: SKE graph
(String of Key Events), Fault Tree graph and Cindynics hyperSpace. The benefits of graphic
representations should in no way be underestimated. Indeed, they proved to be an invaluable
comprehension aid, allowing the actors to better visualize the different aspects of the incidents.

The String of Key Events Graph (Fig. 3) is a visual support, tracing the actual and possible key
events that played a part in the evolution of the system malfunction. Real and possible key
events were identified thanks to the individual and collective experiences of the actors. In this
way, the PER method was able to draw from experience and know-how in order to identify real
and could-be key events:
• From the start (system deterioration);
• During the actual incident (system breakdown);
• Through to the end (normalization of the situation: system is back in its “normal” state).
The central line represents the development of the incident as the succession of key events and
decision cycles that really occur. On the left side are represented the decision cycles that make
the situation easier (decrease the danger or stop the incident), and on the right side, those that
aggravate the situation (increase danger or create a new incident) are given.

The Fault Tree Method (Fig. 4) was incorporated in the PER method for various reasons:
Firstly, because it is one of the most commonly used methods in the field of safety analysis.
Secondly, and contrary to the SKE Graph that traces the unraveling in time of an incident, the
Fault Tree Method represents, at a given moment in time, all the possible combinations of
events that could lead to the system breaking down. It includes also safety barriers (devices,
procedures or human actions aiming at reducing/stopping the propagation of the incident). The
fault tree is created during the design of the system. At each occurrence of an incident or
accident that was not identified, it must be updated to take into account the causes and
determine the appropriate safety barriers. The PER method has proved to be efficient in
supporting this update.

The Cindynics HyperSpace Method (Fig. 5) helps to grasp the level of danger inherent to the
malfunctioning system at any given time: before, during and after the incident. This qualitative
method can be seen as a framework to assess the global level of danger, which is represented by
means of five Cindynics dimensions:

• Statistical dimension: information on the system6, past incidents, databases,
• Epistemic dimension: models, representations of the system,
• Objectives dimension: the direct finalities and objectives of the system,
• Rules dimension: organizational rules and procedures governing the system,
• Values dimension: the fundamental values of the system.
Before and after each particle of experience, each dimension of the HyperSpace is analyzed and
elements affecting the danger of the situation are highlighted along the corresponding axis.
Through this approach, it is possible to visualize the variations in the level of danger during this
cycle.

6. Conclusions
In this application to rail incidents and accidents, the PER method has demonstrated a
significant potential to improve the efficiency of incident and accident management by eliciting
tacit knowledge. It allows for:
• Crisis Management. The actor draws on past experiences and is thus better equipped to

deal with incidents, should these arise.
• Prevention. The sharing of experiences allows for the compilation of security barriers,

better adapted measures to be applied in order to reduce the likelihood of occurrence and
the gravity of the incidents.

• Establishing of a collective memory. The PER method promotes the capitalization and
the perpetuating of the experience and know-how of the actors in a system.

• Strengthening communication channels between actors. Cooperation of actors in the
same department as well as different departments are reinforced if not completely set up.

It is a straightforward and structured method, applicable to any type of incident of the past,
present and future. Despite the benefits of the PER method, there were obstacles that arose,
namely:
• Difficulty in assuring the participation of all the actors in the PER method. The usual

ER process is viewed mainly as an inquisition, in that senior management often
associates the experience reflection process to inspection, reprimands and sanctions.

• Different levels of involvement on the part of certain departments. Some departments
especially those not directly involved in high-risk activities, felt less concerned with
safety and security measures, and gave little importance to their participation in the PER
method. Indeed, there is still much to be accomplished in the field of risk awareness.

There are plans in place for the PER method to be applied to several problems of risk
management in industrial companies, within the framework of a research and development
group involving both academic and industrial partners.

7. References
[Kervern 94] Kervern G.Y., Latest advances in Cindynics, Economica, 1994
[Simon 96] Simon H.A. “The sciences of the artificial“, MIT Press, 1996
[Therrien 98] Therrien M.C., “Pragmatisme et modèles systémiques pour la compréhension des
processus de gestion des feux de forêt: apprentissage et expérience lors d’événements
complexes“, Ph.D. thesis, Ecole des Mines de Paris, November 1998

6 By System, we mean human, technical and organizational aspects.

Fig. 3: the String of Key Events Graph

Real Cycles
Cycle A: Definition and cutting electrical current of sectors where works will take place,
Cycle B: Power restored to sectors that underwent works,
Cycle C: Incident on line due to the non-uniformity of electrical current,
Cycle D: First measures applied following electrical current incident,
Cycle E: Technical solution found for the electrical current incident.

Hypothetical Cycles
Positive
Cycle 1: Maintenance of infrastructures outside working hours,
Cycle 2: Power supply switched off individually for all the electrical devices in the sector where
the works will take place,
Cycle 5: Electrical device testing included in the works planning schedule,
Cycle 7: Increase of responsibility actor awareness,
Cycle 8: Information Supplied to passengers.
Negative
Cycle 3: Power on, and works done on the electrical devices in the work site,
Cycle 4: Lack of respect for safety regulations before works on site,
Cycle 6: Lack of respect for rules and regulations that should be observed in a work site.

Cycle 5 Cycle 2

Cycle 1

Cycle 7

Cycle 8

Cycle 3Cycle 4

Cycle 6

Cycle A

Cycle B

Cycle C

Cycle D

Cycle E

Initial situation

Final situation

End of incident
New incident

Fig. 4: the Fault tree Graph

Safety Barriers

B1: Passengers notified via loudspeakers and visual announcements
B2: Awareness of latent risks
B3: ESE department notified of malfunction; emergency plan activated
B4: Drawing up of control measures following works
B5: Annual electrical tests outside working hours
B6: Awareness of actors promoted about the consequences of unsatisfactory work
B7: Begin works on time and if not possible, do less during the night

Passengers delay

Other causes

« Line incident » : 3
intensity overload cutouts

Train comes to a standstill

Other causes
Lack of respect of
safety measures

Abnormal reading from
central command post

Discontinuity in
power supply

Pantograph
malfunction

Malfunction of
infrastructures

Reversing of control
and commands of SIT

Faulty wiring from
last intervention Lack of

maintenance

B1

B2
B3

B4

B7

B5

B6

Works not on scheduleInsufficient training
and awareness

Figure 5: the Cindynics HyperSpace graph

Dimension of danger Start of the incident

(after Cycle A)

End of the incident

(after Cycle C)

Data Experience of actors in this type of
incident

Experience of other electrical
current incidents

Models Methods applied during works and
maintenance

Methods applied towards the end
of working hours

Objectives Carry out working orders 525 and
527

Handing over of fixed
infrastructures in good working
order and on time

Rules Night works planning schedule
and safety regulations

Measures to be implemented after
electrical current incidents

Values Stick to the works planning
schedule

Observe safety regulations

Data

Models

Objectives

Rules

Values

Multiple Views on Consensual Categories: A Contribution for Corporate
Memory Management

Sylvie DESPRES
UFR Mathématiques et Informatique

Université René Descartes
45, rue des Saints-Pères

75006 PARIS
tel : (33) 01 44 55 35 43

email : sd@math-info.univ-paris5.fr

1- Introduction

In this paper, the properties of a system providing access to a core concept in the knowledge
management of an organization are defined. One of these properties is the ability of the
system to deal with multiple points of view on a concept. This work refers to accidentology
and the studied concept is the accident scenario.

This concept of accident scenario has been used since the late eighties in French research on
road safety. Various research tasks on road accidents and on safety-study methods led to the
progressive development of this concept. A scenario can be defined as a prototypical
unfolding corresponding to a set of accidents which are similar from the point of view of the
chain of facts and causal relations, throughout the different accident stages. This concept is a
means for synthesizing knowledge extracted from accident case studies, based on in-depth
investigation methods, or on detailed analyses of police reports. Applications of this concept
are developed both in the area of traffic accident research and in the area of safety
studies(diagnoses), thus preparing engineering measures or local safety policies.

In the field of safety studies, the design of scenarios proved its utility to reach a total view of
the local phenomena and associated preventive possibilities by starting from case analyses. In
the long run, researchers feel that case analysis in the framework of diagnoses tends more and
more to concentrate on the recognition of the accident scenario, already precisely described
and documented. Researchers underline the need for continuing the research on the concept of
scenario when considered as accident knowledge. The robustness of these scenarios with
respect to expertise, to road site differences, to mathematical methods and to tests of
similarity should be clearly established before using them as an efficient help in accident
analysis.

The research works conducted at CRIP5 since 1995 on the representation of accident scenario
and system for automatic recognition of accident scenario, in co-operation with MA (Salon de
Provence Mechanisms Accident Department) of INRETS (Institut National de recherche sur
les Transports et leur Sécurité) on the one hand, and on the other hand with INRETS and
INRIA (knowledge intranet server), are also related to this concept. In this framework, the
concept of scenario is used for accident type recognition, for investigators’ training, and for
accidentology knowledge improvement.

Therefore, the scenarios constitute a core concept of capitalized knowledge at INRETS. They
are created and used by its researchers. In the end, they will be used by the investigators of
this organization and by people outside it. There exists many reports from different authors
that describe the concept of scenario from their own points of view. They have been written
during the last ten years. Moreover, each of these authors have elaborated scenario corpora
which are available in paper form. Some recent papers have been written to take stock of the
definition and the use of the scenario in accidentology.

The corporate memory of MA is already well developed. The aim of this work is to define
the properties of a tool which will make possible it to use and to maintain this corporate
memory in an interactive way, to support and even promote its evolution. A scenario editor
integrated into a knowledge server or a recognition system seems a suitable tool.

To define the properties of this tool, we have determined the various representations useful for
the reasoning of a recognition system and for the assistance to the reasoning of users, other
than the designers of these categories. The scenarios established by the researchers and the
contexts in which they were produced are also studied. A co-operative activity has been
initiated to build a first corpus of consensus scenarios.

The studied co-operative activity consists in the design of consensus scenarios from a corpus
of heterogeneous ones. A scenario from this corpus constitutes a prototypic unfolding of
events, representative of a cluster of similar unfoldings. The corpus heterogeneous nature is
due to the multiplicity of authors’ representations, to the tasks they were intended for and to
the authors’ aims. Therefore, building consensus scenarios requires that authors agree on the
relevance and the formulation of their initial scenarios, then on the form of the resulting
scenarios.

The study of this collective design activity reveals the founding structures of these scenarios:
description logic, description language, representation mode. It also provides representation
modes which rely on these structures. In this study, the cooperation process summons up
knowledge to clarify the essential elements that give structure to these categories. Cooperation
is considered as a knowledge acquisition technique for a collective design task in a context of
multi expertise.

Work about the psychology of expertise, about the role of multiple representations in training,
about terminology and ontological engineering, about the studies of the links between experts’
expertise and language, enabled us to determine the forms of representation and the suitable
language of description to be retained. They also enabled us to justify these choices. We
retained the description logic, the description language and the modes of presentation of the
initial representations as fundamental elements to construct these consensual representations.
We propose the use of a terminology of the field and the use of an ontology to give access to
these various components of the scenarios.

In the following sections, after presenting the domain concerned, the properties of the
scenario editor are described first, then the protocol used for the collective design of
consensus scenarios. After, the elements on which the experts rely upon for starting their
cooperation are introduced and the consensus scenarios are characterized. Finally, the
conclusion shows that in the case of a previously built memory, techniques of knowledge
acquisition are useful to elicit the implicit knowledge structures and therefore to give access
to these structures.

2-Domain of accidentology

Understanding accidents, reconstitution and knowledge unfolding branches of activity in
accidentology.
The road accident
A road accident is presented as a complex event. The accident is a process defined by a
sequence of facts necessarily located in time (logic sequential course of events) and space
(logic of the followed trajectories, generally rather linear) and by a causal logic which relates
these facts between them (former events will determine posterior events). In a systemic
approach, an accident is seen as a symptom of a malfunction of the HVI system (Human,
Vehicle, Infrastructure), i.e. a failure of the adaptations of the system components [Fleury,
1998]. The HVI system helps accidentologists in their analysis and understanding of
accidents.
The models
Models in the domain theory permit to represent and explain the unfolding of an accident.
Two models are considered here because they structure the unfolding representation: the
functional model and the sequential model.
Actually, the unfolding of an accident is seen, by the experts, as a chronological succession of
situations by means of the sequential model : the driving situation before the accident; the
accident situation; the emergency situation; the crash situation. The exit of each phase
determines conditions for entry into the following phase. The functional model is a driver’s
model. It is based on psychological functions and the psychomotor activities implied in
vehicle driving.
The accident scenario
An accident scenario is defined as a prototypical unfolding corresponding to a set of accidents
which presents similarities from the point of view of chain of facts and causal relations,
through different accident steps. It results from an expert analysis of the accident. As such, the
various situations of the sequential model are clearly identified. The scenario is presented
according to the sequential model. In each situation, the concerned mechanisms are described.
The scenario is also an important synthesis tool in accidentology. It helps to draw more
general conclusions in the case of accurate accident analysis and leads to global action on
infrastructure. But it strongly depends on the experts’ preferences, and on the tasks they have
to achieve.

3- The scenario editor

Corporate memory in this paper is considered as “an explicit, disembodied, persistent
representation of knowledge and information in an organization, in order to facilitate its
access and re-use by members of the organization, for their tasks”[O’Leary and al.,1998 ;
Van Heijst and al., 1996 ; Rabarijaona and al., 1999].

Activities underlying knowledge management can be decomposed in six steps : (1) Detection
of needs in corporate memory, (2) Construction of the corporate memory, (3) Diffusion of the
corporate memory, (4) Use of the corporate memory, (5) Evaluation of the corporate memory,
(6) Maintenance and evolution of the corporate memory [Dieng et al., 1998].

Cooperative practices in multi disciplinary work at MA have led the researchers to build a
corporate memory. This memory is made up of accidentology knowledge, of disparate know-
how and heterogeneous points of view. The scenarios constitute a significant part of the

accumulated knowledge. The tool described here will make it possible to use and maintain
this memory in an interactive way, to support and promote its evolution. Consequently, this
contribution mainly addresses points 2, 3, 4 and 6.

A brief recall of the important points to consider in each of these three steps is presented
below. In step (2), the adopted techniques depend on the sources from which the corporate
memory can be built (in this study: experts, paper reports, technical documents and case
studies) and the nature of the needed corporate memory according to the intended users. In
step (3), the distribution to specially selected members of the organization [Van Heijst and al.,
1996] can be passive or active: either the user can search for the needed information or
knowledge distribution can be decided systematically and taken in charge by an adequate
department of the organization. In step (4), the information search by the authorized members
of the organization should be adapted to the users’ needs, to their activities and to their work
environment. In step (6), problems related to the addition of new knowledge, removal of
obsolete knowledge and coherence underlying a cooperative extension of the corporate
memory must be tackled.

The scenario editor design relies on these considerations. It enables selective accesses to a
persistent scenario basis, through visualization, creation and modifying capabilities. These
accesses are supported by a related ontology and conceptual models of the domain.

The scenario editor is designed with two tasks in mind: diagnosis and design.

Diagnosis is a task carried out during accident analysis. The end-user is an investigator or a
researcher and he only uses the consultation mode of the scenario editor. Consulting a
scenario gives access to its multiple representations (a text, a schema, a picture, a critical
path). It also makes the description logic of this scenario understandable. The description
language used to describe scenarios is accessible by the links established between the domain
terminology and the verbs used for scenario description. An ontology gives a view of term
organization according to the type of action considered and the situation in which they occur
with their arguments.

Design is a task which is generally accomplished by the experts at the time of activities such
as the diagnosis (prospective study, safety project, urban project), the thematic study
(prevention campaign, etc.). In this case, the end-user writes scenarios which are
representative of a set of similar accidents (according to their unfolding). According to the
current task, criteria of writing are adopted. The terminology helps as a memory assistance for
the activity of writing. However, the terminology must be able to evolve in order to describe
new incoming scenarios. Acting as a feedback for the expert activity, the tool will help to both
enhance and precise the domain terminology.
The description logic is left to the experts’ choice. The scenarios are organized according to a
hierarchy or a flat organization and can be retrieved in both ways. In any case, once a new
scenario is written, it is appropriate to check if it already appears in the basis or if it must be
added. A measurement of similarity is currently under evaluation in order to determine the
proximity between the considered scenarios.

Another useful feature during the design task is the ability to clone an existing scenario and,
by slightly modifying its representation, to create a new one, refining an existing category.

The basic architecture of the scenario editor is sketched in the following figure.

Scenarios are stored in a database combining, for each scenario, a set of fixed attributes and
an object model. Classification attributes are used for selection purpose while the object
model supports the different kinds of representations for a scenario. This model heavily relies
on the strong concepts of the domain, namely the HVI model, the sequential model, the
functional model.
Terminology proposition stored in the ontology database takes its arguments (H, V, I) from
the object model. Therefore the link with the ontology is made via these arguments in order to
ensure consistency of the internal representation.

Graphic Interface

Diagnosis
 Method Construction
 Teaching
 Action definition

Thematic study
 Research orientation
 definition

Index of the tasks

Academic

Functional

Pragmatic

Index of the kind of required
speech

AcademicMedia

Organization Staff

Production research report

Personal Works

Index of the targeted
audience

Corpus of scenarios

Pedestrian
Scenarios

Scenarios
Eure et Loir

Scenarios
Bouches du

Rhône

Consensus
scenarios

Terminology Ontology

Domain Models

 H
V I

Sequential
Model

Functionnal
Model

....

Description Logic

Flat
organization

Hierarchy

Text

Schema and text

Picture

Critical path

Index of representations

For the user, at the graphic interface level, different views (four) may be alternatively
displayed corresponding to different representations of the same scenario. Editing is done
with the help of both the ontology database and a library of predefined objects (schematic or
drawn).

From now on, it will be possible to choose the representations in adequacy with the tasks
undertaken. The database should be able to evolve in the course of time and must reflect
further improvements concerning the conceptual aspects of the scenarios. Thus, the
researchers should be able to add or modify elements related both to scenarios and to their
categorization. More beginners should be able to understand the underlying reasoning and to
learn how to design such scenarios. The idea is also to couple this database with a scenario
recognition system and to use it as a layer of additional knowledge associated with a
knowledge server.

4-Method for defining the properties of the scenario editor

The method for defining the properties of such a tool consists in a consensus design protocol
of scenario and in an analysis of the result.

The consensus scenarios are conceived to be used by the researchers, the investigators and
outside users. It is thus mandatory to make the various elements of the components
understandable: the description logic, the description language and the various
representations. The idea is to have a scenario basis made up of the corpora of existing
scenarios in a sufficiently universal form. This will allow the re-use the scenarios in different
use and study context.

Universal structures involve a risk of standardization of the initial structures i.e. the drastic
gumming of differences. This led to the dissatisfaction of the researchers who did not recover
all the elements of their own structures. Moreover, such consensual structures are useless
because of their non-representativeness. To avoid this risk and in agreement with the
researchers, the decision to release the particularities of the various representations and of the
different modes of reasoning was taken. This orientation made it possible to focus more
particularly on these differences and to understand the description logic better.

The analysis of the collective construction of consensual categories is based on the use of a
cooperation process in a multi expertise context. This presentation is supported by works
relating to:
the psychological aspects of the expertise [Caverni, 1988,1991], [Chi, Feltovitch, Glaser,
1981], [Dubois, 1992], [Dubois, Bourgine, Resche-Rigon, 1992], [Falzon et Visser, 1988,
1989], [Gobbo, Chi, 1986],[Visser et Falzon, 1992];
the relations between expertise and language [Prince, 1991, 1992,1996];
the status of multiple representations [Alpay, Giboin, Dieng, 1999], [Bromme, Nückles,
1999], [Tabachneck-Schijf, Leonardo, Simon, 1994, 1997], [Hermina, Tabachneck-Schijf,
Simon, 1999].

These various works enabled us to understand better the role played by the cognitive and
socio-cognitive aspects. This analysis was carried out in order to point out the useful elements
for the construction of a consensus scenario database.

4-1 Protocol for collective design of consensual categories
Before going any further it is necessary to define the terminology that is used in this paper.
Categorization refers to the activity of category design and to its result i.e. the whole of the
designed categories. Recognition refers to the activity which consists in judging if an object is
one instance or belongs to a subcategory of an already existing category. Categorization is
obviously not fixed once for all. The categories obtained at the conclusion of a categorization
activity provide data on the organization and nature of these categories (categorical standards,
information on typicality, and the subcategories’ basic-level). The results relating to a
categorization process can be reported according to the logic of description, the level of
description and the extension of categorization. The logic of description refers to the
categories obtained and the reasoning used to constitute them. The level of description
underlines the links with the studied cases. The extension of the category relates to the
coverage of the number of possible cases. It is also established that according to the types of
expertise and the tasks carried out, categorizations differ. The experts involved in this study
had the task to collectively rebuild a categorization, starting from already established
categorizations, within the framework of diversified tasks (diagnosis, thematic study,
information campaign, etc.). These new categories are those on which the end-users engaged
in tasks of different nature (re-writing, designing, training) will be able to rely during their
activities.

The activities of designing and writing were carried out by a group of researchers who were
experts in scenario design. The protocol used was broken up into two sorts of working
sessions: with an expert alone, and with a group of experts, building consensus scenario
collectively. The individual sessions included an initial meeting and working sessions on
corpora provided by other authors.

The purpose of the initial meeting was to make sure that researchers agreed on the concept of
consensus scenario. Once the interest of the notion of consensus scenario was accepted, the
cooperation for designing these scenarios was established efficiently between the experts. The
first result was the definition of what, within this particular framework, a consensus scenario
is. A consensus scenario is an abstract entity which corresponds to cases of accidents
presenting an overall similarity in their unfolding and whose relevance, from the point of view
of the phenomena, is the object of a consensus between experts.

The experts worked collectively on a corpus of generic scenarios which they had already
designed or which had been built by beginners in accidentology supervised by the members of
the group. The design of generic or consensus scenarios is founded on common models which
form part of the corporate culture.

The individual working sessions enabled to clarify the authors’ description logic. Each expert
uses his/her own description logic, his/her own representation modes and his/her own
description language of scenarios. The description language is generally shared by all the
researchers, but their description logic differs in some ways and the representation modes
vary according to researchers. These various elements play a part in the collective design but
generally they are not explicitly quoted.

4.2 The designed consensual categories
The design of consensual categories (consensus scenario) was carried out during collective
sessions. This design relies on studies and comparisons of scenarios from studied corpora.

The experts’ comparison strategy is based on two essential points, the agreement on the
existence and on the writing of the considered scenario.

The scenario existence relates to the validity of the regrouping made by an expert during a
particular study. The discussion on the regrouping emphasizes the specificity of each expert’s
description. The differences between the experts are explained quite easily when the
reasoning which led to the regrouping is available. The adjustment can raise more difficulties
and even fail if the ways of reasoning are too far apart. This occurs primarily when regrouping
is worked out by “novices”. The scenarios which describe different points of view are
preserved.

Then, when a consensus is acquired on the relevance of clustering, the experts may not share
the way adopted to account for the phenomenon associated with clustering. In case of
disagreement, the discussion deals with the elements structuring the prototype. The conflicts
between experts are easily solved insofar as the elements characterizing a scenario are
relatively standard (infrastructure, maneuver, human component, etc.).

Finally, once a consensus is obtained both on the existence and on the way of clustering, a
writing remains to be adopted. Two processes underlie the writing: the reference to cases of
accidents and the recourse to memory. The description level is dependent on the adopted
process. The closer the expert is to cases, the more detailed the scenario is. According to
Tulving [1976,1983], the descriptive elements of scenarios written by using a recollection
process can be considered as indices of recovery.

The researchers implied in this study have different initial backgrounds, professional
experiences and varied expertise. They all are engineers and experts in accidentology in
varying degrees. Their position in the organization is different but they all have contributed to
the development of generic scenarios. Their professional activity can be divided in three parts:
fundamental research, finalized research and participation in the development policy of the
organization.

According to the kind of speech they use, the researchers do not report the results in an
identical way. For each researcher, speech includes the academic, functional and practical
levels in varying degrees. Their activity is essentially interdisciplinary. They build models for
the comprehension of complexity by using inductive and hypotetico-deductive reasoning.
They know about the academic speech but are more familiar with the systemic one. Practical
work is essential for them to understand and act.

Variability in the use of the various types of knowledge mentioned above is related to
“cultural pre-built”, to know-how and to individual preferences. The use of these various
types varies according to the activities carried out (diagnosis, thematic studies), the tasks done
(method construction, teaching, action definition, research orientation definitions, result
dissemination) and the audience concerned (academic media, organization staff, production
research report and books published for their organization, or works published in their own
name). Whoever the researchers are, their productions include re-formulations and
demonstrations, generally allotted to the academic experts, descriptions tuned to the
objectives of the organization and pervaded with the corporate culture generally associated to
the industrial experts and their skills.

Consequently the representations associated with the consensual scenarios must reflect these
various productions. Differences are clarified in the writing of the generic scenarios. The form
of speeches of the researchers reveal a language situated at the various levels previously
quoted. These languages are relatively close.

The researchers use multiple representations to write the generic scenarios. The choices for
these representations depend mainly on the tasks carried out, on the aspects they wish to
highlight and on their preferences regarding result presentation. Moreover, certain aspects
can be explained better in a representation than in another, which makes the various kinds of
representations complementary. The different representations are used for knowledge
assembling (coordination of the various representations during the reasoning) and represent
different points of view (cognitive component of the expertise connected to the task).

Three great classes of scenarios emerge:
− The robust scenarios which are based on experts’ agreement.
− The hypothetical scenarios which are clusters. The appearance of new cases reinforces or

questions these clusters. They have a very fragile basis, they are likely to be questioned or
to be transformed.

− The aberrant scenarios, which are so few that they can’t be seen as clusters, but which are
sufficiently representative to be preserved. They are generally associated with a single
study. In this case, the accident instance delimits the scenario.

The extension of categorization depends entirely on the mode of category clustering.

4.3 Clarification of the elements required for accessing scenarios

The protocol analysis enabled us to clarify fundamental elements for designing consensus
scenarios: the description logic, the description language and the multiple representations to
write the scenarios.

These elements give access to the consensual categories. It is consequently advisable to
define the means needed to translate these elements into a form readable and comprehensible
for the end-users. An ontology was conceived in order to associate the tasks of the experts
with their types of expertise in order to determine the useful representations. The description
logic is also dependent on the chosen representation. We built a terminology from two
corpora of accident scenarios (pedestrians, open-country) to make it possible to understand
the terms employed by the researchers.

The description logic

The research about expert activities [Bourgine 1989, Gobbo and Chi, 1986.] has shown that
expertise comes into the picture not only to modify the abstraction level of categories but also
leads to a deeper reorganization of category structure in building hierarchies from different
principles. The generic scenario organization relies clearly upon the basic representation level.
For consensus scenarios, clustering is made according to the mode chosen by the end-user. A
presentation of the different clustering organization (flat or hierarchical) ways is explicitly
provided by means of examples for the various kinds of logic available.

The description language

The description language of the scenarios is common to all researchers. We thus built a
terminology of the field which can allow the writing of new consensual scenarios. The

construction of this terminology fits in the framework of the theoretical and methodological
proposals formulated during TIA conference [Bourigault and Al,1999]. We went from the
text down to the terms. A set of terms denotes a concept which is here centered on accident
analysis. The terms selected and described are verbs because they are predominant in the
expert’s description as stable action descriptor. The result of the terminology description can
take several forms such as a tree structure for terms or a flat table of terms with their related
definitions.

The corpus used to build the terminology consists of a set of scenarios concerned with
pedestrians. The analysis of this corpus was carried out manually. We extracted the relevant
verbs. We structured this terminology, respecting the two great phases required by the
construction of a terminology [Daugan and al., 1994]. The verbs were first of all extracted
from a relevant corpus for the application. Then we added semantic links in order to obtain a
more complex terminological network. Thus, the verbs are typified according to the
situations in which they appear and are directly related to the sequential and functional
models.

Multiple representations

In the prototype theory [Rosch, 1978; Dubois D., 1991; Kleiber G., 1990], the concepts are
organized according to a basic level, an on-ordered level and an under-ordered level. The
basic level is the operational level of the concept. It evolves according to the expertise
because of the purposes required by the tasks to which the individuals are confronted.

In the case of the scenarios, the textual and diagrammatic representations are both at the basic
level but serve different purposes. Thus, rather than choose a single representation for the
consensus scenarios, we worked out a textual representation and a diagrammatic
representation. The drawing representation is associated to these two representations, for it
gives important information on the maneuver. The textual representations of the consensus
scenarios are mitigated and consequently more synthetic since description moves away from
the cases. A list of accident factors is preserved, the explanatory elements are gummed. The
diagrammatic representations are little transformed. They can sometimes be enriched by the
introduction of accident factors.
During this study another representation named “critical path” has been designed. It is based
on the domain models and on the established terminology. It constitutes a means to clarify the
implicit knowledge used for analyzing accidents.

E 2

H 2

V 2

E 2

H 2

V 2

H 2

E 2

V 2

H 1

E 1

H 1

E 1

H 1

E 1

Inside agglomerat ion,
la rge way.

To fol low another vehicule
To approach a pedestr ian cross ing

To cross

Braking
or
Braking and Lateral deport

Crash

Pedestr ian often child (9 -13)
Do not take
information again

To over take the
fol lowed vehicule

The critical path contains the terms used both in scenarios and accidents. For that reason, it is
suitable for different uses (diagnosis, analysis, creation). Although this representation is based
on parts of existing models, it is new in the accidentology field.

5- Conclusion

For INRETS, the need to effectively develop a corporate memory which already exists
(mostly in paper form) and which is already structured, excluded the choice of a simple
document archiving even if the documents were easily accessible and shared. Indeed, in
addition to a specific terminology, this memory encapsulates knowledge and modes of
analysis established during many years of know-how. This is why a thorough analysis of these
concepts and these modes was necessary and could not be made without resorting to the
analysis of a consensual co-operative activity. The notion of critical path and the scenario
editor constitute a core concept and a central tool to manage the corporate memory of the MA
department dynamically.

The resulting tool, intended to make this memory evolve is thus more than a simple repository
for these data. It must have properties which enable it to enrich this memory starting from the
corpora of existing scenarios. The construction of a terminology of the field was essential to
allow the end-users to grasp the meaning of the terms commonly used. Ontology explicits the
relations binding knowledge inside the scenarios and is connected to the various elements
useful for the tasks carried out by the experts.

6- References

Alpay L., Giboin A., Dieng R. - Accidentology : An Example of Problem Solving by Multiple
Agents with Multiple Representations, in Learning with Multiple Representations, Pergamon,
pp.1998.
Bourgine R – Contribution à une théorie de l’auto-modélisation. Thèse de l’Université d’Aix
en Provence, 1989.
Boshuizen H.P., van de Wiel W.J. – Using Multiple Representations in Medicine : How
Students Struggle with them, , in Learning with Multiple Representations, Pergamon,
pp.1998.
Bromme R., Nückles M. - Perspective-Taking Between Medical Doctors and Nurses : A
Study on Multiple Representations of Diiferent Experts with Common Tasks, in Learning
with Multiple Representations, Pergamon, pp.1998.
Brenac T., Delcamp J., Pelat S., Teisseire G. - Scénarios types d’accidents de la circulation
dans le département des Bouches du Rhone. Contribution à l’élaboration d’un diagnostic pour
le Plan départemental d’actions de sécurité routière. Rapport MA 9611-2, 1996.
Brenac T., Megerbi B. - Diagnostic de sécurité routière sur une ville : intérêt de l’analyse fine
de procédures d’accidents tirés aléatoirement. Recherche Transports Sécurité, n°52, 1996.
Caverni J.P. – Psychologie de l’expertise : élément d’introduction. Psychologie française,
n°Spécial « Psychologie de l’expertise », n°33, pp.114-125, 1988.
Caverni J.P. – La verbalisation comme source d’observables pour l’étude du fonctionnement
cognitif. In J.P. Caverni, C. Bastien, P.Mendesohn, G. Tiberghien (eds), Psychologie
cognitive : modèles et méthodes. Grenoble, PUG, pp.253-273, 1991.
Chi M.T., Feltovitch, Glaser R. – Categorization and Representation of Physics Problems by
Experts and Novices, Cognitive Science, 5, 121-152, 1981.
Diday E., Lemaire J., Pouget J., Testu F. – Eléments d’analyse de données. Dunod, 1982.

Dieng R., Giboin A., Amergé C., Corby O., Després S., Alpay L., Labidi S., Lapalut S. –
Building a corporate memory for Traffic Accident Analysis, AI Magazine, 19(4), 80-100,
Winter1998.
Dubois D. - Sémantique et cognition. Catégories, prototypes et typicalité. Editions du CNRS,
Paris, 1991, 342p.
Falzon P., Visser W. –Eliciting Expert Knowledge in a Design Activity : Some
Methodological Issues, Rapport de recherche INRIA, n°906, 1988.
Falzon P., Visser W. – Variations in expertise : Implications for the design of Assistance
Systems. Designing and Using Human-Computer Interfaces and Knowledge Based Systems
edited by G. Salvendy and M.J. Smith. Elsevier Publishers B.V., Amsterdam, 1989.
Fleury D. - Sécurité et urbanisme. La prise en compte de la sécurité routière dans
l'aménagement urbain. Presses des Ponts et Chaussées, 1998, 299p.
Gobbo et Chi – “ How knowledge is structured and used by expert and novice children ”.
Cognitive Development, 1, pp.221-237, 1986.
Grize J.B. – Logique naturelle et langage. Conférence donnée à l’ISCC, Orsay , 1993.
O’Leary – Enterprise Knowledge Management. Computer, 31(3),54-61pp., 1998.
Pinson S. – Credit-Risk Assessment and Meta-Judgment. Theory and Decision, vol.27, n°1/2,
pp.117-134, 1989.
Prince V. – Expertise naturelle, expertise artificielle, vers quels paradigmes cognitifs ?
Intellectica, n°12, pp.7-31, 1991.
Prince V. – L’automatisation de l’expertise peut-elle rendre compte des automatismes des
experts ? Revue Internationale de Systémique, n° spécial « Connaissances explicites vs
connaissances implicites »n vol.6, n°1-2, pp.159-166, 1992.
Prince V. – Vers une informatique cognitive dans les organisations. Le rôle central du
langage. Masson Collection Sciences Cognitives, 190p. , 1996.
Rabarijaona A., Dieng R., Corby O. – Building a XML-based Corporate Memory, 1999.
Rastier F. – L’analyse linguistique des textes d’experts. Génie logiciel, n°23 ; pp. 16-23,
1991.
Rosch – Principles of Categorization, in E. Rosch , B.B. Lloyd (eds), Cognition and
categorization, Hillsdale, (N.J.) : L. Erlbaum, pp.27-47, 1978.
(Tabachneck-)Schijf H.J.M., Simon H.A. – One Person, Multiple Reprentations : An Analysis
of Simple, Realistic, Multiple Representation Learning Task, , in Learning with Multiple
Representations, Pergamon, pp.1998
Tabachneck-Schijf H.J.M., Simon H.A. – CaMeRa : A Computational model of Multiple
Representations
Tabachneck H.J.M., Leonardo A. M., Simon H.A. – How does an expert Use a Graph ? A
Model of Visual and Verbal Inferencing in Economics, Proceedings of the 16th Annual
Conference of the Cognitive Society, August 1994.
Van Heijst G., Van der Spek R., Kruizinga E. – Organizing Corporate Memories. In Gaines
B., Musen M. eds, Proc. Of KAW’96, Banff, Canada, 42.1-42.17, 1996.
Visser W., Falzon P. – Catégorisation et type d’expertise : une étude empirique dans le
domaine de la conception industrielle, in D. Dubois (ed.), Intellectica : Connaissances et
rationalités, 15(3), 27-54, 1992.

���������	
�������������������
������������
������������������������������������

�����
����������
�������
�������
�����
����
��
����

� �����!�This paper discusses what are the most suitable agent
architectures and interaction protocols to implement a multi-
agent system for the management of a corporate memory helping
the users into two main tasks: the insertion of new documents
and the retrieval of information. Moreover, the paper presents a
software framework called JADE (Java Agent Development
Environment), and shows how it can be used to develop the
agent architectures and interaction protocols we need to realise
such a multi-agent system. These guidelines should be token in
account during the realisation of such a system we are
developing together some other research centres inside the
European Commission IST project “CoMMA - Corporate
Memory Management through Agents”.

"� �#$�%&'�$�%#

A corporate memory is defined in [21] as an “explicit,
disembodied, persistent representation of knowledge and
information in an organisation, in order to facilitate its access
and reuse by members of the organisation, for their tasks”.

In order to realise such kind of system, some recent works
shown that organisations can take advantages of internet and
intranet technologies and of agents. Internet and intranet
technologies simplify the diffusion of knowledge. In fact, the
Web can serve as a basis to distribute information in a uniform
way independently of the way the information is stored [6,9,21].
Agents can help the user supporting retrieval of the relevant
information from the corporate memory and adapting the
interaction with the system to the user’s preferences [2].

In this paper, we discusses what are the most suitable agent
architectures and interaction protocols to implement a multi-
agent system for the management of a corporate memory we are
developing together some other research centres inside the
European Community IST project “CoMMA - Corporate
Memory Management through Agents” [5]. Moreover, the paper
presents a software framework called JADE (Java Agent
Development Environment), and shows how it can be used to
develop the agent architectures and interaction protocols we
need to realise such a multi-agent system.

1 Dipartimento di Ingegneria dell’Informazione, University of Parma,
Parco Area delle Scienze, 181A, 43100, Parma, Italy��HPDLO��{bergenti,
poggi, rimassa)@CE.UniPR.IT

(� ��)#$�$*�)���%���%��%��$)
�)�%�*���#��)�)#$

The corporate memory management multi-agent system we are
developing should help the user in three main tasks: the XML
annotation and insertion of new documents and the search of
documents, and should autonomously push her/him information
about new interesting documents.

To perform these tasks, the system needs five categories of
agents:
- a set of Interface Agent (IAs), one for each user, operating as

personal assistant guiding its user both in the search of
documents in the corporate memory and in the insertion of
new documents in the corporate memory;

- a set of User Profile Agents (UPAs) managing user profiles
and driving information pushing;

- a set of Document Ontology Agent (DOAs) managing
document ontologies used to annotate documents;

- a set of Search Agent (SAs) searching documents in the
corporate memory;

- a set of Archivist Agents (AAs) storing documents in the
corporate memory.

Other kinds of agents as, for example, Directory Facilitators,
Mediators and Resources Managers might be present.

The XML annotation and insertion of new documents can be
described as follows. At the beginning of the XML annotation
the IA negotiates with the DOAs which of them will help it to
guide the user in the annotation. During the annotation of a
document, the IA changes information with the user’s UPA
receiving information to prevent user’s actions and sending
information about what the user really do. Finally, when the
annotation is finished and the document is ready to be stored the
IA negotiates with the AAs which of them will store the
document. Note that each user has a fixed UPA because the IA
negotiates its help after user’s registration.

The search of documents can be described as follows. At the
IA negotiates with the DOAs which of them will help it to guide
the user to build the query. During the generation of the query,
the IA changes information with the user’s UPA receiving
information to prevent user’s action and sending information
about what the user really do. Finally, when the query is ready to
be executed the IA negotiates with the SAs which of them will
search the document. The SA agent tries to directly execute the
user’s query, if the query has not results, the SA negotiates with
the DOAs which of them will help it to refine the query.
Moreover, the SA can use the partial results of the query
execution to build new queries (e.g., if the query is “find all the

documents whose author is Mayer and whose topic is agent
systems” and the SA finds only a document about it where
Mayer is one of the authors, then this SA refines the query,
adding the other authors of the found document as possible
alternative to Mayer, executes the new query adding its results to
first found document). After that the SA gives the results to the
IA that, helped by user’s UPA, orders the results and presents
them to the user.

If the corporate memory is distributed, the IA negotiates with
the SAs which of them will search the document, but the chosen
SA builds a team of SAs (one for each memory node), searches
in a node of the corporate memory delegating the search in the
other nodes to the other team members. At the end, it collects
their results and then sends the results to the IA. In this case, a
SA might work independently from the other SAs involved in
the search; however, they may co-operate to improve the search.
They may co-operate in the generation of a common global
query. For example, if all the team members start the search with
the user query, but none of them succeeds in finding enough
information, they can refine the query using both the DOAs help
and the information of the partial results, and then they can
propagate the new query to the other team members (e.g., if the
query is “find all the documents whose author is Mayer and
whose topic is agent systems” and only an SA finds a document
about it where Mayer is one of the authors, then this SA refines
the query adding the other authors of the found document as
possible alternative to Mayer, executes the new query and
informs the other team members about this new opportunity).

)LJXUH� �� Graphical description of the interactions among the agents
during the annotation and insertion, search and pushing tasks.

The pushing of documents is driven by:
- unsatisfied user’s requests (i.e., a user is not satisfied by the

result of a query),
- a persistent user’s requests (i.e., a user subscribes herself to a

specific interest), or
- a foreseeable interest (i.e., the UPA reasoning on its users

profiles determinates that some of the new information might
be of great interest to an its user).

This task can be described as follows. When an AA stores a
new document in the corporate memory, it informs the UPAs.
These agents check the unsatisfied and persistent users requests
and, if the document do not satisfy such requests for some users,

the UPAs reason on their profile to check if this document might
be of interest for their users. When the IA informs its UPA that
the user enters the system, the UPA sends to the IA the
information about the new documents that might be of interest to
its user.

+� ��)#$����,�$)�$'�)���%�
�%��%��$)��)�%�*���#��)�)#$

The first step to realise such a multi-agent system is to choose
some appropriate agent architectures for the different types of
agent the management of our corporate memory needs. This
choice is done through an analysis of the agent types involved in
the management of the corporate memory on the basis of the
weak notion of agent [24], and through an analysis of the most
known agent architecture models.

3.1 �������������	�����
��
��

The weak notion of agent characterises an agent through the
following properties:
- autonomy, an agent can operate without the direct

intervention of humans or other agents, and has a complete
control over its action and internal state;

- reactivity, an agent can perceive its environment and
respond in a timely fashion according to changes that occur
within that environment;

- pro-activity, an agent does not simply act in response to its
environment, but it is able to exhibit opportunistic, goal
directed behaviour by taking the initiative where
appropriate;

- social ability, an agent can interact with other agents and,
possibly, with humans in order to performs its activities.

IAs, DOAs and AAs are autonomous, reactive and social, but
they are not pro-active. In fact, all of them operate without the
direct intervention of humans or other agents, react to the stimuli
of the environment (i.e., the other agents and humans), interact
with other agents and the IAs with humans too, but none of them
show a goal oriented behaviour.

UPAs and SAs show all the properties of the weak notion of
agent. In fact, a UPA starts pushing actions and a SA builds a
team and modifies user queries with the goal to satisfy user
interests. Moreover, a UPA shows additional properties that is
the capability to learn user profiles: it builds user profiles from
the information received by the IAs and uses such profiles to
drive the IAs actions.

3.2 ��������	
��������������

The weak notion of agent can be used to classify agent
architecture models too. In fact, while some of these models are
designed to offer complete reactive, pro-active and social agents,
other models are oriented to offer task-oriented agents showing
the balance among reactivity, pro-activity and social ability it
needs to perform a particular kind of tasks.

We consider three main classes of agent architectures:
reactive architectures, Belief-Desire-Intention architectures and
layered architectures.

Reactive architectures do not have any internal, symbolic
models of their environment, and they act using a

Corporate
Memory

Interface
Agent

Interface
Agent

Interface
Agent

Document
Ontology
Agents

Archivist
Agents

Search
Agents

User
Profile
Agents

Annotat ion & insertion

Search

Pushing

stimulus/response type of behaviour by responding to the present
state of the environment in which they are embedded [4,10].

The behaviour of such architectures can be described through
two functions. The first function, called ���, maps input data
from the environment to perceptions. The second function,
called ������, maps perceptions to actions. Figure 2 shows a
schematic diagram describing the behaviour of such architecture.

)LJXUH��� Schematic diagram of a reactive architecture.

The big advantage of reactive architectures is simplicity,
however they have two main disadvantages: they cannot be pro-
active because of their stimulus/response behaviour and they
cannot learn from experience because of they have not an
internal state.

Belief-Desire-Intention (BDI) architectures represent a
system as a rational agent having certain mental attitudes of
beliefs, desires, and intentions representing respectively the
information, motivational and deliberative states of the system.
These mental attitudes determine the system’s behaviour and are
critical for achieving adequate or optimal performance when
deliberation is subject to resource bounds [3,18,22].

)LJXUH��� Schematic diagram of BDI architecture.

The behaviour of such architectures can be described through
five functions. The first function, called ���, maps input data
from the environment to perceptions. The second function,
called ��	�, builds a set of new beliefs on the basis of current sets
of perceptions and beliefs. The third function, called �
�����,
maps the new set of beliefs and the current set of intentions in a
set of desires. The forth function, called �����, updates the set of
intentions on the basis of the previous set of intentions and the
current sets of beliefs and desires. The fifth function, called
������, maps intentions to actions. Figure 3 shows a schematic
diagram describing the behaviour of such an architecture.

BDI architectures are attractive for two main reasons. The
first reason is that its behaviour is intuitive for humans. The
second reason is that they present a clear functional
decomposition indicating what sorts of subsystems might be
required to build an agent. The main problem is to realise an
efficient implementation.

Given the requirement that an agent should be capable of
reactive and pro-active behaviour, an obvious decomposition
involved the use of two separate subsystems to deal with these

two different behaviours. This idea leads naturally to a class of
architectures, called layered architectures in which the various
subsystems are arranged into a hierarchy of interacting layers.

Layered architectures are divided in two subclasses:
horizontal and vertical layered architectures. In horizontally
layered architectures, the software layers are each directly
connected to the sensory input and action output [4]. In vertically
layered architectures sensory input and action output are each
dealt with by at most one layer each. In particular, vertically
layered architectures are divided into one pass control and two
pass control architectures. In one pass control architectures,
control flows sequentially through each layer until the final layer
generates action output [11]. In two pass control architectures,
information flows up the architecture and then control flows
back down. Figure 4 shows the schematic diagrams of three
main categories of layered architectures [20].

)LJXUH� �� Schematic diagrams of three main categories of layered
architectures: a) a horizontally layered architecture, b) an one pass
control vertically layered architecture and c) a two pass control vertically
layered architecture.

The great advantage of horizontally layered architectures is
their conceptual simplicity to build an agent that exhibits some
different types of behaviour. The problem is when these
behaviours are in competition for some resources or to perform
actions. In this case, it is necessary to introduce a mediator that
implements a central control, but also introduces a bottleneck
into the agent behaviour. Vertically layered architectures have
not the problem of the central control and the way to pass control
and information presents some similarities with the way that
organisations work, but has a limited flexibility because control
must pass between each different layer.

3.3 ��������	
��������

At this point, we have the information to choose the most
appropriate architecture for the different agent types we need in
the multi-agent system for corporate memory management.

)LJXUH� �� Schematic diagrams of a “reactive with state” layer of a
horizontally layered architecture.

IAs, DOAs and AAs are not pro-active and the tasks they
must perform can be easily defined eliminating possible conflicts
on actions and resources. Therefore, a reactive and horizontally
layered architecture, where each layer is dedicated to the
execution of a particular task of the agent, seems to be the most

see
next

action

B

Ioption filterD

see action

Layer n

...

Layer 1

Layer 2

Layer n

...

Layer 1

Layer 2

Layer n

...

Layer 1

Layer 2

b) c)a)

see

action

Snext

appropriate. However, it is not possible to use a purely reactive
architecture because the execution of some tasks is influenced by
history. Then, we can realise each layer extending the reactive
architecture model to manage agent state: the behaviour of each
layer, we call “reactive with state” layer, can be described
through three functions. The first function, called ���, maps
input data from the environment to perceptions. The second
function, called ��	�, builds the new agent state on the basis of
the current agent state and perceptions Finally, the third called
������, maps action state to actions. Figure 5 shows a schematic
diagram describing the behaviour of a “reactive with state” layer.

UPAs and SAs are pro-active; therefore a BDI or a vertically
layered architecture seem to be the most appropriate
architectures. From a first analysis, it seems that the tasks these
agents must perform can be easily defined limiting the possible
conflicts on actions and resources. Therefore, the BDI
architecture seems to have some advantages because with few
conflicts among agent tasks the work mainly consists in the
mapping of agent tasks in agent intentions. However, the use of a
vertically layered architecture is also possible with the limited
effort to decompose the tasks on the basis of the competence of
the different layers.

Some of the tasks that UPAs and SAs must perform are
reactive. One of BDI architecture limits is that tasks performing
agent intentions are executed by monolithic processes.
Therefore, a BDI architecture does not optimally support
reactivity, in a sense that it does not provide mechanisms
allowing, for example, to recognise emergency situation in time
and to stop current task to start the task managing this
emergency, but delegates the implementation of such
mechanisms within the individual tasks realising agent intention.
This is not a big problem, because the reactive tasks performed
by UPAs and SAs do not manage emergency situations and so
they can wait for the end of the running task without any
problem for the agent.

-� ��)#$��#$)���$�%#���%$%�%.�
�%���%��%��$)��)�%�*
��#��)�)#$

The second step to realise the multi-agent system for corporate
memory management is to identify the different types of
protocols that allow the interaction between the agents of the
system. The simplest protocols come from concurrency and
distributed systems research; the others mainly come from
distributed artificial intelligence research. From the task
description of section 2, we identified three protocols of the first
class: request, query and subscription protocols, and two of the
second class: contract net and partial global planning protocols.

Request and query protocols are usually the simplest and the
most used protocols in an agent system and respectively allow an
agent to request the execution of an action or to request some
information to another agent. In this case, the protocol is based
on two agents exchanging two messages: an agent sends a
request/query message and the other agent replies a response
message.

Subscription protocol allows an agent to receive
automatically some kinds of information from another agent
when they become available to this agent. In this case, the
protocol is based on two agents and a sequence of messages: an

agent sends a subscription message, the other agent sends an
����� message when it acquires new information related to the
subscription and, finally, the first agent sends a message to
remove its subscription.

In our multi-agent system the subscription protocol is used by
UPAs that subscribe themselves to IAs and AAs respectively to
receive information about user actions and to receive
information about the new documents.

Contract net protocol allows an agent, called manager, to
assign a task to one among a set of agents, called contractors,
through a negotiation [23]. In this case, the following steps can
describe the protocol:
- the manager announces a task to be performed to the

potential contractors;
- the contractors respond either declining the offer or

proposing a bid;
- the manager awards a contract to a contractor;
- the contract accepts the contract;
- the contract reports the results of the tasks.

In our multi-agent system the all the agents use the contract
net protocol. In particular, IAs and SAs act as managers and
UPAs, DOAs and AAs act as contractors.

Partial global planning protocol allows to build a global plan
starting from the partial plans that a set of agents can
independently generate [8]. In this case the protocol can be
described by:
- an initial step, in which each agent sends a partial plan to the

other agents, and
- an iterative step, in which each agent build a partial global

plan and sends it to the other agents; the iteration ends when
all the agents converge to the same partial global plan.

In our multi-agent system, if the corporate memory is
distributed, the partial global planning protocol is used by SAs
that build a global query from the partial queries generated by
the different SAs.

/� ��)#$����,�$)�$'�)���#&
��%$%�%.��0�$,�1�&)

The realisation of such a multi-agent system will be simplified
through the use of an agent-oriented development environment.

5.2 1�&)

JADE (Java Agent Development Environment) is a software
framework to make easy the development of agent applications
in compliance with the FIPA specifications [12] for
interoperable intelligent multi-agent systems [1]. JADE is an
Open Source project, and the complete system can be
downloaded from JADE Home Page [15]. The goal of JADE is
to simplify development while ensuring standard compliance
through a comprehensive set of system services and agents. To
achieve such a goal, JADE offers the following list of features to
the agent programmer:
� FIPA-compliant Agent Platform, which includes the AMS

(Agent Management System), the default DF (Directory
Facilitator), and the ACC (Agent Communication Channel).
All these three agents are automatically activated at the
agent platform start-up.

� Distributed agent platform. The agent platform can be split
on several hosts. Only one Java application, and therefore
only one Java Virtual Machine, is executed on each host.
Agents are implemented as one Java thread and Java events
are used for effective and lightweight communication
between agents on the same host. Parallel tasks can be still
executed by one agent, and JADE schedules these tasks in a
co-operative way.

� A number of FIPA-compliant additional DFs (Directory
Facilitator) can be started at run time in order to build
multi-domain environments, where a domain is a logical set
of agents, whose services are advertised through a common
facilitator.

� Java API to send/receive messages to/from other agents;
ACL messages are represented as ordinary Java objects.

� FIPA97-compliant IIOP protocol to connect different agent
platforms.

� Lightweight transport of ACL messages inside the same
agent platform, as messages are transferred encoded as Java
objects, rather than strings, in order to avoid marshalling
and unmarshalling procedures.

� Library of FIPA interaction protocols ready to be used.
� Graphical user interface to manage several agents and agent

platforms from the same agent. The activity of each
platform can be monitored and logged. All life cycle
operations on agents (creating a new agent, suspending or
terminating an existing agent, etc.) can be performed
through this administrative GUI.

The JADE system can be described from two different points
of view. On the one hand, JADE is a runtime system for FIPA-
compliant Multi Agent Systems, supporting application agents
whenever they need to exploit some feature covered by the FIPA
standard specification (message passing, agent life-cycle
management, etc.). On the other hand, JADE is a Java
framework for developing FIPA-compliant agent applications,
making FIPA standard assets available to the programmer
through object oriented abstractions. In this paper, we centre the
discussion on the second aspect. A detailed discussion about the
first aspect can be found in [1].

5.2 1�&)�����������

JADE can be seen as a software framework for agent-based
applications, with application programmers concentrating
themselves on writing agents and on specifying each agent role
within the agent society. Since complex tasks in multi agent
systems are usually tackled using collaboration among many
agents, a single agent is typically a strongly cohesive piece of
software. On the other hand, asynchronous message passing with
pull consumer messaging model grants a very loose coupling
between different agents. Furthermore, no implementation
inheritance (and no code reuse) is considered when dealing with
software agents. In this way, software agents bear strong
resemblance with actors, and indeed JADE execution model has
its roots in actor languages.

The abstraction used to model agent tasks is the ��������:
each JADE agent holds a collection of behaviours which are
scheduled and executed to carry on agent duties. Behaviours
represent logical threads of a software agent implementation.
According to ������� ������ design pattern [19], every JADE
agent runs in its own Java thread, thereby satisfying autonomy

property; instead, in order to keep small the number of threads
required to run an agent platform, all agent behaviours are
executed co-operatively within a single Java thread. So, JADE
uses a ������
������� execution model with co-operative intra-
agent scheduling.

Using a single Java thread to handle multiple agent
behaviours needs some sort of scheduling policy. JADE relies on
a �����
������� ����������� ��� ��
� ��� ���� ������, in which all
agent behaviours are run from a single stack frame without
context saving (�����
�������������) and a behaviour continues to
run until it returns from its main function and cannot be pre-
empted by other behaviours (����
�����������������); of course
ordinary pre-emption is still active between different agent
threads and among JADE system threads: co-operative
scheduling is strictly an intra-agent policy.

Using co-operative behaviours to model multiple agent
conversation is a lightweight approach to concurrency, trying to
achieve low latency by working entirely in user space. Similar
techniques are customary in modern high performance network
protocols and messaging libraries [7]. Besides, JADE model is
an effort to provide fine-grained parallelism on coarser grained
hardware. A likewise, stack based execution model is followed
by Illinois Concert runtime system [17]; willing to provide a
runtime environment for parallel object oriented languages,
Concert can execute concurrent method calls optimistically on
the stack, reverting to real thread spawning only when the
method is about to block, saving the context for the current call
only when forced to.

However, Concert system relies on compiler support to select
concurrency strategy (really parallel or lazily stack based) and to
save method context when needed. On the other hand, JADE is
not a new language but a Java development framework: saving
the context when an agent behaviour is blocking would put an
heavy burden on JADE users, because they should write state
saving code themselves, since no compiler would be going to
write it for them.

Choosing not to save behaviour execution context means that
agent behaviours start from the beginning every time they are
scheduled for execution and local variables are reset every time.
So, behaviour specific state that must be retained across multiple
executions is to be stored into behaviour instance variables. A
general rule for transforming an ordinary Java method into a
JADE behaviour is the following:
��� ��� ���� ������� ���!� ����� ��� ������� "����� ������ �������

�������������
#�� ��� ������� ������ ��������� ����� ��������� ��������

���������
$�� ���� ���� ��������� ������� ��� ������ ��������� ����� �����

�����������
�
The above guidelines apply the ����������� ������%�� [16] to

agent methods, according to &������ design pattern [13]; an
agent behaviour object reifies both a method and a separate
thread executing it. While reification yields enhanced flexibility
in task scheduling and execution, it often results in verbose
program text (a problem commonly encountered in reflective
code, too). A whole new class must be written and instantiated
for each agent behaviour, and this can easily lead to programs
hard to understand and maintain. JADE application programmers
can compensate for this shortcoming using Java ����!����
'����&������; this language feature is similar to Smalltalk code
blocks and makes the amount of code necessary for defining an

agent behaviour only slightly higher than for writing a single
Java method.

Sometimes real intra-agent multithreading may seem
unavoidable: for example, an agent acting as a wrapper onto a
DBMS could issue multiple queries in parallel, or an agent might
want to block on a stream or socket while still being able to
engage in ordinary conversations. Really, this kind of problems
occur only when an agent must interact with some non-agent
software; FIPA acknowledges that these are boundary conditions
for the execution model and deals with them in a separate part of
the standard (namely, FIPA part 1 is about agent management
and FIPA part 3 deals with external, non-agent software).

JADE ������
������� execution model can deal alone with
all the most common situations involving only agents: this is
because every JADE agent owns a single message queue from
which all ACL messages are to be retrieved. Having multiple
threads but a single mailbox would bring no benefit in message
dispatching, since all the threads would still have to synchronise
on the shared mailbox. On the other hand, when writing agent
wrappers for non-agent software, there can be many interesting
events from the environment beyond ACL message arrivals.
Therefore, application developers are free to choose whatever
concurrency model they feel is needed for their particular
wrapper agent; ordinary Java threading is still possible from
within an agent behaviour, as long as appropriate
synchronisation is used.

5.3 '�
��� �	�
�������� �
���������2������
The developer who wants to implement an agent must extend the
����� class and implement the agent-specific tasks by writing
one or more �������� subclasses, instantiate them and add the
behaviour objects to the agent. User defined agents inherit from
the ����� class the basic capability of registering and
deregistering with their platform and a basic set of methods that
can be called to implement the custom behaviour of the agent
(e.g. send and receive ACL messages, use standard interaction
protocols, register with several domains). Moreover, user agents
inherits from their ����� superclass two methods:
�����������(��������) and �������������(��������),
which allow managing the behaviour list of the agent.

JADE contains ready made behaviours for the most common
tasks in agent programming, such as sending and receiving
messages and structuring complex tasks as aggregations of
simpler ones. For example, JADE offers a so-called
*����������� that allows full integration with JESS [14]. JESS
is a scripting environment for rule programming written in Java
offering an engine using the Rete algorithm to process rules.
Therefore, while JADE provides the shell of the agent and
guarantees the FIPA compliance, JESS allows using rule-
oriented programming to define agent behaviours and exploiting
its engine to execute them.

�������� is an abstract class that provides the skeleton of the
elementary task to be performed. It exposes three methods: the
������() method, representing the "true" task to be accomplished
by the specific behaviour classes; the ����() method, used by the
agent scheduler, that must return ��� when the behaviour has
finished and can be removed from the queue, ����� when the
behaviour has not yet finished and the ������() method must be
executed again; the ����() method, used to restart a behaviour
from the beginning.

Because of the non pre-emptive multitasking model chosen
for agent behaviours, agent programmers must avoid to use
endless loops and even to perform long operations within
������() methods. This is because when some behaviour’s
������() is running no other behaviour can proceed until the end
of the method (of course this is true only with respect to
behaviours of the same agent: behaviours of other agents run in
different Java threads and can still proceed independently).

Moreover, since no stack context is saved, every time ������()
method is run from the beginning: there is no way to interrupt a
behaviour in the middle of its ������(), yield the CPU to other
behaviours and then start the original behaviour back from where
it left.

For example, suppose a particular operation �
() is too long
to be run in a single step and is therefore broken in three sub-
operations, named �
�(), �
#() and �
$(). To achieve desired
functionality one must call �
�() the first time the behaviour is
run, �
#() the second time and �
$() the third time, after which
the behaviour must be marked as terminated. The code will look
like the following:

public class my3StepBehaviour {
 private int state = 1;
 private boolean finished = false;
 public void action() {
 switch (state) {
 case 1: { op1(); state++; break; }
 case 2: { op2(); state++; break; }
 case 3: { op3(); state = 1;

finished = true; break;
}

 }
 }
public boolean done() {
 return finished;
 }
}

Following this idiom, agent behaviours can be described as
finite state machines, keeping their whole state in their instance
variables.

When dealing with complex agent behaviours (as agent
interaction protocols) using explicit state variables can be
cumbersome; so JADE follows a compositional approach to
allow application developers to build their own behaviours out of
the simpler ones directly provided by the framework. Applying
the &��
����� design pattern [13], &��
��	��������� class is
itself a ��������+� but can have an arbitrary number of sub-
behaviours or �������; this class also defines the two methods
���,����������(��������)� and
�����,����������(��������), allowing to define recursive
aggregations of several sub-behaviours. Since
&��
��	�������� extends ��������, the agent writer has the
possibility to implement a structured tree composed of
behaviours of different kinds (including &��
��	��������s
themselves). The agent scheduler only consider the top-most
tasks for its scheduling policy: during each "time slice" (which,
in practice, corresponds to one execution of the ������() method)
assigned to an agent task only a single subtask is executed. Each
time a top-most task returns, the agent scheduler assigns the
control to the next task in the ready queue.

Besides &��
��	��������, JADE framework defines some
other direct subclasses of ��������: ,��
���������� class can

be used by agent developer to implement atomic steps of the
agent work. A behaviour implemented by a subclass of
,��
���������� is executed by JADE scheduler in a single time
frame. Two more subclasses carry out specific actions:
,������������ and -��������������. Notice that neither of
these classes is abstract, so they can be directly instantiated
passing appropriate parameters to their constructors.
,������������ allows sending a message, while
-�������������� allows receiving a message which can be
matched against a pattern; the behaviour blocks itself (without
stopping all other agent activities) if no suitable messages are
present in the queue.

The two classes &��
��	�������� and ,��
����������
leave to their subclasses the choice of their termination condition
and, for complex behaviours, the actual children scheduling
policy. For atomic behaviours, two subclasses are provided:
���,����������� is an abstract class that models behaviours
that must be executed only once. &!������������ is an abstract
class that models behaviours that never end and must be
executed forever.

&��
��	�������� class fulfils the responsibility of
organising its children, but it defers children scheduling policy to
subclasses; JADE provides ready made subclasses with common
policies, but application programmers are free to implement their
own.

,�%��������������� is a &��
��	�������� that executes its
sub-behaviours sequentially, it blocks when its current child is
blocked and it terminates when all its sub-behaviours are done.

.��/�������������������� is a &��
��	�������� that
executes its children behaviours non-deterministically, it blocks
when all its children are blocked and it terminates when a certain
condition on its sub-behaviours is met. The following conditions
have been implemented: ending when all its sub-behaviours are
done, when anyone among its sub-behaviours terminates or
when al least N sub-behaviours have finished.

JADE recursive aggregation of behaviour objects resembles
the technique used for graphical user interfaces, where every
interface widget can be a leaf of a tree whose intermediate nodes
are special container widgets, with both rendering and children
management features. An important distinction, however, exists:
JADE behaviours are reifications of execution tasks, so task
scheduling and suspension are to be considered, too.

Thinking in terms of software patterns [13], if &��
����� is
the main structural pattern used for JADE behaviours, on the
behavioural side we have &����� ��� -��
���������!: agent
scheduling directly affects only top-level nodes of the behaviour
aggregation tree, but every composite behaviour is responsible
for its children’s scheduling within its time frame. Likewise,
when a behaviour object is blocked or restarted a notification
mechanism built around a bi-directional &��������-��
���������!
scheme provides all necessary event propagation.

5.4 �������
������������

Interaction protocols are used to design agents interaction
providing a sequence of acceptable messages and a semantic for
those messages. FIPA defines a set of general-purpose
interaction protocols that provide a well-known interaction
means to promote the social and cooperative nature of agents.

While each FIPA ACL message kind is given a formal
semantics based on the speech-act theory, this is still not enough

to satisfy the need for sociality of agent systems. This is because
a typical agent interaction encompasses more than a single
message, so more comprehensive abstractions are needed. FIPA
specifications provide this abstractions as a collection of
interaction protocols. When an agent engages in a conversation
according to some interaction protocol, it can play two roles: the
�������� role is the one who creates the conversation, by sending
the first ACL message belonging to the new conversation; the
��
���� role is the one who receives the first ACL message.

5.5 ������������
������
������������

The ��
���%���� protocol allows an agent to request another
agent to perform some action; this is similar to ordinary
request/response protocols used in client/server systems, but
with a significant difference. Since software agents are
autonomous entities, an agent can refuse to perform the
requested action even if able to do so. So, while a client/server
call either succeeds or fails raising an exception, a ��
���%����
interaction can succeed, can fail for a lack of the receiver-agent
capabilities, but can also fail for the unwillingness of the receiver
to perform the task at hand.

The ��
��%��! protocol is to be used to request an agent to
provide some information to the protocol initiator. Since queries
to an agent knowledge are not supposed to interact with external
software systems, the ��
��%��! protocol shares the outcome set
with the ��
���%���� protocol, but has a flat structure.

The ��
���%�����"��� protocol is a variation of the ��
��
�%���� protocol: the initiator agent requests the responder agent
to perform an action in the future, and after an initiator-supplied
precondition is true. At that time the responder agent will try
executing the action and will notify the initiator using an inform
message if the attempt will have succeeded or using a failure
message otherwise.

The ��
������������� protocol is the first of the higher level
FIPA interaction protocols. An agent, called ������, can
initiate a ��
������������� protocol sending a call for proposal,
or ��
, message to a set of other agents; some agents will answer
������������� or ����� and will be discarded, but some others
will hopefully send back a
�
��� message, declaring their will
to perform the requested action under a constraint set, such as
price, time, or some other kind of constraint. The manager agent
can then evaluate all the proposals and select one among them
according to some criterion.

The ��
��������������������� protocol allows the manager to
incrementally refine its call for proposal until a suitable contract
is made. The only difference with respect to what previously
described is that a manager can refuse all proposals, with ������

�
���� messages, and issue a revised ��
 using the same
conversation identifier.

��
����������������� protocol resembles an auction for selling
goods, led according to English style, using a low initial price
and rising it gradually until no buyer declares its intention to
pay. At that point, the last buyer can, and must, acquire the
goods for sale paying the amount he or she accepted before.

The ��
��������������� protocol realises the Dutch style for
auctions, used for flowers market and working basically the
opposite as the English auction: the auctioneer starts with a price
much higher than the real market value of the goods he or she is
trying to sell, then lowers the price gradually until one of the
buyers accepts the suggested price and buys the goods.

5.6 ���������
���
������
�������������3
�	
1�&)

JADE implements the communication policies between agents
by means of protocols defining the set of possible conversations
between the agents, in particular, for every protocol that JADE
supports a couple of classes is provided: one for agents playing
the initiator role and another for responder agents. For each
designed protocol, a semantic is also provided in order to let
third-parties agents interact with the implemented ones. Besides
providing FIPA interaction protocols, JADE allows the
definition of new interaction protocols. However, the user is
suggested to realise interaction protocols as a composition of
FIPA protocols in order to ease their implementation with JADE
and to support inter-operability with other FIPA-compliant
systems.

To show how JADE supports FIPA interaction protocols, the
0�
�-�%����'��������������� class will be used as an example;
this will also give a practical application of JADE concurrency
model. This class must be used by agents willing to start new
��
���%���� conversations, asking some other agent to do
something for them.

Looking at FIPA97 specification, one finds a graphical
representation of the protocol, reported in Figure 6. The white
boxes in the figure represent communicative acts that must be
issued by the initiator agent, whereas the grey ones represent
communicative acts issued by the receiver agent. So, from the
initiator point of view, ACL messages corresponding to white
boxes must be sent and the ones corresponding to grey boxes
must be received. From the figure can also be seen that, after
sending a �%���� message, the initiator can expect either a ����
���������, a ����� or an ����; in the last case, another
message will arrive, i.e. either a ������ (some problem
occurred), or an ����� (in two different flavours for actions
without result and with one).

)LJXUH��� FIPA Request Interaction Protocol

Looking at the documentation of
0�
�-�%����'��������������� class, one finds a constructor
accepting as parameter the ACL �%���� message that will start
the conversation; various abstract methods are provided to
handle the various kinds of messages that can arrive during the
protocol. Application programmers simply write their
subclasses, implementing the abstract methods, named
����������(), ������-�����() and so on. This approach relies
on classic OO techniques such as abstract classes and tries to
present a familiar programming style to application developers,

but the inner workings of 0�
�-�%����'��������������� are a
bit different.

)LJXUH� �� Internal structure of a JADE)LSD5HTXHVW,QLWLDWRU%HKDYLRXU
behaviour object.

This class relies on several private inner classes, which build
an interaction protocol engine based on delegation, fully
exploiting JADE intra-agent concurrency model. Looking again
at Figure 5, the following algorithm can be written:
��� ,���������%�������������
#�� -�����������������
�!���������������
$�� '������������
�!�"����������+�������������������������
�!

��������������
When a complex behaviour is made by a list of steps, JADE

library offers ,�%��������������� class, which
0�
�-�%����'��������������� will be a subclass of. A
,������������ can easily be used to carry out the first step,
while the second one is more interesting.

The second step is a disjunction of three possibilities, seen as
branches in the graph of Figure 6; it completes when any one
among the three events (receiving a �������������, receiving a
����� or receiving an ����) occurs. This observation allows to
exploit the .��/������������������� class to express the three
possible branches as concurrent activities; the non deterministic
behaviour object will be constructed so that it terminates as soon
as one of its children receives something.

A similar approach is followed for the third step, but the
second .��/������������������� object will be added to the
main 0�
�-�%����'��������������� by the handler of the ����
message. All the atomic behaviours are implemented as
,��
���������� subclasses, which first receive their specific
kind of message (using JADE pattern matching capabilities) and
then invoke the handler method (e.g. ������.��1��������()).
The overall object structure is drawn in Figure 7, showing also
how similar the behaviour structure is to the original protocol
structure in Figure 6.

5.7 '�
���1�&)����� �
��
����	������
4����
�����������������������������������

From the previous description, JADE seems be an appropriate
tool to realise our multi-agent system.

In fact, JADE agent model is based on a horizontally layered
architecture, where each behaviour corresponds to a layer.
Therefore, this agent model can directly realise the “reactive
with state” and horizontally layered architecture, we need to

request
action

not-understood refuse
reason agree

failure
reason

inform
Done(action)

inform
(iota x (result action) x)

PDLQ�)LSD5HTXHVW,QLWLDWRU%HKDYLRXU

VWHS��6HQGHU%HKDYLRXU VWHS��1RQ'HWHUPLQLVWLF%HKDYLRXU VWHS��1RQ'HWHUPLQLVWLF%HKDYLRXU

1RW8QGHUVWRRG�6LPSOH%HKDYLRXU UHIXVH�6LPSOH%HKDYLRXU DJUHH�6LPSOH%HKDYLRXU

IDLOXUH�6LPSOH%HKDYLRXU LQIRUP�6LPSOH%HKDYLRXU

implement IAs, DOAs and AAs, if each behaviour implements
the three functions ���, ��	�, and ������ described in section 3.3.

JADE does not offer a BDI architecture we need to
implement UPAs and SAs; however, a BDI architecture can be
implemented with a limited effort on the top of JADE agent
model through an appropriate composition of a set of behaviours
implementing the different functions defining the BDI
architecture.

Finally, JADE offers an implementation of all the FIPA
interaction protocols. Therefore, all the interaction protocols,
except the partial global planning protocol, come with a limited
effort from JADE. The realisation of the partial global planning
requires a big effort, but can be guided by the implementation of
FIPA interaction protocols.

�������	
�	�	��

We like to thank all the partners of the CoMMA project, because
some of the ideas presented in this paper derive from discussions
we have with them and from project documents they wrote for
the project.

This research is partially supported by the European
Commission through the contract ', ��222��##�3� �� &�44�� �
&�
�����4���!�4������������������������

�	�	�	��	�
[1] F. Bellifemine, A. Poggi and G. Rimassa. JADE - A FIPA-

compliant Agent Framework. In Proc. Fourth International
Conference on the Practical Application of Intelligent Agent and
Multi Agent Technology (PAAM99), pp. 97-108, London, UK,
1999.

[2] B. Berney and E. Ferneley. CASMIR: Information retrieval Based
on Collaborative User Profiling. 1999.

[3] M.E. Bratman. Intentions, Plans, and practical Reason. Haward
University Press, Cambridge, MA, 1987.

[4] R.A. Brooks. A robust layered control system for a mobile robot.
IEEE Journal of Robotics and Automation, 2(1):14-23, 1996.

[5] CoMMA. The CoMMA Project Home Page. Available at
http://www.ii.atos-group.com/sophia/comma/HomePage.htm.

[6] O. Corby and R. Dieng. A CommonKADS Expertise Model Web
Server. In Proc. Fifth Int. Symp. on the Management of Industrial
and Corporate Knowledge, 1997.

[7] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F.
Berry, A.M. Merritt, E. Gronke and C. Dodd. The Virtual Interface
Architecture. IEEE Micro, 18(2):58-64, 1998.

[8] E.H. Durfee. Coordination of Distributed problem Solvers. Kluwer
Academic Press, Boston, MA, 1988.

[9] J. Euzenat. Corporate Memory through Cooperative Creation of
Knowledge Base Systems and Hyper-Documents. In Proc. of
Knowledge Acquisition Workshop (KAW’96), Banff, Canada,
1996.

[10] J. Ferber. Simulating with reactive agents. In E. Hillebrand and J.
Stender (Eds.), Many Agent Simulation and Artificial Life, pp. 8-
28, IOS Press, Amsterdam, Netherlands.

[11] I.A. Ferguson. Integrated control and coordinated behaviour: a case
for agent models. In M. Wooldrige and N.R. Jennings, editors.
Intelligent Agents: Theories, Architectures and Languages. LNAI-
890, pp. 203-218, Springer Verlag, Berlin 1995.

[12] FIPA. FIPA Specifications 1997. 1997. Available at
http://www.fipa.org.

[13] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns:
Elements of Reusable Object Oriented Software. Addison Wesley,
1995.

[14] E.J. Fridman-Hill. Java Expert System Shell. 1998. Available at
http://herzberg.ca.sandia.gov/jess.

[15] JADE. The JADE Project Home Page. 2000. Available at
http://sharon.cselt.it/projects/jade.

[16] R.E. Johnson and J.M. Zweig. Delegation in C++. The Journal of
Object Oriented Programming, 4(7):31-34, 1991.

[17] V. Karamcheti, J. Plevyak and A. Chien. Runtime Mechanisms for
Efficient Dynamic Multithreading. Journal of Parallel and
Distributed Computing, 37:21-40, 1996.

[18] D. Kinny and M.P. Georgeff. Commitment and effictiveness of
situated agents. In Proc. 12th Int. Joint Conf. on Artificial
Intelligence (IJCAI-91), pp. 82-88, Sidney, Australia, 1991.

[19] G. Lavender and D. Schmidt. Active Object: An object
behavioural pattern for concurrent programming. In J.M. Vlissides,
J.O. Coplien, and N.L. Kerth, Eds. Pattern Languages of Program
Design. Addison-Wesley, Reading, MA, 1996.

[20] J.P. Muller, M. Pischel and M. Thiel. Modelling reactive behaviour
in vertically layered agent architectures. In M. Wooldrige and N.R.
Jennings, editors. Intelligent Agents: Theories, Architectures and
Languages. LNAI-890, pp. 261-276, Springer Verlag, Berlin 1995.

[21] Rabarijaona, R. Dieng and O. Corby. Building a XML-based
Corporate Memory. In Proc. European Knowledge Acquisition
Workshop (EKAW’99). LNAI 1621, Springer-Verlag, 1999.

[22] A.S. Rao and M.P. Georgeff. Modeling rational agents within a
BDI-architecture. In j. Allen, R. Fikes and E. Sandewall, editors.
Proc. 2nd Int. Conf. on Principles of knowledge Representation and
Reasoning, pp. 473-484, Morgan Kaufmann, San Mateo, CA, 1991.

[23] R.G. Smith. The Contract Net Protocol: High Level
Communication and Control in a Distributed Problem Solver. IEEE
Trans. on Computers, 29(12): 1104-1113, 1980.

[24] M. Wooldridge and N.R. Jennings. Intelligent agents: Theory and
practice. The Knowledge Engineering Review, 10(2):115-152,
1995.

On the convergence of core technologies for knowledge
management and organisational memories:

ontologies and experience factories
Yannis Kalfoglou1

Abstract. In this paper we argue for the convergence of core tech-
nologies for knowledge management and organisational memories.
Most of the work reported in the literature regards knowledge man-
agement and organisational memories as intertwined areas. How-
ever, the technologies used to implement and support them are not
treated in the same fashion. Usually, they are conceived, developed,
and deployed separately. This prevents us from fully exploiting their
strength. We identify two such technologies in this paper: ontologies
and experience factories, originating in these different communities.
We elaborate on their strengths as potential core technologies and
show, through an example case, how their convergence could be of
mutual benefit. We generalise the approach and speculate on the im-
pact of such convergence in the broader context of knowledge man-
agement and organisational memories.

1 Motivation

Nowadays, we are witnessing increasing interest in knowledge
management(hereafter, KM), and organisational memories(hereafter,
OMs). The former refers to: “the formal management of knowledge
for facilitating creation, access, and reuse of knowledge”([35]). The
latter aims to provide the means for storing, retrieving and distribut-
ing knowledge from an organisation’s repositories. The goal of OMs
is to preserve knowledge whereas KM aims to develop and deploy
knowledge. Clearly these two areas are intertwined and centred upon
the enhancement of an organisation’s competitiveness by improving
the way it manages its knowledge.

There are various ways of implementing KM systems in an or-
ganisation as well as technologies for supporting OMs development.
Ontologies and experience factories have been studied as the means
to support KM and OMs, respectively. Ontologies were originally in-
vestigated in the Artificial Intelligence(hereafter, AI) community as a
way to represent consensual knowledge about a domain of interest in
reusable and sharable formats. On the other hand, experience factor-
ies, studied in the Software Engineering(hereafter, SE) community,
have been explored as the means to promote and manage experiences
collected throughout the life-cycle of a software project. Recently,
both they have begun to applied in KM and OMs as core technolo-
gies to support their implementation. O’Leary investigates the role
of ontologies in KM systems and argues that: “a KM system de-
pends on ontologies to facilitate communication between its multiple
users and links between multiple knowledge bases”([35]). Similarly,

1 University of Edinburgh, School of Artificial Intelligence, Division of In-
formatics, 80 South Bridge, Edinburgh, EH1 1HN, Scotland, email: yan-
nisk@dai.ed.ac.uk

experience factories and their constituents, experience bases, have
been applied as an OM to support exchange of experiences(see, for
example, [6]).

Despite the fact that KM and OMs are intertwined the technolo-
gies that are employed to implement them are developed and applied
separately. For example, most of applications of ontologies do not
mention nor use any kind of organisational framework(i.e., in the
form of an OM), but merely are deployed in order to achieve know-
ledge sharing and reuse benefits. In the same line, experience factor-
ies amid their successful implementations as OMs, do not employ
particular types of ontologies, or even when they do these are often
distant from the ontologies reported in the AI literature. This prevent
us from exploiting the full potential of these two core technologies.

In this paper we argue for their convergence in order to exploit
their potential more fully: knowledge sharing and reuse achieved by
deploying ontologies could improve the development and deploy-
ment of KM, whereas the presence of an OM, in the form of an
experience factory, could allow us better to organise, characterise,
and store ontologies.

O’Leary argued in [36] for the need to “convert individual know-
ledge to group-available knowledge”. This converting process re-
quires knowledge sharing and collection in a form that can be gener-
ated and reused. The author refers to this as the knowledge harvest-
ing, which “must identify knowledge that it desirable to share, worth
converting, and usable by others”([36]). In this paper we paraphrase
the above definition in the context of ontologies as follows:
Ontology harvesting must identify ontologies that are desirable to
share, worth converting, and usable by others.

We argue that this harvesting process can be accomplished by em-
ploying OMs technologies, such as experience factories.

In section 2 we review the role of ontologies in KM and sup-
port our claim that they are a core technology to achieve KM goals
which we identify in that section. Experience factories could effect-
ively support OMs as we describe in section 3. These two technolo-
gies, however, should complement each other and we elaborate on an
example case in section 4 where we employed experience factories
to support ontologies deployment. We generalise the approach and
speculate on the convergence of ontologies and experience factories
in section 5. We conclude the paper in section 6.

2 Ontologies in support of KM

Many researchers are investigating the role of ontologies in KM. Re-
cently, the reports of O’Leary in [36] and of Benjamins and col-
leagues in [11], summarise the contributions made and give us an

insight for their potential. O’Leary describes uses of ontologies in
KM systems with example cases drawn from the private sector, in
particular consulting firms([36]). In [11], Benjamins and colleagues
argue for an ontology-based KM which results in an intelligent ac-
cess to knowledge assets as they shown in an example case of KM in
a virtual organisation.

We briefly recapitulate here the conclusions drawn in these reports
and we also mention additional efforts from the ontology community
to achieve effective KM. First, we identify areas of KM where onto-
logies are suitable for exploitation. In a review of KM systems([35]),
O’Leary identified three factors that lead organisations to use KM.
These were classified as environmental pressures imposed by the in-
creasingly competitive global market place, technological advance-
ments arising from recent developments in Internet technology, and
the ability to create valuable information by converting individually
available knowledge into group or organisationally available know-
ledge. Whereas the environmental pressures and technological ad-
vancements give an organisation the reason and the means to pursue
KM activities, creating valuable information is the goal of KM.

The latter is achieved by the converting and connecting pro-
cesses as identified in [36]. These are summarised as follows: convert
(i)individual to group knowledge, (ii)data to knowledge, (iii)text to
knowledge, and connect (iv)people to knowledge, (v)knowledge to
knowledge, (vi)people to people, and (vii)knowledge to people. We
argue that ontologies are present in most of these processes, either
by playing a major role or by supplying the supporting infrastructure
that helps an organisation to implement them. In the following para-
graph we mention indicative examples from the ontology research
literature to justify this claim. A complete listing is out of the scope
of this paper which is to investigate the potential of convergence of
KM and OMs technologies. However, we point the interested reader
to field reviews in [44],[13],[22], and [25].

In particular, ontologies provide part of the infrastructure for con-
version processes(i to iii as listed above) and play a major role in the
connection activities(iv to vii as listed above). Conversion processes
(i) seem to benefit more from the presence of ontologies as this is
the underlying principle in their construction. Methodological([44])
and collaborative approaches([40],[10]) in ontology building, con-
vert individual to group knowledge in the form of an ontology. Pro-
cesses (ii) and (iii) use other AI technology like data and text min-
ing techniques with ontologies being the guide to the ‘right’ data or
text repository([16]). Ontologies are more active in the connecting
processes. Process (iv) is concerned with the so called, ‘pull’ tech-
nology, which aims at pulling knowledge residing in vast reposit-
ories to people. The means which used to pull that knowledge are,
mainly, search engines and intelligent agents. Examples of ontology
use in this area are given in [32] and [24]. Process (v) actually high-
lights the main contribution of ontologies: enabling communication
and interoperability between systems. The best way to cite indicat-
ive work here is to point to reviews and collections such as [44] and
[23]. Process (vi) is not directly related to ontologies as it is more
concerned with technological means such as Intranets. However, we
should mention the work on collaboration and discussion aided by
ontologies([39]). In contrast with process (iv), process (vii) is con-
cerned with ‘push’ technology. Means to achieve this are designated
systems that focus on content and push knowledge to the user instead
of waiting for the user to pull out that knowledge. As in (iv), onto-
logies play a major role here since they are concerned with content
and semantically enriched information. Example uses are described
in [19] and [16].

We now return to the conclusions drawn in the two reports men-

tioned above([36] and [11]). In [36], O’Leary argued for a number of
factors that drive the need for ontologies in KM. In brief, these are:
formation of discussion groups on particular topics of interests, im-
proved search capabilities by semantically-enriched query/answering
facilities, filtering facilities to capture the desired knowledge, reusab-
ility of artefacts, and enabling communication between different sys-
tems and/or people by using an interlingua. In the other report([11]),
Benjamins and colleagues argued that four basic activities of KM,
namely, knowledge gathering, organisation and structuring, refine-
ment, and distribution could be effectively supported by ontologies
as they shown in their report with the use of ontologies in each of
these activities.

3 Experience factories in support of OMs

While in the area of KM, as we saw in the previous section, onto-
logies have being acknowledged by many as a core technology to
support KM, there is no such distinguishable technology in OMs.
A reason for this may be the variety of activities that OMs are
concerned with. For example, Reimer defines OMs as: “the means
by which knowledge from the past is brought to bear on present
activities, thus resulting in higher or lower levels of organisational
effectiveness”([37]). Its purpose, Reimer continues, is to “ensure co-
herence between organisational units, coherence between cooperat-
ing companies, secure knowledge, and provide knowledge”. There is
no single technology that can accommodate all those activities and
recent implementations combine several. For example, Abecker and
colleagues identified potential research areas that contribute to OMs
implementation([1]).

Figure 1. Main experience factory tasks and experience base
architecture(adopted from [4]).

However, there is an area of research, stemming from the SE com-
munity, which is being promoted as a potential candidate for imple-
menting OMs. This is the area of experience factories2. These were
first investigated in the context of the TAME project([9]), and further
generalised in the early nineties([8]) as the means to promote reuse
of “all-kinds” of artefacts in an organisation. In figure 1, we illustrate

2 In the SE literature, it is also referred to as “experience management” or
“experienceware”.

the main experience factory tasks and an experience base architec-
ture, taken directly from [4]. The core of an experience factory is the
experience base which acts as the OM. The key idea is to install an
OM to support exchange of all kinds of experiences in the life cycle
of a software project. The main focus of an experience factory is to
support ‘learning from experience’ on a technology-independent or-
ganisational level. An experience factory stores the collected exper-
iences in an experience base. In [5], it was argued that Case-Based
Reasoning(hereafter, CBR) plays an important role in the experience
factory paradigm. As CBR provides both the technology and a meth-
odology for ‘learning from experience’ in the context of case-based
knowledge systems([3]), it was natural to use it for implementing
continuous learning in an experience factory style. In [4], Althoff
and colleagues deployed CBR to manage the retrieval and adaptation
of experiences in an experience factory.

The value of a repository of cases is also acknowledged by KM
researchers as O’Leary writes with respect to the conversion of in-
dividual to group available knowledge: “Although individuals might
have generic knowledge to contribute, case histories are particularly
robust”([35]). Such repositories of cases are suitable for applying
CBR techniques which provide the means for retrieval and adapta-
tion.

As in KM systems, ontologies also found in OMs implementa-
tions, as for example in [2]. Reimer elaborates on a generic archi-
tecture for OM which “[. . .]provides content description that uses a
domain ontology to refer to such knowledge areas as employee skills,
company regulations, office tasks, organisational structure, products,
marketing channels, etc.”([37]). Liao and colleagues describe the use
of ontologies for knowledge retrieval in OMs([31]). Recently, work
has begun to integrate ontologies and experience factories, mainly in
the SE community ([41]). In the next section, we argue for the bene-
fits of such convergence via an example case in the area of ontology
verification which we originally presented in [27].

4 Ontologies and Experience Factories

Most of research in ontologies is focussed on development issues
and we have witnessed products and tools such as methodolo-
gies(i.e., [44], [20]) and guidelines([21]) for building ontologies,
online environments([18],[40],[17]) for collaborative construction,
agent-based systems([7]) for supporting the selection task, and gen-
eric ontologies([30]) to be used as foundations for domain-specific
ones. However, there is a dearth of tools to support ontology deploy-
ment and maintenance.

To deploy ontologies correctly we need not only reuse-oriented
tools and technologies, as for example in the HPKB([15]) and
IBROW([19]) projects. It is also necessary to record and organise
our experiences in having applied them in order to improve future
ontology deployment. It is hard to gain this sort of experience from
the literature because few cases of comprehensive ontology reuse and
deployment on a large scale are reported([43], [12], [46]). Even those
which are reported do not normally discuss the hidden assumptions
and tradeoffs identified during testing. This section explains how
OMs technologies, like experience factories, may address this issue.

We argue that experience factories can be useful in ontology de-
velopment and deployment as a way of managing the experiences
collected from various agents participating in ontology building and
usage. This brings, crudely speaking, OMs technology into KM core
technology - ontologies - which in turn has important advantages for
the organisation that employs KM activities. We elaborate on these
in section 5 while here we focus on a simple architecture we built

to make the idea more concrete. The architecture, which is centred
upon the notion of ontology verification, is given diagrammatically
in figure 2.

The left-hand side of figure 2, depicts the task of verification. In
particular, we are interested in verification of ontologies at the ap-
plication level([28]). That is, we verify that ontological constructs
are not misused by applications that adhere to an ontology. After ap-
plying our verification mechanism we accumulate, temporarily, the
results in an experience base. These are code-testing results and we
regard them as experiences. The experience base is then imported by
an experiences editing tool which allows for further additions and
modification of the description of existing experiences. It allows us
to customise the experiences to the particular project as it provides a
way of expressing information usually not obtainable through code-
testing. We then select the experiences we want to validate and send
them to a designated tool for verifying their correctness with respect
to test results. This tool embodies the verification mechanism we de-
ploy in the first step but here we apply it to verify the correctness
of the results themselves. After the selected experiences have been
validated we store them in the final experience base to be part of the
experience factory.

This cycle can be repeated as many times as we wish in the same
or other ontologies to collect and manage the knowledge accumu-
lated during verification and testing. Ultimately, this will result in an
experience factory of ontology verification and testing that can be
deployed in similar projects in order to facilitate ontology use. It is
important to mention that the similarity of projects to benefit from
this sort of experience factory dictates the ability to transfer experi-
ences. How easily can we identify similar projects in order to transfer
previous experiences? An answer to this question is given by the on-
tology characterisation framework mentioned later in this section.

In [27] we applied this approach in an example case where we
deployed and verified an existing ontology at the application level.
The case is explained thoroughly in the aforementioned paper, while
here we briefly describe by following the architecture given above.
The ontology which we used, is the PHYSSYS ontology documented
in [12]. It is a formal ontology based upon system dynamics theory
and comprises of 7 different ontologies related via an inclusion lat-
tice. We deployed two of these, the mereology and topology ontology
in an exemplar application provided by the PHYSSYS developers
themselves. We used the verification mechanism we invented([26])
to check the correctness of mereological and topological definitions
used in the exemplar application. We devised and introduced artificial
errors in the application in order to demonstrate the usage of the veri-
fication mechanism. Surprisingly, we also detected errors occurred in
the original ontologies. We accumulated and verified all the discrep-
ancies found, by storing them as experiences in the final experience
base mentioned above. The size of such experience base varies in ac-
cordance with the project being applied. In our prototypical case we
created a small experience base of a dozen of test cases.

Apart from this specific information on testing we also wanted
to store additional information with regard to the ontologies used
which will allow us to retrieve and adapt the experiences in different
settings. We didn’t dealt closely with retrieval and adaptation tech-
niques as we intend to adopt those made available by the underlying
technology, the CBR method(an example of which is described in
[47]). This extra information has already been identified as ‘onto-
logy characterisations’ and an early attempt to operationalise them
is given by Uschold in [42]. Moreover, in [45], Uschold and Jasper
describe possible scenarios where these characterisations could be
of help in understanding ontology applications. As Uschold points

grass rabbitphotosynthesis grazing defecation

respiration respiration

p.2 p.3

p.4 p.5

p.1

consistency monitor

completeness monitor

weapon

naval target

ground target

aircraft target

is bomber

ontology database

radar
detected aircraft

navy threat

ground threat

air threat

defense
system

threat controlintelligence

hostile aircraft

APPLICATIONS

enginename

horsepower

numberpropellorEngine

max_speedmax_range

number numberflyingObject flyingObject

stores mission

guidanceType ordnance aircraft aircraft missionType

engine_manufacturer

guidance

weapon

target_type

weapontarget

target_type

weapontargettarget_type

weapontarget

target_type

weapontargettarget_type

weapontargettarget_type

weapontarget

target_type

weapontarget

target_type

weapontargettarget_type

weapontarget

target_type

weapontarget

ONTOLOGIES

VERIFY ONTOLOGIES AT
THE APPLICATION LEVEL

ACCUMULATE RESULTS
OF TESTING {1..N}

EXPERIENCE BASE

TEMPORARILY STORE THEM IN:

IMPORT EB IN

EXPERIENCES BROWSER

EDIT/BROWSE/MODIFY EXPERIENCES:

VALIDATE EXPERIENCES

SELECT EXPERIENCES

FOR VALIDATION

VALIDATION

CHECK

EXPERIENCE FACTORY

STORE THEM

IN EF

Figure 2. Experience-based architecture to support ontology verification(adopted from [27]).

out in [42]: “if this kind of description was provided for all applic-
ations, we would quickly get an overview of the state-of-the-art of
ontology application, and a way to compare applications. It would be
relatively easy to see which techniques have been used to apply par-
ticular kinds of ontologies in specific contexts”. We found the goal
of this research similar to our aim, which is to provide the means
to organise and collect experiences gained during ontology testing
and verification. Therefore, we found it practical to instantiate the
proposed framework for characterising ontologies in our verification
and testing scenario.

To make our case more precise we list below instantiations of the
proposed framework tailored to our scenario. Each item represents a
category, followed by its instantiation in the particular context. We
also include a short explanation of each category in a parenthesis
following its name.

� Purpose:(the purpose of the ontology) In our tests, both mere-
ology and topology provide the building blocks for PHYSSYS on-
tology. They formalise generic mereotopological relations as de-
scribed in the literature(i.e., [38] and [14]);

� Representation languages and
paradigms:(Ontolingua? Description Logics? Prolog? Clips?
XML?) The mereology and topology ontology were implemented
in Ontolingua, we translated them in the implementation language
we use: Prolog;

� Meaning and formality:(to what extent and how formal is
the specification of the meaning of each term?) The Ontolingua
versions of mereology and topology provide primitive terms with
axioms restricting their use by placing constraints on relationships
between types of entities. The implemented versions we used(in
Prolog), include this information along with application specific
constructs;

� Subject Matter:(is it domain-specific or general?) Both
mereology and topology provide generic relations and axioms to
be used in the PHYSSYS ontologies set;

� Scale:(how big is the ontology?) Both ontologies are quite
small, each of them formalises less than 10 relations;

� Development:(the degree to which the application is specified,
developed and/or fielded) The mereology and topology ontologies
are research prototypes but the PHYSSYS which includes them has
been used in the context of the OLMECO project([12]);

� Conceptual architecture:(what are the main compon-
ents in the ontology application, and how do they relate to each
other) A single research prototype system was used, the hospital
heating system, implemented in Prolog, which includes ontolo-
gical constructs;

� Mechanisms and techniques:(what specific mechanisms
and techniques were invoked to make use of the ontology) We
deployed a multi-layered architecture([28]) to embed ontolo-
gical constructs in the application. We translated ontological con-
structs to the target implementation language: Prolog, and trans-
lated ontological axioms to a designated constraints format used
to detect discrepancies with respect to misuse of ontological
constructs([26]);

� Implementation platform:(the particular implementa-
tion platform and context) The ontologies are described textually
in the literature and were also written in Ontolingua syntax,which
we translated in Prolog. The testbed application was also imple-
mented in Prolog. The tests were executed through a Java front-
end.

The role of these characterisations is to provide ontology-specific
information which can be used for organising and retrieving experi-
ences on testing in similar ontology deployment efforts.

Recall figure 1 from section 3 where we presented the main exper-
ience factory tasks as realised in [4]. Here we reproduce that figure
along with its instantiations in the context of our case: ontology veri-
fication.

As illustrated in figure 3, we have added information obtainable
from our experiences with the ontology verification task. These are

Characterisations

characterisations of ontologies(section 4)

validated experiences

experience type wrt. conceptual error occurrences

definitions that are misused in the application, explanations on error occurrences
a typical experience record contains information related to testing, like ontological

In addition, we validate those results before consider them as experiences to be stored

Figure 3. The experience factory instantiated with the ontology verification scenario(adopted from [27]).

results from code-testing, along with additional information such as
explanations for error occurrences and are contained in an experience
record which we validate before we store it in the experience base.
In the characterisation phase we can give generic information, like
the experience types with respect to conceptual error occurrences. In
addition, at this phase we also provide links to the ontology charac-
terisations described above, which are edited and linked to the relev-
ant experiences through a designated experience table(described in
[27]). This helps us to browse through the collected experiences and
ultimately supports the idea of “learning from experience” which is
an acknowledged need in ontology deployment.

5 OMs in KM

The development and use of KM ontologies hides important caveats.
As O’Leary reports in [35]: “Each consulting firm we have been ex-
amining has built or is building its own ontologies. Because these
enterprise ontologies are so costly to develop and maintain and are
constantly changing, ontology or taxonomy issues are emerging as
some of the most important problems in knowledge management”.
O’Leary analyses further these problems from the KBSs develop-
ment point of view in [34]. In this section we elaborate on our vision
of “bringing OMs technology into KM core technology: ontologies”,
which could, potentially, alleviate the situation. To explain the idea
we illustrate the approach in figure 4.

On the left hand side of figure 4, we place within a box surrounded
by a dash-lined border the OMs technologies. At the bottom of that
box we place a potential technology for supporting OMs implement-
ation: experience factories. The diagram included there is actually a
reduction of figure 2 presented in section 4. It denotes an example
use of experience factories in the area of ontology verification as we
described in that section. There can be other technologies for imple-
menting OMs. We point the interested reader to [1] were Abecker
and colleagues elaborate on potential technologies for OMs imple-
mentation.

On the right hand side of figure 4, we illustrate the main KM tasks
and activities. We identify four main KM tasks: acquiring, analys-
ing, using, and preserving knowledge. We argue that these tasks are
accomplished by activities which are supported by ontologies. In par-

ticular, the knowledge acquisition task, is accomplished by identify-
ing activities which are supported by ontologies. This results in the
application area of information extraction and/or content-matching.
In the same manner, ontologies in the area of knowledge representa-
tion are used to model and assess the environment, which are activit-
ies employed in the analysing knowledge task. The using knowledge
task, includes the apply, share, and reuse activities, which are sup-
ported by ontologies with such application areas as knowledge shar-
ing and reuse, and KBSs. The last task is preserving knowledge. It
is accomplished by activities such as organising, maintaining, and
capitalising knowledge which are partially aided by ontologies. The
resulting application area is that of libraries of reusable knowledge
components and experience repositories. The knowledge preserva-
tion task and its accompanying activities along with the relevant on-
tologies are the area of overlap with experience factories as denoted
by the dashed box surrounding the task in figure 4.

The way in which the two boxes of figure 4 are related summar-
ises the linkage we are suggesting in this paper. In the introductory
section, we argued that OMs and KM are intertwined areas. In this
figure we illustrate how the technologies used to implement them can
also be intertwined. As can be seen from the curly arrow connecting
the OMs technologies with the KM tasks/activities box, technologies
such as experience factories, can be employed to organise ontologies
used to support main KM tasks/activities. The latter, in turn, can sup-
port OMs implementation by acquiring, analysing, using, and pre-
serving knowledge to be processed by an OM.

There are mutual benefits for integrating OMs technology in KM
ontologies. On one hand, an OM framework could help to improve
ontology development and deployment, facilitate understanding, and
ease reuse. A better organised ontology could, in turn, overcome
some of the problems identified in [34]: “perfect ontology hype, lib-
rary ontologies, scale-up, interface, formality”, and analysed from a
cost-benefit point of view in [25]. We envisage deployment of ex-
perience factories, especially experience bases, in the whole spec-
trum of ontology life-cycle: experience bases on testing(an example
of which was presented in section 4, taken from [27]), on develop-
ment, on maintenance, etc. Ideally, all these experience bases could
be placed alongside with their ontology counterparts in large repos-
itories of reusable knowledge components. A metaphor of this idea

grass rabbitphotosynthesisgrazing defecation

respirationrespiration

p.2 p.3

p.4 p.5

p.1

consistency monitor

completeness monitor

weapon
naval targetground targetaircraft targetis bomberontologydatabase

radardetected aircraft

navy threatground threatair threatdefensesystemthreat controlintelligence

hostile aircraft

APPLICATIONS

enginename

horsepower

numberpropellorEngine

max_speedmax_range

number numberflyingObjectflyingObject

stores mission

guidanceTypeordnanceaircraftaircraftmissionType
engine_manufacturer

guidance

weapon

target_type

weapontarget

target_type
weapontargettarget_type

weapontarget
target_type

weapontargettarget_type
weapontargettarget_type

weapontarget
target_type

weapontarget

target_type
weapontargettarget_type

weapontarget
target_type

weapontarget

ONTOLOGIES

VERIFY ONTOLOGIES AT
THE APPLICATION LEVEL

ACCUMULATE RESULTS
OF TESTING {1..N}

EXPERIENCE BASE

TEMPORARILY STORE THEM IN:

IMPORT EB IN
EXPERIENCES BROWSER

EDIT/BROWSE/MODIFY EXPERIENCES:

VALIDATE EXPERIENCES

SELECT EXPERIENCES
FOR VALIDATION

VALIDATION

CHECK

EXPERIENCE FACTORY

STORE THEM
IN EF

id
en

ti
fy

acquire analyse use preserve

as
se

ss
m

o
d

el

sh
ar

e
re

u
se

ap
p

ly

m
ai

n
ta

in
ca

p
it

al
is

e
o

rg
an

is
e

E
xp

er
ie

n
ce

 F
ac

to
ri

es

CBR-based

identified in Abecker et.al. ’98 ([1])

other potential OMs technologies

OMs

KM

information extraction/
content matching

knowledge
representation

knowledge
sharing & reuse

KBS

libraries of reusable
components

areas of

activities
supported
by ontologies

applications

tasks

experience factories application area

O N T O L O G I E S

organise

s u p p o r t

experience repositories

(technologies)

(tasks/activities)

Figure 4. OMs in KM: OMs technology used to organise KM tasks/activities which in turn support the implementation of OMs.

are the implemented on-line libraries of ontologies, like for example,
Ontolingua, Ontosaurus, and WebOnto.

On the other hand, better ontologies could help to meet practical
requirements for the implementation of OMs. These were identified
by Abecker and colleagues in [1]: “(i)collection and systematic or-
ganisation of information from various sources, (ii)ability to min-
imise up-front knowledge engineering, by taking advantage of read-
ily available information, (iii)exploiting user feedback for mainten-
ance and evolution, (iv)integration into existing work environment,
(v)active presentation of relevant information”. Requirements (i),(iv)
and (v) could benefit more from ontologies as we briefly described
in section 2 and diagrammatically present in figure 4. Requirements
(ii) and (iii) could benefit more from the presence of an experi-
ence factory. In [2], Abecker and colleagues show how they satisfied
these requirements in the KnowMore system which realises proactive
knowledge delivery in order to enable employees solve cooperatively
knowledge-intensive tasks.

6 Conclusions

In this paper we explored the possibility of employing OMs techno-
logy to improve understanding and enhance the usage of ontologies.
The latter are a core technology for KM as we discussed in section
2. Despite the fact that OMs and KM are intertwined areas and usu-
ally are treated as a whole, we argue that the technologies used to
implement and support them are not. We discussed the potential con-
vergence of technologies for OMs, in particular experience factories,
with ontologies in section 4 where we presented an example case
in the area of ontology verification and testing. We generalised the
approach in section 5 and speculated on the benefits of such conver-
gence for both OMs and KM.

The intersection of these two technologies also highlights the role
of knowledge engineering. As Milton and colleagues argue in [33]
there is a change of focus in KM, from IT-based solutions to Know-

ledge Technology(KT)-based ones. To quote the authors: “[. . .] the
main purpose of KT is to provide solutions to certain key problems
associated with KM, such as scoping what knowledge is to be cap-
tured and disseminated, dealing with tacit knowledge, and facilitating
better understanding”. The field of knowledge engineering has been
studying and practising solutions to these problems for years.

Applying these solutions to KM could help us to realise the ‘ul-
timate goal’ of OMs as envisaged by Kuhn and Abecker: “[. . .]
to provide the necessary knowledge whenever it is needed. To as-
sure this, [OMs] realize an active knowledge dissemination approach
which does not rely on users’ queries but automatically provides
knowledge useful for solving the task at hand. To prevent inform-
ation overload, this approach has to coupled with a highly selective
assessment of relevance”([29]). The CBR-based experience factories
coupled with ontologically-based reasoning are a way of achieving
this ‘selective assessment of relevance’.

In accordance with the ‘ontology harvesting’ notion we mentioned
in the introduction we conclude the paper with a motto: if ontologies
are to be a cornerstone for successful KM, we need to manage them
by bringing OMs technology into their development, deployment, and
maintenance phases, which in turn, will result in a more effective
OM.

ACKNOWLEDGEMENTS

The research described in this paper is supported by a European
Commission’s Marie Curie Fellowship(programme: Training and
Mobility of Researchers). Thanks to David Robertson for his com-
ments on an early draft of this paper and to anonymous reviewers for
their comments.

REFERENCES
[1] A. Abecker, A. Bernardi, K. Hinkelmann, O. Kuhn, and M. Sintek, ‘To-

ward a Technology for Organizational Memories’, IEEE Intelligent Sys-

tems, 13(3), 40–48, (June 1998).
[2] A. Abecker, A. Bernardi, and M. Sintek, ‘Proactive knowledge de-

livery for enterprise knowledge management’, in Proceedings of the
11th International Conference on Software Engineering and Know-
ledge Engineering(SEKE’99), Kaiserslauten, Germany, pp. 120–127,
(June 1999).

[3] K-D. Althoff, P. Bergmann, and L.K. Branting, eds. Case-Based Reas-
oning Research and Development(ICCBR’99), number 1650 in Lecture
Notes in Artificial Intelligence. Springer Verlag, July 1999.

[4] K-D. Althoff, A. Birk, S. Hartkopf, W. Muller, M. Nick, D. Surmann,
and C. Tautz, ‘Managing Software Engineering Experience for Com-
prehensive Reuse’, in Proceedings of the 11th International Conference
on Software Engineering and Knowledge Engineering, SEKE’99, Kais-
erslauten, Germany, pp. 10–19, (June 1999).

[5] K-D. Althoff, F. Bomarius, and C. Tautz, ‘Using Case-Based Tech-
nology to Build Learning Software Organizations’, in Proceedings of
the ECAI’98 Workshop on Building, Maintaining, and Using Organisa-
tional Memories(OM-98), Brighton, England, (August 1998).

[6] K.-D. Althoff, M. Nick, and C. Tautz, ‘Improving organizational
memories through user feedback’, in Proceedings of the Learning Soft-
ware Organizations(LSO’99) workshop, Kaiserslauten, Germany, ed.,
F. Bomarius, pp. 27–44, (June 1999).

[7] J. Aspirez, A. Gomez-Perez, A. Lozano, and S. Pinto, ‘(onto)2agent:
An ontology-based www broker to select ontologies’, in Proceedings
of the Workshop on Applications of Ontologies and Problem-Solving
Methods, ECAI’98, Brighton, England, pp. 16–24, (August 1998).

[8] V. Basili, G. Caldiera, and D. Rombach, ‘Experience Factory’, in En-
cyclopedia of Software Engineering, ed., J. Marciniak, volume 1, 469–
476, John Wiley & Sons, (1994).

[9] V.R. Basili and H.D. Rombach, ‘The TAME Project: Towards Improve-
ment Oriented Software Environments’, Transactions on Software En-
gineering, SE-14(6), 758–773, (June 1988).

[10] R. Benjamins and D. Fensel, ‘The Ontological Engineering Initiative-
KA2’, in Proceedings of the 1st International Conference on Formal
Ontologies in Information Systems, FOIS’98, Trento, Italy, ed.,
N. Guarino, pp. 287–301. IOS Press, (June 1998).

[11] R. Benjamins, D. Fensel, and A. Gomez-Perez, ‘Knowledge Manage-
ment through Ontologies’, in Proceedings of the 2th International Con-
ference on Practical Aspects of Knowledge Management(PAKM’98),
Basel, Switzerland, (October 1998).

[12] P. Borst, H. Akkermans, and J. Top, ‘Engineering Ontologies’, Interna-
tional Journal of Human-Computer Studies, 46, 365–406, (1997).

[13] B. Chandrasekaran, R. Josephson, and R. Benjamins, ‘What Are Onto-
logies, and Why Do We Need Them?’, IEEE Intelligent Systems, 14(1),
20–26, (January 1999).

[14] B.L. Clarke, ‘A calculus of individuals based on ”connection”’, Notre
Dame Journal of Formal Logic, 22, 204–218, (1981).

[15] P. Cohen, R. Schrag, E. Jones, A. Pease, A. Lin, B. Starr, D. Gunning,
and M. Burke, ‘The DARPA High Performance Knowledge Bases pro-
ject’, AI Magazine, 19(4), 25–49, (1998).

[16] S. Decker, M. Erdmann, D. Fensel, and R. Studer, ‘Ontobroker: Onto-
logy Based Access to Distributed and Semi-Structured Information’, in
Proceedings of DS-8, Semantic Issues in Multimedia Systems, Boston,
MA, USA, ed., R & et.al. Meersman, pp. 351–369, (1999).

[17] J. Domingue, ‘Tadzebao and WebOnto: Discussing, Browsing, and
Editing Ontologies on the Web’, in Proceedings of the 11th Knowledge
Acquisition, Modelling and Management Workshop, KAW’98, Banff,
Canada, (April 1998).

[18] A. Farquhar, R. Fikes, and J. Rice, ‘The ontolingua server: a tool for
collaborative ontology construction’, International Journal of Human-
Computer Studies, 46(6), 707–728, (June 1997).

[19] D. Fensel, V.R. Benjamins, E. Motta, and B. Wielinga, ‘UPML: A
Framework for knowledge system reuse’, in Proceedings of the 16th In-
ternational Joint Conference on Artificial Intelligence, IJCAI’99, Stock-
holm, Sweden, pp. 16–21, (August 1999).

[20] M. Fernandez, A. Gomez-Perez, and N. Juristo, ‘METHONTOLOGY:
From Ontological Arts Towards Ontological Engineering’, in Proceed-
ings of the AAAI-97 Spring Symposium Series on Ontological Engin-
eering, Stanford, CA, USA, pp. 33–40, (March 1997).

[21] T.R. Gruber, ‘Towards principles for the design of ontologies used for
knowledge sharing’, International Journal of Human-Computer Stud-
ies, 43, 907–928, (1995).

[22] N. Guarino, ‘Formal Ontology and Information Systems’, in Proceed-
ings of the 1st International Conference on Formal Ontologies in In-

formation Systems, FOIS’98, Trento, Italy, ed., N. Guarino, pp. 3–15.
IOS Press, (June 1998).

[23] N. Guarino, ed. Formal Ontology In Information Systems, Frontiers in
Artificial Intelligence and Applications. IOS Press, June 1998. ISBN:
90-5199-399-4.

[24] N. Guarino, C. Masolo, and G. Vetere, ‘OntoSeek: Content-Based Ac-
cess to the Web’, IEEE Intelligent Systems, 14(3), 70–80, (May 1999).

[25] Y. Kalfoglou, T. Menzies, K-D. Althoff, and E. Motta, ‘Meta-
knowledge in systems design: panacea...or undelivered promise?’, The
Knowledge Engineering Review(submitted), (2000).

[26] Y. Kalfoglou and D. Robertson, ‘Managing Ontological Con-
straints’, in Proceedings of the IJCAI-99 Workshop on Ontolo-
gies and Problem-Solving Methods(KRR5), Stockholm, Sweden,
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-
18/, (August 1999). Also as: Research Paper No.948, Dept. of AI,
University of Edinburgh.

[27] Y. Kalfoglou and D. Robertson, ‘Applying Experienceware to sup-
port ontology deployment’, in Proceedings of the 12th International
Conference on Software Engineering and Knowledge Engineering,
SEKE2000, Chicago, IL, USA, (July 2000).

[28] Y. Kalfoglou, D. Robertson, and A. Tate, ‘Using Meta-Knowledge at
the Application Level’, Journal of Artificial Intelligence Research, sub-
mitted, (2000). Also as: Research Paper No.956, Dept. of AI, University
of Edinburgh.

[29] O. Kuhn and A. Abecker, ‘Corporate Memories for Knowledge Man-
agement in Industrial Practice: Prospects and Challenges’, Journal of
Universal Computer Science, 3(8), 929–954, (1997).

[30] D.B. Lenat and R.V. Guha, Building large knowledge-based systems.
Representation and inference in the Cyc project, Addison-Wesley,
Reading, Massachusetts, 1990.

[31] M. Liao, A. Abecker, A. Bernardi, K. Hinkelmann, and M. Sintek, ‘On-
tologies for Knowledge Retrieval in Organizational Memories’, in Pro-
ceedings of the Learning Software Organizations(LSO’99) workshop,
Kaiserslauten, Germany, ed., F. Bomarius, pp. 19–26, (June 1999).

[32] L.D. McGuinness, ‘Ontological Issues for Knowledge-Enhanced
Search’, in Proceedings of the 1st International Conference on
Formal Ontology in Information Systems(FOIS’98), Trento, Italy, ed.,
N. Guarino, pp. 302–316. IOS Press, (June 1998).

[33] N. Milton, N. Shadbolt, H. Cottam, and M. Hammersley, ‘Towards
a knowledge technology for knowledge management’, International
Journal of Human Computer Studies, 51(3), 615–641, (September
1999).

[34] D. O’Leary, ‘Impediments in the use of explicit ontologies for KBS de-
velopment’, International Journal of Human-Computer Studies, 46(2),
327–337, (1997).

[35] D. O’Leary, ‘Knowledge Management Systems: Converting and Con-
necting’, IEEE Intelligent Systems, 13(3), 30–33, (June 1998).

[36] D. O’Leary, ‘Using AI in Knowledge Management: Knowledge Bases
and Ontologies’, IEEE Intelligent Systems, 13(3), 34–39, (June 1998).

[37] U. Reimer. Building, Maintaining, and using Organisational Memories.
Invited talk in the ECAI’98 Workshop on Building, Maintaining, and
Using Organisational Memories(OM-98), Brighton, England, August
1998.

[38] P. Simons, Parts: A Study in Ontology, 5–128, Oxford: Clarendon Press,
1987.

[39] T. Summer and S. Buckingham-Shum, ‘From Documents to Discourse:
Shifting Conceptions of Scholarly Publishing’, in proceedings of the
CHI’98: Human Factors in Computing Systems, Los Angeles, CA, USA,
pp. 95–102. ACM Press, (1998).

[40] B. Swartout, R. Patil, K. Knight, and T. Russ, ‘Toward Dis-
tributed Use of Large-Scale Ontologies’, in Proceedings of the
10th Knowledge Acquisition, Modeling and Management Work-
shop(KAW’96),Banff,Canada, (November 1996).

[41] C. Tautz and C. Gresse von Wangenheim, ‘A Representation Formalism
for Supporting Reuse of Software Engineering Knowledge’, in Pro-
ceedings of Workshop in Reuse in Developing Knowledge-Based Sys-
tems(XPS’99), Wurzburg, Germany, (March 1999).

[42] M. Uschold, ‘Where are the Killer Apps?’, in Proceedings of Workshop
on Applications of Ontologies and Problem Solving Methods, ECAI’98,
Brighton, England, ed., Gomez-Perez,A. and Benjamins,R., (August
1998).

[43] M. Uschold, P. Clark, M. Healy, K. Williamson, and S. Woods, ‘An
Experiment in Ontology Reuse’, in Proceedings of the 11th Knowledge
Acquisition Workshop, KAW98, Banff, Canada, (April 1998).

[44] M. Uschold and M. Gruninger, ‘Ontologies: principles, methods and
applications’, The Knowledge Engineering Review, 11(2), 93–136,
(November 1996).

[45] M. Uschold and R. Jasper, ‘A Framework for Understanding and
Classifying Ontology Applications’, in Proceedings of the IJCAI-
99 Workshop on Ontologies and Problem-Solving Methods(KRR5),
Stockholm, Sweden, (August 1999). http://sunsite.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-18/.

[46] A. Valente, T. Russ, R. MacGrecor, and W. Swartout, ‘Building and
(Re)Using an Ontology for Air Campaign Planning’, IEEE Intelligent
Systems, 14(1), 27–36, (January 1999).

[47] G. von Wangenheim, K-D. Althoff, and M.R. Barcia, ‘Intelligent Re-
trieval of Software Engineering Experienceware’, in Proceedings of
the 11th International Conference on Software Engineering and Know-
ledge Engineering(SEKE’99), Kaiserslauten, Germany, (June 1999).

Unifying or reconciling when constructing Organizational
Memory? Some open issues.

Carla Simone1

Abstract. In the paper surveying tools and methods for Corporate
Knowledge Management [1], Distributed Corporate Memory
(DCM) is listed among the possible materializations of knowledge
and CSCW among the techniques possibly used to realized it. In
this paper we want to accept this challenge and try to reinforce the
bridge between DCM and CSCW. Despite the apparently natural
connection between them, this attempt is still a challenge since the
two frameworks rarely meet in integrated proposals where each side
provides its results to improve the other one. As in any challenging
attempts, results are often more about open issues than coherent
solutions.

1. ABOUT THE ORGANIZATION MODEL

Knowledge Management (KM) can be seen as the definition of a
producer/consumer process that can take different forms in relation
to the organizational structure it is based upon. The latter shows in
general a distributed structure for what concerns the producers. In
fact, it is well accepted that the sources of information are spread
around in the organization. The same holds for the consumers.
They can access the Organizational Memory (OM) at any
granularity of organizational units. The main point distinguishing
the above structures is the possible presence of a central node with a
distinguished role. Typically, this node is where locally produced
knowledge is collected, filtered, "normalized" before becoming
available, with the status of Corporate Knowledge (CK), to the
other nodes. Often, within sufficiently big organizations, a
dedicated office is envisaged where people's job is to elaborate the
collected knowledge, and organize it for future use. This is for
example a solution reported by a world wide spread consulting
company (in a workshop held in Torino in November 1999). At the
opposite extreme, there are fully distributed structures where each
producer is responsible of the collection and publication of locally
generated knowledge. This case applies in general to organizations
showing a highly flat structure where is difficult, if not impossible,
to assign distinguished roles in KM. Consider, for example, the
typical cases of WEB-based communities of knowledge workers or
virtual enterprises. In between the two extremes, there could be all
possible mixes of the two above mentioned structures. However, in
our experience with companies planning or realizing forms of KM,
the intermediate structures are not so frequent. What can be
recognized is the presence of loosely coupled subnetworks, either
centralized or fully distributed.
In any case, the structure is determined by both the organizational
culture and the type of knowledge under concern.

1 University of Torino, e-mail: simone@di.unito.it

 The awareness that knowledge is an important component of the
everyday work is not a new phenomenon: knowledge management
did already exist before OM/KM. What is new is the fact that
companies are increasingly realizing it, pushed by very pressing and
well known motivations. To respond to this pressure, their culture
can lead them to approach the solution according to the following
idea: recognize a new problem and construct a new structure to
solve it. Or according to the alternative view: see the problem as
diffused in the organization and enhance existing solutions. The
first approach naturally leads to the identification of a centralized ad
hoc structure, the second one naturally to a more distributed one on
top of what already exists. Accordingly, the use of the technology
is interpreted in a different way: to propose new functionality and
information flows vs. better supporting the existing ones.
Also the type of knowledge plays a role in the definition of the
structure. What is perceived as 'objective' or 'commonly
interpretable' knowledge easily reaches the status of CK: for
example, part of what in [1] refers to Profession or Technical
Knowledge. The related contents are likely to be considered as
universals that have to be collected and maintained in a coherent
heap, more easily achieved by a centralized organization. (Parts of)
Other types of knowledge can be less naturally interpreted as
universals since they are more dependent on the context in which
they are generated (local universal [2]). A typical example is the
part of knowledge related to the experience (successful cases, best
practices, and so on). This part of knowledge is either lost or
(informally) maintained close to where it makes sense.

2. THE SOURCES OF KNOWLEDGE

By considering the structure from the point of view of the nodes
providing information, one can make similar considerations as in
the previous section. Again, providing knowledge can be seen as an
activity which is fully immersed in everyday work or as an
additional one occurring asynchronously in relation to it.
This distinction has implications on different policies an
organization can apply to promote this activity: for example,
incentives, personnel management, and so on. The point we want
to take in this paper is the one of work content and supporting
technology. The asynchronous view leads to the well known
problem of doing something in an episodic way so that it is likely
that more pressing, interesting or rewarding activities are done in
place. The opposite point of view does not deny the necessity to
spend additional effort to produce knowledge but it incorporates
this effort as part of the normal work. The advantage is twofold: the
produced knowledge is likely to cover both a greater part of the
activities potentially generating it and

mailto:simone@di.unito.it

a greater amount of detailed knowledge from each single activity on
the other one, since it is recorded in a easier way. In this situation
the technology plays a relevant role. In fact the degree by which the
effort to produce knowledge is smoothly meshed with the normal
work depends on the degree by which the technological support of
both of them is integrated. Hence,words, a supportive technology
for normal work should to be designed so that knowledge
production is part of its basic functionality.
Despite the increasing attention to KM this is not yet the general
case. More often KM technology is a specialized one which is put
aside the other ones supporting other activities. This view has as
obvious consequences not only the possibility that some knowledge
is lost because of the technological hiatus but also the possibility
that some activities are considered as not producing knowledge.
This however contrasts with the common experience that
knowledge is produced by the combined and continuous effect of a
variety of apparently not knowledge generating activities.
Knowledge is produced when people write documents,
communicate through e-mail, surf the web and so on. Now, how
many applications supporting these 'simple' actions do contain
knowledge oriented functionality? Knowledge workers are
claimed to be the only ones surviving the evolution of the current
organizations but knowledge is rarely taken into account when
technology supporting work is designed. There are of course some
exceptions (e.g., [3]).
Generally the most widely applied idea is to consider that a
common repository, possibly populated and accessed in a
distributed way, through the WEB, can be a good solution to the
problem without paying attention on the problems raised by its
usage. The metaphor of OM as a repository has been thoroughly
criticized in [4] by deconstructing the common interpretation of OM
based on it. To simplify their argument, we can say that memory
metaphor is misused since instead of bringing in the technology
features drawn from human memory, it interprets human memory in
term of the technological counterpart, thus reducing later usage of
the collected information to a simple retrieval. This brings to the
argument of how to select the knowledge to be recorded, in which
form to record it and how to organize it in the memory.

3. DE-CONTEXTUALIZING AND RE-
CONTEXTUALIZING

The answers of the questions at the end of the previous section has
to deal with the issue that can be called de-contextualization and
(re-)contextualization. This is, in our opinion, the core problem of
KM.
Recording calls for a degree of de-contextualization of the collected
knowledge for reasons that go from feasibility and efficiency up to
the necessity to extract the true "universal" from it. Re-use calls for
a degree of (re-)contextualization to make possible the act of
interpreting the retrieved information. Interpretation is the
fundamental component of organizational "remembering" as a
creative act of organization members [4].
The appropriate balance of two above 'degrees' is difficult to reach
since they do not necessarily match. In full agreement with [5], we
can rephrase this point by saying that the pyramid proposed there
(going from Explanation, through Experience up to Classification)
has to be gone along up and down to support the whole KM life-
cycle and that in any case not all the knowledge about the various
ladder can be adequately covered by a technological support.
The tension between de-contextualization and (re-
)contextualization can be dealt with by means of different, hopefully
complementary, strategies. First, the recording process can build

and maintain different descriptions of the same piece of reality, at
different levels of simplification and abstraction. This idea is again
similar to the one proposed in [5]. Our emphasis is however more
on the possibility of having different level of visibility of the same
type of knowledge while there the emphasis is on different types of
knowledge related to the same group of experiences). We will come
back to this point in Section 5.
Second, informal knowledge or organizational behaviors that cannot
be easily consolidated can be captured and made available by
building kinds of 'knowledge maps' like: who knows what, who is
expert of, who had similar experiences as, who did or is likely to be
helpful in this case, and so on. If human beings play an
unavoidable role in KM, then information on them becomes a
fundamental part of CK. Of course, this view contrasts with the
idea to record things that will be used far away in the future when
people could no more be there. However, this is in our view a
goal which applies to very particular types of knowledge and
situations. More often, the past experience is no more applicable
because the context (organization, culture, technology, and the like)
did change in a way that makes it useless. In any case, still being
able to use in an appropriate way the existing knowledge for current
situations would be an invaluable benefit for the organization and
people working in it. Maintaining 'knowledge maps' in presence of
(high) turn-over should become an action , among others, in charge
of the organization itself. The relevance of these 'knowledge maps'
has been recognized for example in [6, 7]. The two approaches
show a basic difference: the first one derives the map directly from
computational features incrementing the functionality of a
communication support based on Speech Act theory, while the
second one treats (as implicitly do many other proposals) the
management of this type of knowledge in an asynchronous way with
respect to the processes producing it.
The third strategy makes KM a more distributed process in terms of
both the collected knowledge and its maintenance. In this view OM
becomes a network of local memories managed by distributed
organizational units. Local memories can serve people acting in the
different units who are then more motivated to spend effort in
maintaining them, as well as people outside these units, especially
when the 'knowledge map' mentioned in the previous point is
realized. Hence, KM becomes not only more distributed but also
more 'cooperative': in terms of [8] KM constructs communities of
people actively and consciously sharing interests and experiences.
In this scenario, re-contextualization becomes a cooperative
learning process that helps both the providers and the consumers of
the knowledge itself. The former can validate the quality of the
knowledge they are providing and improve it, the latter are
adequately supported in interpreting it and will be more motivated
in being supportive when the roles will be exchanged in the future.
To be sustainable, cooperative KM has to be supported by adequate
tools, organizational and technological. This is where KM and
CSCW could meet and positively influence each other. Following
the above idea that knowledge oriented functionality should be
embedded in applications, KM could suggest how to enhance
CSCW applications and the principles leading the latter could
support cooperative KM.
Recently, the relevance of contextual information was recognized as
a fundamental means for improving communication and
coordination. The keyword "awareness" was introduced to denote
this specific type of knowledge: awareness is far from being
univocally defined within CSCW [9]. However, it is common
opinion that it is about knowledge on what is going on 'around' a
specific activity performed by single or groups of individuals. In the
framework of KM this idea was put at work in [8]: "Research on
digital libraries are dominated by indexing and retrieval

mechanisms. The usefulness of such tools is not in dispute, however
this is not the whole picture of what libraries can and should be
about. ... The observed behavior of others in a situation contributes
to a sense of the situation's ambience, or social atmosphere". What
is needed is to enlarge this view to additional functionality which
fully takes into account that cooperative KM is a distributed
process (as any other form of cooperation does [10]).
Hereafter, we will focus on two issues we are working on. They can
be considered as examples of an exercise that could lead to a
possibly quite long list of additional functionality.

4. MANAGING ONTOLOGIES

Ontologies play a central role in almost all approaches to KM.
Motivations for their introduction and use can be found in [11].
One of the most relevant aspect that matters in the context of KM is
that ontologies can be shared (possibly together with the knowledge
they help to organize). In this view, identifying a single
'organization' ontology or merging different ontologies into a
common one, or translating an ontology into another one are
considered as feasible goals to achieve uniformity, sharing and re-
use. In addition, formal definitions of concepts and relations
linking them is seen as a factor improving portability.
This optimistic view contrasts with other experiences in the use of
classification schemes [12, 13]. The latter share with f ontologies
some basic aspects, like: the decision of what matters, the relations
among categories/concepts used to classify or capture the essence
of a reality.
In [13] is reported the experience of adopting a 'universal'
classification scheme in a big civil engineering company in order to
organize the documentation of large projects, like bridge design.
The standard was systematically circumvented not because it was
recognized poor; rather, because it was impossible to define one (or
classes of) scheme(s) serving the different needs. The supportive
technology had to be designed taking local adaptability as primary
goal to become accepted and used to enhance knowledge circulation
about projects.
 In [12], again on the basis of empirical evidence, the emphasis is
put on how subtle cultural, social and political factors play a role in
the choices of basic concepts and relations to capture the essence of
work activities, and the consequence they bring along. It is
impossible to give a satisfactory account of all the arguments
discussed in the book. However, the point we borough from them is
that any type of ontology/classification should be seen as a
"boundary infrastructure" serving the purpose of a mediation space
among different local communities. "What we gain with the concept
of boundary infrastructure over the more traditional unitary vision
of infrastructure is the explicit recognition of the different
constitution of information objects within the different communities
of practice that share a given infrastructure (p. 314)". In addition,
ontologies/classifications "always represent multiple constituencies.
They can do so most effectively through the incorporation of
ambiguity... Designers should recognize these zones of ambiguity,
protecting them where necessary to leave the schemes to play their
organizational work. (p. 324)".
Now, why to spend an effort in trying to enforce standardization
when "the history to attempt to standardize information systems "
shows that "standards do not remain standard for very long, and one
person's standard" can easly become "another's confuson and mess
(p. 293)", as shown for example by the experience reported in [13]?
Instead, the same effort could be spent in supporting people to live
with the degrees of ambiguity and partiality the boundary
infrastructure encompasses, and to actively participate in the

maintenance of such ambiguity and partiality in a continuous
learning process triggered by "interruptions of expectations". As
stressed in [12], ontologies/classifications do matter for lots of
reasons. We agree, and would emphasize that they make sense
within communities of practice where their existence is part of
cooperation: the latter is not only based in articulation work [14]

but also in categorical work ("distribution of work, and its different
meanings in different communities, must be managed for
cooperation to occurr. The juggling of meanings is what we call
categorical work. ([12], pag. 310). Across communities, more
flexible links can better take into account the inherent differences.
In this view, unification of concepts and relations into a common
shared framework should smoothly coexists with the reconciliation
of concepts and relations that reflect local culture and work
organization.
In our research effort to enhance articulation work through the
design of CSCW applications supporting communication and
coordination among cooperating people we met the problem of
different ways by which these groups look at their reality and
organize the related information. Specifically, we designed two
frameworks aimed to support local activities and actions that cross
groups in order to achieve coordination in organizations that can be
conceived of as autonomous interacting communities constructed
around shared objectives and work modalities. To this aim we
introduced the notion of coordination mechanism: in our
terminology, they are dyads of coordinative protocols and artifacts.
Moreover, a language (Ariadne) has been developed for defining,
specifying, and executing them [15]. Its elemental categories and
composition laws, which have been identified empirically and can
be modified at any time [14], capture how actors identify the basic
units of work and information for articulating their activities and the
relations between these units. For this to be feasible requires a
degree of expressiveness such that no specific modelling approach
is imposed: that is, any type of flow of work up to the light-most
shared working space should be representable. Moreover, since
classification schemes and coordinative artifacts play an important
role in articulation work, the basic categories and relations must
allow for their definition as well.
The second framework is based on a software component (called
Reconciler [16]) that supports the interoperability of different
‘coordination mechanisms’ in terms of the mutual alignment of their
boundary objects and events. The problem of managing mutual
alignment of such applications becomes a crucial part of
coordination and can be formulated in terms of ‘interoperability
raised at the semantic level of articulation work’, in contrast to
current research efforts that aim at the interoperability of
applications at the system level. The Reconciler provides a means
for managing the tension between the requisite local perspective and
the shared meaning required to interpret the boundary objects and
intersecting events that characterize inter-group cooperation. This is
achieved by recording the conventions users establish to maintain
the correspondence between the different definitions and views of
the boundary objects and crossing events. The recorded conventions
are then used to improve inter-group cooperation in terms of
'naturalization' of concepts and relations ("naturalization means
stripping away the contingency of their creation and their situated
nature" by taking them for granted ([12] p. 299); ‘translation’ when
possible: that is when contingency has to be maintained but
correspondences can be established; or, when impossible, to support
the related learning process by highlighting discrepancies and
increase mutual awareness of ambiguities and partiality generated
by local conventions.
Although not specifically oriented to KM, this experience led us to
reflect on how knowledge is created and used in communication

and cooperation. In the light of the claimed integration of supports
of cooperative work and KM, we believe that the principles
underpinning the above mentioned prototypes could be helpful in
avoiding approaches that create a hiatus between KM and everyday
activities, between pieces of knowledge that can be 'shared' and
pieces of knowledge that make sense only in context, and last but
not least in making publicly visible information structures that
materialize the relevant knowledge on the work organization and
the information resources on which it is based. Specifically, we
refer to the coordinative artifacts that in Ariadne are taken as
primary category in cooperation and constitute a privileged source
of knowledge to enhance sharing and reuse of experience in
supporting coordination.

5. DIFFERENT DESCRIPTIONS AS
ABSTRACTIONS

In discussing the tension between de-contextualization and (re)-
contextualization (Section 3) we mentioned the need of having
different descriptions of the same piece of information. This
redundancy can be achieved by identifying different aspects. For
example, different perspectives have been taken to organize
knowledge, and are there illustrated mainly in relation to textual
information. There are however sources of knowledge that provide
descriptions that are based on objects and relations between them.
This is the case when the target organization makes use of
applications supporting the coordination of activities, typically
workflow systems, which, as constitutive part of their usage,
presuppose the definition of causal relations among activities and
the record of their actual executions in specific instances. In [15] we
discussed the role of these descriptions as a constituent part of CK.
The description of processes managed by workflow systems is
increasingly based on formal theories that allow for the definition of
tools to control process modifications, both at definition and
execution time. The point we want to make here is that these tools
can be viewed as means to provide the above different descriptions
in the specific case of processes, that is, when the knowledge is
about how activities are conceived of and combined to achieve a
result, and actualized in concrete experiences (instances). In most
of the cases, tools controlling process modifications are based on a
hierarchical description of the target process, where the links
between nodes of the hierarchy are expressed in terms of
refinements of behavior (as in classical top-down approaches)
preserving behavioral properties. Although this approach produced
nice results and applications, it is problematic in respect to its
potential application in KM. First, top-down approaches naturally
lead to a global view of the system and are not suited to represent
the partiality and openness characterizing distributed (workflow)
systems. Secondly, intermediate nodes of the hierarchy carry
symbolic names that make sense for the community supported by
that system but raise the obvious problem when they have to be re-
interpreted by members outside the community.
An approach that is more suited to avoid these problems is based on
a different interpretation of the hierarchy that we have drawn from
[17]). Leaves contain the most detailed description of system
components together with the most abstract view of the rest of the
system, as perceived from the point of view of the component itself.
This abstract view accounts for partial visibility of the 'world' by,
and openness of, the component itself. Intermediate nodes contain
abstractions of the children ones and, again, of the of the rest of the
system in relation to this node. Hence, each node contains different
abstractions of the whole system, at different level of detail, up to
the root which mainly contains the description of the interface of

the system with the rest of the organization. The second key point
is that abstraction is based on the notions of aggregation of states
and observability of actions [18].
Leaving aside the technical details (that can be found in [19]), the
basic idea is that aggregations are defined by the point of view the
observer wants to take on the system. For example, the root does
not account for the number and structure of the components but
only on the external interface. So, it can be interpreted as the
protocol the specific system wants to offer to its environment and
therefore expresses the constraints it has to follow or is able to
impose when interacting with it. Going down the hierarchy, more
detailed information can be obtained about the children of the
considered node, while the rest of the system is still at the most
abstract level, and plays recursively the role of constraint for those
components.
Obviously, the way in which components are organized in a partial
order within the hierarchy is 'context dependent', in principle as the
'names' assigned to intermediate nodes in standard refinement.
However, unlike refinements, the underlying theory allows for an
easy specification, on the fly, of the shape of the hierarchy. In fact,
the latter can be constructed starting from the information contained
in the leaves (or possibly in any intermediate node if one wants to
reduce the level of detail of the most concrete descriptions). It is
sufficient to specify which components one wants to see at which
level of aggregation. Observability of actions, irrespective of the
level of aggregation of the considered components, can be defined
by the observer too. Usually the choice falls on actions that
represent communications with the environment of the (aggregated)
component. However, nothing prevents the observer from choosing
different actions and to specify the level of control of the abstraction
process, in traversing the hierarchy nodes. For example, if actions
are classified according to some criteria (e.g., control actions,
communications, check-points, and the like) the observer can just
specify the type of actions s/he is interested in, and the resulting
abstraction is automatically done (by algorithms that take away the
other ones). Abstraction keeps the consistency level specified by the
observer too: for example, a strict maintenance of the causality
induced by the language of the observed actions or other
(theoretically defined) weaker notions of consistency.
Reading the above (very condensed) description of the approach
from the point of view of KM in the case of processes, we can say
that from knowledge constructed in the normal course of action
within the organization one can record some basic knowledge (e.g.,
the components or some abstraction of them) and then make this
knowledge available, at the different levels of detail that make sense
to its reader. If, as we advocate, a KM informed definition of the
actions used to define the distributed workflow as well as of the
hierarchy nodes specifies additional information (referring to
explanation, administrative aspects and so on) they can be
organized accordingly and shown following the visibility policy
defined by the reader. A similar reasoning can be done for
executions of processes. Meaningful case histories can be recorded
and read in different ways, using the observability approach. This
goes in the same direction of what was proposed in [20].The above
presentation sketches what we would like to see as an integration of
KM and CSCW.

6. CONCLUSIONS

As mentioned in the foreword, the attempt to reinforce the links
between KM and CSCW did not lead us to the identification of
solutions. The previous sections discussed issues that can be seen
as the starting point of a rich research agenda. The contribution

CSCW can provide to this topic is not only technological but also
about the experience that within this area has been accumulated on
how people work, both individually and cooperatively, in a smooth
way. One of our biggest concerns is about the risk to make KM a
fragmented process, because it uses a loosely integrated technology
and is conceived of as an asynchronous activity with respect to the
other ones. Fragmentation has been recognized as one of the main
sources of problems in communication and cooperation. Having
infrastructures able to support integrated applications is one of the
main research efforts in CSCW as a means to make available to the
cooperating actors supports to different modes and means of
cooperation, to be used flexibly in different situations. In the view
of KM as a fundamentally communication and cooperation process,
fragmentation risks to make any effort to achieve it less effective
than expected, in relation to the organizational and technological
effort put in it. On the other hand, all applications, and CSCW
applications among them, should be designed to contain
functionality that makes them as a portion of the overall
technological support to KM and OM. This implies that the two
areas share many research issues where their specialized
methodologies and techniques can be used in a combined way. In
particular, we see the maximum benefit to solve the conflict
between de-contextualization and re-contextualization. In fact, as
we have sketched, the latter require enhanced representation
capabilities, for both static and dynamic knowledge, and in
particular rich and flexible abstractions tools that go beyond the
current capabilities. Cooperative KM necessitates the same
proactive support as other cooperative applications, to trigger and
enhance organizational learning as a fundamental part of KM. In
other words, how much the 'pull' approach has to be combined with
a 'push' one in dealing with KM? In this framework, in order to
achieve the above claimed joint effort, the recent experience gained
in dealing with 'awareness' management (which is mainly 'push'-
based) needs to be extended to knowledge concerning past
experiences. In any case, both awareness information and CK
require support for their interpretation in contexts different from
where they have been generated. Last but not least, up to now KM
is based on the metaphor of a "memory" and focuses the core of the
attention on the action of 'remembering'. What about the second
action typical of a memory, that is 'forgetting'? In [12] there is a
chapter on this subject which is stimulating reflections on the
necessity to have tools supporting this too. Our everyday experience
is that people remember and forget in a mixed way, at different
depths which are functional to improve the effectiveness of their
memory. Now, one could ask: how can the technology support this
combined action? Which methods and tools are needed to make it
feasible? An intriguing interdisciplinary research topic which
requires both field research and innovative knowledge
representation and management capabilities.

REFERENCES
1. Dieng, R., et al., Methods and tools for corporate knowledge

management. Human Computer Studies, 1999. 51(3): p. 567-
598.

2. Timmermans, S. and M. Berg, Standardization in action:
achieving universalism and localization in medical protocol.
Social Studies of Science, 1997. 27: p. 273-305.

3. Schwartz, D.G., When email meets organizational memories:
addressing threats to communication in learning organization.
in [1], p. 599-614.

4. Bannon, L. and K. Kutti, Shifting Perspectives on
Organizational Memory: From storage to Active Remembering,
in Proceedings of the 29th IEEE HICSS, vol. III,Information
Systems - Collaboration Systems and Technology. 1996, IEEE
Computer Society Press: Washington. p. 156-167.

5. Landes, D., K. Schneider, and F. Houdek, Organizational
learning and experience documentation in industrial software
projects. in [1] p. 643-661.

6. Benjamins, V.R., D. Fensel, and S. Decker, (KA)2: building
ontologies for the internet: a mid-term report. in [1], p. 687-
712.

7. Simone, C. and M. Divitini, The CHAOS project: a
coordination support integrating communication contexts.
CSC: the Journal of Collaborative Computing, 1998. 8(3).

8. Robertson, S. and K. Reese, A virtual library for building
community and sharing knowledge. in [1], p. 663-685.

9. Heath, C., K. Scmidt, and T. Rodden, ed. Special Issue on
Awareness in CSCW. CSCW: an International Journal, 2000,
Kluwer: .

10. Simone, C. and K. Schmidt. Taking the distributed nature of
cooperative work seriously. in 6th Euromicro Workshop on
PDP'98. Madrid (Spain), 1998: IEEE Computer Society.

11.Chandrasekaran, B., R. Josephson, and V.R. Benjamins, What
are Ontologies, and Why do we need them? Intelligent Systems,
1999. Jan/feb 1999: p. 20-26.

12.Bowker, G.C. and S.L. Star, Sorting things out: classification
and its consequences.1999, The MIT Press.

13.Dourish, P., J. Lamping, and T. Rodden. Building bridges:
customization and intelligibility in shared category
management. in ACM-Group99. 1999. ACM Press.

14. Schmidt, K. and C. Simone, Coordination Mechanisms:
Towards a conceptual foundation for CSCW systems design.
CSCW.: An International Journal, 1996. 5(2-3).

15.Simone, C. and M. Divitini, Ariadne: Supporting Coordination
Through a Flexible Use of Knowledge on Processes, in
Information Technology for Knowledge Management, U.M.
Borghoff and R. Pareschi, Editor. 1998, Springer: Berlin-
Heidelberg. p. 121-148.

16.Simone, C., G. Mark, and D. Giubbilei. Interoperability as a
means of aticulation work. in WACC'99. 1999.: ACM Press.

17.Buchholz, P., A framework for the hierarchical analysis of
discrete dynamic systems. 1996, University of Dortmund:

18.Milner, R., A Calculus of Communicating Systems, LNCS 92.
1980, Springer-Verlag: Berlin.

19. Donatelli, S., M. Sarini, and C. Simone. Towards a Contextual
Information Service supporting adaptability and awareness in
CSCW systems. in COOP 2000. 2000. Sophia-Antipolis (Fr):

20. Dourish, P., et al. Getting some perspectives: using process
description to index document history. in ACM-Group99. 1999.
ACM Press.

Structuring Organizational Memories using
Multi- Dimensional Knowledge Networks

Tang-Ho Lê 1 and Luc Lamontagne 2

ABSTRACT. In this paper, we present an approach
for the structuring and exploitation of organizational
memories. We propose a system to build
organizational memories (OMBS) with multiple
dimensions, each dimension being defined for a
different exploitation mode. An advantage of this
OMBS approach resides in the incremental
construction of domain knowledge networks including
numerous knowledge units and links. We begin by
discussing some ideas related to the structuring of an
organizational memory (OM) using flight safety as an
application domain. Then we describe the purpose, the
formalism and the structuring of the knowledge
networks. We also propose some directions to exploit
the OMBS system along its various dimensions.

1 Introduction

Over the past few years, the construction of organizational
memories has generated much interest within academic and
industrial communities. Recent progress in interactive
information technology (mostly web-related) has provided a
technological infrastructure for the implementation of these
knowledge repositories. Moreover OM favor the
implementation of knowledge management (KM) practices
within organizations in order to enable people to "know
what they know". Some authors [1] even claim that the
construction of an OM should be considered as the first step
in the KM cycle.

With different viewpoints being presented in the KM
literature, OM are becoming "overworked and confused"
(see [2]). Some authors define an OM as “the collective
data and resources of a company including project
experiences, problem solving expertise, design rationale,
etc.” (see [3]); others view it as “a repository of knowledge
and know-how of a set of individuals working in a
particular firm” (see [4]). Even with the latter definition,
knowledge is such a vague subject that it is difficult for
developers to start the construction of an OM.

There is a lack of conceptual ground on the approaches
for the structuring and integration of OM (see [1]). More
specifically, proposed methodologies do not offer a
compromise between vague structuring guidelines (as
extensions of digital libraries) and excessive knowledge
formalization (AI flavored approaches). The goal of our
work is to experiment with multi-dimensional networks in
the structuring and exploitation of knowledge assets and try
to determine a well-balanced approach through
experimentation with examples from our application
domain, flight safety. By multi-dimensional network, we

 1 Computer Science Department, University of Moncton, Moncton

(NB), E1A 3E9, CANADA, email: letangho@UMoncton.CA
 2 Defence Research Establishment Valcartier, 2459 Blvd Pie-XI

north, Val Bélair (Qc) G3J 1X5, CANADA, email:
luc.lamontagne@drev.dnd.ca

refer to a directed graph where the nodes represent static
and "how-to" domain knowledge and where the links
provide guidance on the usage of the network.

In this paper, we report on the approach we followed in
the structuring and integration of OM using the knowledge
network (KN) formalism. We discuss some of the choices
made for the implementation of an OM for our application
domain (sections 2-3), the compromise leading to the
structuring approach (sections 4-5) and the schemes
implemented (section 6-7). Finally we propose some
directions on how to pursue this research effort.

2 A KM Perspective of Flight Safety

The Flight Safety program of the Canadian Forces aims at
eliminating accidental loss of aviation resources. These
measures are essential to preserve vital resources and to
maintain operational potential for transportation,
emergency management and/or combat purposes.

The program is based on the principle that by
effectively disseminating analysis of air incidents, pilots
can learn from the experiences of others and hence avoid
repeating the same mistakes themselves. Understanding
why safety occurrences happen (determine the cause) and
deve lop pilot awareness (correcting their causes and
implement preventive measures) are the keys to an
effective accident prevention program.

From a KM perspective, the main knowledge assets of
the Flight Safety program are the lessons learned from the
incident reports and the expertise of the Flight Safety
officers. The efforts of the program are mainly
concentrated on effective and timely development of the
incident reports. The efficiency of the system depends
mainly on the quality of the reports (assured by open and
honest reporting of the incidents) and their effective
dissemination.

The expertise and experience of the Flight Safety
officers conducting the analysis of incidents is also a
crucial knowledge asset. As the majority of incidents have
human root causes, officer's understanding of aviation
principles and human factors is of great importance.
However, due to their prior training and high
qualifications, the program puts less emphasis on managing
knowledge practices of the officer's community.

The KM cycle of the program can be described
according to the following four (4) steps (see [5]):
knowledge development, knowledge preservation,
knowledge usage and knowledge dissemination.

Knowledge Development: this involves the gathering of
local information by the Flight Safety team, the
investigation and analysis of incidents to determine
possible causes, the monitoring of new findings of
incidents occurring at other units and the estimation of their
relevance to local operational characteristics.

Knowledge Preservation: the production and storage of
reports, news letters, videos and other documents resulting
from the knowledge development activities.
Knowledge Usage: to determine corrective actions and to
increase pilot awareness by the assimilation of preventive
measures to reduce the chances of an occurrence, to
provide novice pilot with an access to Flight Safety
background knowledge, to spot trends and to determine the
magnitude of typical/unusual problems.
Knowledge Dissemination: to communicate findings of
new incidents to other organizations and to the appropriate
level in the chain of command (e.g. Wing Commander),
and to provide advices and training to the personnel.

3 The Construction of an OM

We view an OM as a knowledge system combining domain
collections accumulated by an organization and some
structured knowledge depicting how the collections can be
exploited by its various users (Figure 1).

Typically, organizations have accumulated collections

ready to be exploited. For instance, the Flight Safety
program has a large collection of reports describing
findings of incidents over the last decades, manuals
provided to pilots during their aviation training and other
material (e.g. videos, news letter, web sites) promoting
Flight Safet y practices among the pilot community. These
collections can be distributed throughout different sites.

Figure 1. A diagrammatic view of an Organizational Memory

Domain collections being provided, the process of
building an OM relies on the choice of scheme to integrate
the collections and to exploit them. This experimental
process, following either a bottom-up or top -down
approach, progressively migrates knowledge from a
implicit state (non proven expertise, sometimes tacit to the
beholder) to a better structured and formalized formulation
(section 4). The construction process implies the selection
of organizational knowledge assets to be preserved, the
level of structuring/formalization to be reached, and the
choice of schemes to exploit the memory. In our Flight
Safety case study, the sharing of experiences and the
reinforcement of basic safety principles are targeted as the
key assets (sections 6-7).

In our approach, we propose a paradigm for structuring
domain knowledge and a framework to exp loit the domain
knowledge in conjunction with domain collections. Our
approach relies on 3 aspects:

- To limit our structuring efforts on explicit task-oriented
knowledge;
- To incrementally structure knowledge, through informal
descriptions of knowledge units (KU). Our goal is to reach
a compromise between rigid and formalized knowledge
and ill-structured knowledge as often encountered in
documents (like frequently asked questions);
- To take into account the exploitation of knowledge
during the structuring phase.

Figure 2. Organizational Memory Building Process

The process we follow to build the OM is a combination

of steps to structure the KU, to expand this knowledge
along various dimensions and to provide knowledge
required to the exploitation schemes. Further details are
provided in the next sections.

4 Knowledge Levels

Acquiring and structuring corporate knowledge has proven
to be the bottleneck in the design of knowledge systems.
To overcome this difficulty and to ease the work of the
analyst building the OM, the choice of knowledge
structuring/formalization approaches and the type of
knowledge to capture are critical.

For each domain, a body of knowledge exists and is
maintained in different forms (books, documents,
procedures, database, expert systems) and by expert
humans or employees. The issue of what knowledge
should be considered as candidate for OM can be clarified
if one distinguishes the different layers of knowledge
existing in an organization. In our work, we classify
knowledge according to three (3) different layers: basic
knowledge, innovative knowledge and creative knowledge.

To have the abilities to work within a domain, one must
learn or be trained, i.e. be familiarized with the first
knowledge layer, the basic knowledge of the underlying
domain. For example, to fly an aircraft, a pilot must learn
the basic knowledge of meteorology, aeronautical
navigation and must be trained to control a specific type of
aircraft (as by Intelligent Tutoring systems).

Over time, changes occurred in the domain and in the
environment a solutions must be devised for new
situations. The basic knowledge evolves and more
knowledge is available that forces the organization and
employees to adapt to their work in order to improve them,
keep competitiveness or just to be better. That is the
second knowledge layer, the innovative knowledge. For
example, all pilots must learn how to use new aircraft

Knowledge Networks

Knowledge Provider

Knowledge User

Domain Collections
(occurences, procedures…)

Exploitation Scheme
(navigation, Q/A,…)

Exploitation Scheme
(navigation, Q/A,…)

Knowledge DevelopmentKnowledge Development

Knowledge
Units

Knowledge
Structuring
Knowledge
Structuring

Knowledge Users

Domain Collections
(occurences, procedures, stats,…)

Exploitation Engine
(navigation, Q/A, maintenance)

Exploitation Engine
(navigation, Q/A, maintenance)

Domain Knowledge
(structured and formalized)

instruments and develop abilities on how to react during
critical flying situations.

This innovative knowledge comes from creativity and
expertise validated after much experimentation. This
knowledge is precious because it contributes to the
community's global understanding of their domain.
Normally, this kind of knowledge takes time to be formed
since tacit knowledge and unproven skills must be
leveraged, clarified, formalized or validated. That is the
third knowledge layer, the creative knowledge.

From the above distinction of knowledge layers, tools
are needed to determine where to apply the innovative
knowledge level or on how to stimulate the creation of new
knowledge. Also it must overcome basic training
knowledge as knowledge can not be reduced to information
primitives. To effectively achieve the KM functions,
“organizations must create a set of roles and skills to do the
work of capturing, distributing, and using knowledge” [6].
We aim to build a tool to facilitate the “active collection
and diffusion of knowledge (knowledge pump)” [7], with a
special emphasis on the development of the innovative
knowledge layer.

5 The Structuring of OM

Some authors (see [8], [9]) propose methods and
techniques to build an OM as the starting point of a KM
process. Without the distinction of the three knowledge
layers as mentioned above, the OM structuring task is
difficult. One obstacle is the mass of knowledge for a
domain such as Flight Safety being proportional to the
many years of college studies, training and pilot
experience. Moreover, this kind of basic knowledge is
normally well structured and formalized. Some powerful
intelligent tutoring systems are already developed to carry
out this task. As this basic knowledge has already been
specified in the criteria to hire employees, it is not an
essential function for an OM system to pursue active
development of these knowledge assets. Frequent
reinforcement of these principles should be sufficient to
ensure adequate operations. For instance, it is fair to
assume that most pilots fully understand the effects of
weather conditions on navigat ion. So reminders on a few
critical principles (ex: how to avoid convective clouds,
appropriate clothing in case of emergency) will bring
corrections to observed deficiencies.

The important knowledge to leverage intellectual
operations is rather the innov ative knowledge. It is the
knowledge in evolution that must be captured, formulated
and disseminated through an organization. For the Flight
Safety domain, this knowledge mainly resides in the
findings of incident analysis and in the proposed corrective
actions. To do that, we need an OM that describes the
actual tasks of the operators (in our case the pilots) as well
as the actions and skills required in each specific situation.
Employees must be encouraged to review this knowledge
and to leverage the tacit knowledge or informal expertise of
other employees, based on their work experiences. The
task review process must be carried out periodically and
occasionally, especially when environmental changes are
observed.

Finally the creative knowledge normally appears when
there is a problem solving challenge, for instance inductive
speculation by observing similar incidents or deductive

speculation by applying some rules/heuristics in a situation.
An initial form of creative knowledge may be tacit
knowledge. An OM can help to leverage this knowledge
by showing to users the relation between tasks or
situations, by associating each situation with related
actions. Users can then examine and survey many cases
and current experiences before finding a new solution. The
generation of creative knowledge can be stimulated in
several ways in an organization but this activity is different
from knowledge elicitation, i.e. the process of making clear
tacit knowledge. From our point of view, individual tacit
knowledge is the kernel of creative knowledge, if not,
where would it (tacit knowledge) come from? This point
of view is a little different from the one of [10] who
emphasis on the conversion of tacit knowledge to explicit
knowledge (i.e. the organizational knowledge).

In [11], the authors propose an approach to build up an
organizational memory from existing documents to avoid
employee’s resistance and work disruption. This is an
adequate approach to start up the building of an OM;
however tools are required to support cognitive analysts to
achieve this task.

6 Organizational Memory Building System

An Organizational Memory Building System (OMBS) is a
tool to help in the structuring of an organizational memory
and in depicting the exploitation schemes. In the OMBS
infrastructure we are developing, we offer a framework to
describe the KU which can be exploited along various
dimensions. Current efforts support the exploitation of
three (3) types of knowledge assets: "know-what"
(concepts of the domain), "know-how" (internal processes)
and "know-who" (knowledge providers, sources of
information, relevant agencies, etc…).

6.1 Knowledge Units

In the current implementation of the OMBS, we distinguish
two kinds of KU: "Static" and "How-to" KU.

Static KU contain domain concepts, facts and
information describing the specifics of situations. For
instance cloud conditions or instrument descriptions and
settings are represented as static KU. It is presumed in the
system design that the only way to learn about static
knowledge is to memorize it, no provision being made on
how to reason about it.

In "How-To" knowledge are embedded the skills and
expertise to be used by an employee in a given situation.
This kind of KU is task-oriented and contains the
procedure to fol low through (actions and/or tasks). It
refers to others Static KU when necessary. This
knowledge can include both “how to do” and “how to
think” descriptions. The frame of a "How-to" KU has the
following attributes:
Task name : a descriptor of the nature of the activity. It
can also be perceived in some situations as a goal to
achieve. From a system point of view, it is the index by
which is described the underlying knowledge.
Domain: and ontological description of the sub-domain.
For instance engine shutdown procedures would be
associated to the AVIATION /NAVIGATION / ARRIVAL
sub-domain.

Done by: refers either to the analyst or the knowledge
provider (employee) who creates the KN.
Situation: a textual description of the conditions where the
how-to unit is applicable.
Actions: a textual description of the expertise and
procedures. It may include some primitive actions, some
subtasks or both.
Subtasks: a main task can be achieved by carrying out
many subtasks; consequently, a hierarchy of tasks can be
formed and presented in the system using visual features.
Remark: frequently used to highlight reminders suggested
by domain analysts.
Consequences: anticipated states and damages if the
"how -to" is applied.
Reference cases : a link to textual documents of the
collection, providing explanation of pertaining incidents.
We also refer to sources (persons or documents) to
accumulate supporting information and evidences.
Demo link : a reference to videos, photos, graphs, diagrams
and other pedagogical material. A link allows activation of
the multimedia resource.

6.2 Knowledge Networks

The OMBS system makes use of a set of separate KNs. A
KN is a directed graph where the nodes are a group of KU,
each of them being related to some others by links of
different types. For the sake of a better exploitation of the
OM, we introduce the notion of KN dimensions. A
dimension is a subset of the network that includes nodes
related by links with specific meaning and used for a
specific purpose. Users can thus exploit the networks
along different dimensions according to their goals and
intentions.

In the formalism we propose, an organizational memory
can be formally defined as (not including the lexical
dimension):

OM = {KN1, KN2, …, KNn}
KN = {pedagogicalDIMENSION, organizationalDIMENSION,

logicalDIMENSION}
DIMENSION = {KU1, KU2, …, KUi}, {LINK1, LINK2,

…, LINKp}

In the current implementation, we propose four (4)
conceptualized dimensions:
1. the organizational dimension reflects the work flow
between the KU in the underlying organization. The
workflow links allow users to examine the works of other
employee which are related to the actual KU. By
considering this organizational dimension of all KN in an
OM, users understand how an organization attains its goals.
2. the lexical dimension provides users with explanations
on domain terms. The multitude of work-centered terms for
an application domain can hinder the understanding of the
users of the system. Even for the same organization, terms
can have different meanings. Also abbreviations and
acronyms, as frequently encountered in the military world,
can cause confusion among users. So for each application
domain must be prepared a lexicon containing frequently
domain terms and abbreviations (as well as acronyms)
being frequently used. To some extent, an ontological
research is required to come up with a widely accepted
glossary. User can refer to the domain terminology through
the static KU.

3. the pedagogical dimension contains prerequisites KU
for understanding the actual KU. The required knowledge
is called prerequisite knowledge.
4. the logical dimension provides information on the
logical relationships between KU (e.g. a KU being deduced
from another one). Logical links are to be provided to
support description of reasoning schemes. Experimentation
is required to determine how the generation of creative
knowledge can emerge from problem solving activities.

For each dimension we provide users with links that he
can establish between KU. These links allow users to
navigate through the network in order to learn and to
support further reasoning for problem solving. A local unit
index is maintained by the system. KU can be selected and
depending on the availability of the links, other units may
also be selected and displayed by an appropriate activation.

6.3 Overview of the OMBS Authoring tool

The OMBS Authoring tool provides the analyst with visual
functions for the iterative construction of KNs. Given a
specific domain, the analyst can use the system to create
KU and link them together, with the possibility to modify
and update previous descriptions.

Figure 3. Graphical Interface of the OMBS Authoring Tool.

The figure 3 is an example of a portion of a KN
representing some of the how-to knowledge to be carried
out by a pilot, from departure to arrival at an airport, and
their links to other KU. Each time a KN is opened, the
virtual workspace of the whole KN is presented in
“GlobalView” mode. A link from a Static KU to a How-to
KU is normally specified as pedagogical link (prerequisite
link) because this knowledge is necessary to understand the
How-to KU. If a KU has one or more pedagogical links,
clicking on this component will bring the KUs up to the
screen. It will be the same system behaviour when user
clicks on the organizational or the logical component.

Figure 4 (next page) illustrate an example of KU
frame. A KU frame is opened in “Detail View” mode.
Users can fill in the various fields to create the KU. If the
Reference-Cases field points to a document, clicking on it
will open the pointed document. If the Demonstration field
points to a multimedia resource, clicking on it will open the
pointed resource. A subtask name is automatically added
by the system in the Subtasks field whenever the user
establishes a subtask link.

7 Exploitation of the Knowledge Networks

The essential functions of a KM system are to improve
work -centered tasks, applying the innovation when
possible and sharing knowledge between employee s.
These functions combined with an appropriate
compensation policy can motivate employee to leverage
creative knowledge. Links between "how-to" KU must be
established by the analyst to accommodate different usage
(or dimensions). For instance, in our OMBS formalism, an
employee can lay his expertise before leaving his job; this
expertise will help a novice or a new employee to learn (by
using pedagogical links). Other employees can also share
knowledge by using organizational links.

Figure 4. Example of a knowledge unit frame (detail view)

 The logical links can help employees in problem
solving activities by stimulating their reasoning on the
underlying situations. If available, demonstration videos,
photos, graphs or diagrams can also be linked to each task
to make the description more concrete and therefore help
the learning process in an effective way.

By referencing to the classification of [1], our system is
intended to be knowledge-based and case-based corporate
memory. It allows to reason about KU describing
experiences and cases already encountered. We are
currently in the process of developing exploitation schemes
for our system that will allows users to manipulate KNs
according to its two capabilities: retrieval of KU and
navigation along various dimensions.

The retrieval scheme consists of matching KU of the
system with a partial description of what the user intends to
search for in a network. This partial description is called
"pivot unit". A pivot unit contains the description of what
the user intends to search for in a network. By introducing
this pivot in the system and do partial matching of the
various attributes structuring the units, the user can obtain
the units most relevant to the partial description. As most
of the attributes contain textual descriptions, statistical (Tf-
Idf, n-grams) and semantic (e.g. edge -counting) similarity
techniques can be used to exploit the units through the
retrieval scheme as described by [12]. Finally the

navigation scheme currently relies in the capabilities of the
system to visualize elements of the networks and browse
through the networks following various dimensions.

8 Conclusion

In this paper, we presented an approach to build an
organizational memory. We distinguish three knowledge
layers: the basic knowledge, the innovative knowledge and
the creative knowledge. We argue that the last two layers
are essential for the KM and that an OMBS is needed to
help organization starting up the first task of KM. Next,
we set up the system objectives that insist on the ease to
use and the supporting of KM functions. The structure of
our OMBS is then described with its multi-dimensions and
visual interface. Possible exploitation schemes are also
discussed. In the near future, we will complete the
implementation of the exploitation schemes and expand the
system to its fourth dimension, the logical dimension. We
believe that this dimension can help user in problem
solving activities and for leveraging the creative
knowledge. We also foresee the merge of KU and KN in a
knowledge space as a mechanism for exploiting KN.

Acknowledgement: Thanks to Ruibiao Guo for
implementing the first version of the KN Authoring tool.

REFERENCES

[1] Dieng, R.; Corby, O.; Giboin, A. and Ribière, M. [1998].

Methods and Tools for Corporate Knowledge Management. In
Proceedings of KAW’98. Eleventh Workshop on Knowledge
Acquisition, Modeling and Management. Banff, Alberta,
Canada.

 [2] Ackerman, M and Halverson, C. [2000]. Reexamining
Organizational Memory, Communication of the ACM, vol. 41,
no 1.

[3] Nagendra Prasad, M. V. N. and Plaza, E. [1996]. Corporate
Memory as Distributed Case Libraries. In Proceedings of
KAW’96. Gaines, B. and Musen, M. (eds.) Banff, Alberta,
Canada.

[4] Euzenat, J. [1996]. Corporate Memory through Cooperative
Creation of Knowledge Bases and Hyper-documents. In
Proceedings of KAW’96. Gaines, B. and Musen, M. (eds.)
Banff, Alberta, Canada.

[5] MacIntosh, A.; Filby, I. and Tate, A. [1998]. Knowledge Asset
Road Maps, in Proceedings of PAKM98, Basel, Switzerland, 29-
30 Oct. 1998.

[6] Davenport, T. and Prusak, L. [1998]. Working Knowledge.
Harvard Business School Press. Boston. Massachusetts.

[7] Van Heijst, G.; Van der Spek, R. and Kruizinga, E. [1996].
Organizing Corporate Memories. In Proceedings of KAW’96.
Gaines, B. and Musen, M. (eds.) Banff, Alberta, Canada.

[8] Spek, R. and Hoog, R. [1998]. Methods and Techniques for
Knowledge Management. Tutorial document published at The
fourth World Congress on Expert Systems, Mexico city.

[9] Wiig, K. M. [1993]. Knowledge Management Foundations.
Schema Press, Ltd. Arlington, Texas.

[10] Nonaka, I. and Takeuchi, H. [1995]. The Knowledge-Creating
Company. Oxford University Press. New Work.

[11] Abecker, A.; Bernardi, A.; Hinkelmann, K.; Kuhn, O. and
Sintek, M., [1997]. Towards a Well-Founded Technology for
Organizational Memories. In Artificial Intelligence in
Knowledge Management. Papers from the 1997 AAAI Spring
Symposium, Technical Report SS-97-01. AAAI Press.

[12] Watson, I. P. [1997]. Applying Case-Based Reasoning -
Techniques for Enterprise Systems, Morgan Kaufmann
Publishers, San Francisco, California.

	Simone.pdf
	3.	DE-CONTEXTUALIZING AND RE-CONTEXTUALIZING
	4.	MANAGING ONTOLOGIES
	5.	DIFFERENT DESCRIPTIONS AS ABSTRACTIONS

	KM-OM-Abstract.pdf
	Program Committee
	Table of Content

	KM-OM-Abstract.pdf
	Program Committee
	Table of Content

	1:
	2:
	3:
	4:
	5:
	6:
	7:
	8:
	9:
	10:
	11:
	12:
	13:
	14:
	15:
	16:
	17:
	18:
	19:
	20:
	21:
	22:
	23:
	24:
	25:
	26:
	27:
	28:
	29:
	30:
	31:
	32:
	33:
	34:
	35:
	36:
	37:
	38:
	39:
	40:
	41:
	42:

