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Procedure to select the projects:

• Groups of two students must register on the following doodle https://doodle.com/poll/

uu2s7b52qfvrsxaq?utm_source=poll&utm_medium=link

NB: Every option can be chosen by maximum 3 groups.

• When choosing a project, make sure to write the two last names.

• Deadline to fill the doodle (first come first serve basis): January the 3rd, 2022

• Deadline to return your work: February the 3rd, 2022
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0 Projects: general recommendations

0.1 Evaluation criteria

Each project will be evaluated on two criteria:

• A pdf report presenting the answers to the questions. Recommended length: maximum 10 pages.

• The code (C, C++, Python, shell scripts, etc) developed to answer the questions. In developing this
code, you should focus on:

– usability: replicating your experiments should be easy.

– design: the code architecture (classes, modules, files) should be crystal clear. There is nothing
worse than a big chunk of code with poor design / organization / documentation.

See also the comments below.

0.2 Returning your work

Send an email to the project supervisor (Jean-Daniel.Boissonnat@inria.fr, Frederic.Cazals@inria.fr or Math-
ieu.Carriere@inria.fr), with a link to a zip file containing ALL materials listed above.

0.3 Projects with coding: instructions.

Several projects require coding in C++ or Python. The following recommendations are in order:

• Program options. Programs should have command-line options properly documented, in order for
users to easily pass different arguments. In Python, one can use the package OptionParser, see
https://docs.python.org/2/library/optparse.html. In C++, boost program options are highly
recommended, see http://www.boost.org/doc/libs/1_62_0/doc/html/program_options.html.

• Output of executions. Ad hoc output are not easily dealt with, unless one knows how to parse the
output. Albeit verbose, xml files have two major advantages: (i) the tags allow one to comment on
the output, and (ii) xml files are easily parsed with XML query language.

For C++ users, boost provides serialization mechanisms making it very easy to dump XML files. For
a starting point, check out http://www.boost.org/doc/libs/1_62_0/libs/serialization/doc/

index.html.

For Python users, dictionaries are also easily serialized. See e.g. https://docs.python.org/2/

library/json.html.

• Compilation for C++ code. Provide a CMakeLists.txt, from which the instructors will easily compile.

• Experiments. If you run several experiments, for example by varying one (or several) parameter(s), as
requested in several projects, it is highly recommended to use a batch manager (BM). From a simple
text file listing the options and their values, a batch manager handles all executions, by passing the
relevant options on the command line.

You can for example use the BL from the Structural Bioinformatics Library, see http://sbl.inria.

fr/doc/Batch_manager-user-manual.html.

In passing, if you have serialized your data structures, you can easily compute statistics using PALSE,
see http://sbl.inria.fr/doc/PALSE-user-manual.html.

2

https://docs.python.org/2/library/optparse.html
http://www.boost.org/doc/libs/1_62_0/doc/html/program_options.html
http://www.boost.org/doc/libs/1_62_0/libs/serialization/doc/index.html
http://www.boost.org/doc/libs/1_62_0/libs/serialization/doc/index.html
https://docs.python.org/2/library/json.html
https://docs.python.org/2/library/json.html
http://sbl.inria.fr/doc/Batch_manager-user-manual.html
http://sbl.inria.fr/doc/Batch_manager-user-manual.html
http://sbl.inria.fr/doc/PALSE-user-manual.html


1 RPTrees, vector quantization, and dimensionality reduction

Description. Given a set of data points in Rd, vector quantization (VQ) is the problem concerned with the
identification of k representative points. Wen the criterion to be minimized is the sum of squared distances
between the data points and their representative, VQ boils down to solving k-means.

As always when dealing with real - high dimensional data, an interesting case is that where VQ is to
be performed on a dataset living in a sub-manifold. In other words: one would like to combine two key
techniques, namely (i) dimensionality reduction, and (ii) k-means. This strategy is the one explored in [1],
based on random projection trees which have been studied in class.

Tasks.

1. Summarize the RPTree based method from [1], by stressing the role of the two types of splits used (by
projection and by distance).

2. Summarize the theoretical guarantees, and compare their merits with the results yielded by k-means
for vector quantization.

3. Provide a C++ implementation of this algorithm, as a C++ class parameterized by a traits class
providing the types for the points and the associated distance. Indeed, the experiments below consist
of processing two types of points (in the Euclidean space, and on the flat torus).

• For the generic C++ template based design, a toy example is provided here https://sbl.inria.
fr/data-models/example-template-based-C++-programming.zip

4. Test-case #1. In this first test-case, we consider two datasets: a d-dimensional plane embedded into
RD, and the 2-dimensional swiss roll embedded into RD. The distance between two points is the
standard Euclidean distance. Instantiate the algorithm with this distance, and present experiments on
the quantization error, by varying d,D and the number of points n.

Compare with the quantization error yielded by k-means or k-means++ [2].

5. Test-case #2. In this second test-case, we consider molecular data. Recall that a protein is a polymer
of small molecules called amino-acids. Given a protein molecule, the so-called internal coordinates
comprise three types of terms: bond lengths, valence angles, and dihedral angles, see https://sbl.

inria.fr/doc/Molecular_coordinates-user-manual.html. In the sequel, we are concerned with
dihedral angles in proteins, see also https://en.wikipedia.org/wiki/Dihedral_angle.

In dealing with these angular data, note that the distance is measured on the flat torus; that is, for
each angular coordinate, one takes the shortest distance on S1.

Dihedral angles collected on amino-acids are used to answer a key question: how many clusters can
one use to represent all conformations of a given a.a. ? When this question admists a clear answer,
one may indeed discretize the conformations of the a.a..

Let us consider two datasets for three different amino acids, namely lysine, arginine, and methionine,
see https://sbl.inria.fr/data-models/dihedrals-from-dunbrack-2011--clustering/ :

• χ dataset: dihedral angles on the side chain only.

• φ, ψ, χ dataset: dihedral angles on the side chain + the two dihedral angles of the backbone φ
and ψ.

Instantiate the RPTree construction with the angular distance. Then, run it on each datasets. Docu-
ment the type of slit used. By plotting the quantization error as a function of the number of leaves in
the RPTree, investigate the following question: for each dataset, what is a sound number of clusters?

Contact. Frederic Cazals: frederic.cazals@inria.fr
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2 Intrinsic dimension estimation via 2 nearest neighbors

Description. The dimensionality reduction (DR) methods studied in class do not explicitly use an ana-
lytical model for the distribution of points. A method doing so is presented in [3]. In short, this method
uses a homogeneous Poisson process to represent the distribution of neighbors about a particular point, and
to derive a statistic whose cumulated distribution function can be used to estimate the intrinsic dimension
(D). Naturally, the ID can be used in a second step to perform DR.

Tasks.

1. Briefly explain the algorithm from [3]. In reviewing the algorithm, detail the role of the constant
density assumption used in the derivations.

2. Provide a C++ implementation of this algorithm as a C++ class parameterized by a traits class
providing the types for (i) the points, (ii) the associated distance, and (iii) the algorithm returning the
two nearest neighbors. Indeed, the experiments below consist of processing two types of points (in the
Euclidean space, and on the flat torus).

• For the generic C++ template based design, a toy example is provided here https://sbl.inria.
fr/data-models/example-template-based-C++-programming.zip

• You are allowed to incorporate an external class providing a nearest neighbor search algorithm.

3. Test-case #1: original experiments. Intantiate the algorithm using the Euclidean distance, possibly
with boundary conditions. Then, replicate the experiments from [3] using the same distributions:
uniform in a cube, the swiss roll, and the Cauchy distribution.

4. Test-case number #2: mixtures. The method from [3] assumes a single distribution. In practice, it
is often the case that the intrinsic dimension varies locally in the point cloud. For example, using
the point sets from test-case #1, we can consider a point cloud mixing two sub-samples from 2 or 3
distributions, or from the same distribution but with different dimensions. We call such a point cloud
a mixture, and the individual point clouds its components.

Present two additional experiments: a mixture based on two different distributions, and a mixture with
one distribution but using two different dimensions (e.g. a cube with periodic boundary conditions in
dimensions d1 and d2 with d1 6= d2.)

5. Generalizing the algorithm. Propose a generalization of the algorithm from [3], able to cope with a
mixture composed of a fixed number of components.

Contact. Frederic Cazals: frederic.cazals@inria.fr
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3 Detecting metastable states in protein conformations with ToMATo

Description. The goal of this project is to analyze protein conformations using mode-seeking techniques,
in order to detect metastable states and their proximity relations. Relevant protein conformations can be
generated in various ways by exploiting the molecular dynamics. For instance, one can simulate the protein
folding process at small timescales. Each conformation then gives rise to a vector with 3n coordinates, 3 per
atom on the backbone (n atoms in total). One of the challenges is to understand how the conformations
regroup themselves into clusters called metastable states, within which the probability of transition is high
whereas it is low in-between. These states can then be fed to some stochastic process (such as a Markov
chain) for efficient large timescale simulation. See [4] for more background.

The difficulty of recovering the metastable states stems from the fact that the clustering occurs in fairly
high dimension (n can be of ther order of the hundreds or thousands), with data that are not sampled along
linear structures and clusters that are nonconvex. This is where mode-seeking techniques can help. Assum-
ing the data points have been sampled i.i.d. from some unknown probability distribution, the principe of
mode-seeking is to use an approximation of the gradient flow of the probability density function to push the
data points towards the density maxima. These maxima then serve as cluster centers, and their preimages
through the gradient flow are their corresponding clusters. In this project we will use the topology-based
method ToMATo to cluster the conformations. The goal is to get the same kind of results as in [4] and [5].

Tasks.

• Collect the data (see Data below):

– the set of alanine dipeptide conformations: 3 coordinates per atom, 10 atoms per conformation,
1 atom per line (so 10 lines per conformation, seen as a 30-dimensional point),

– the set of conformations projected down to 2 dimensions for visualization.

• Compute the RMSD distance matrix between the 30-dimensional conformations (RMSD = Root Mean
Square Deviation), using you own code. See https://en.wikipedia.org/wiki/Root-mean-square_

deviation_of_atomic_positions for the definition.

• Retrieve the code for ToMATo (see Code below) and get familiar with it, e.g. try it out on the toy
examples provided in the archive then play around with the parameters.

• Try applying ToMATo to the computed RMSD distance matrix. Beware that the data is huge so you
may want to consider applying it to subsamples of your data, although in that case you will need to
find a mechanism to ascertain your results.

• Hopefully, you will be able to recover the same kind of result as in [4] and [5]. Read these articles and
compare your results to theirs.

Data. The data sets can be downloaded at http://www-sop.inria.fr/abs/teaching/uca-master-data-science-GTML/
exam_mathieu/TDA_projects.html.

Code. For ToMATo computations, the use of the GUDHI library (https://gudhi.inria.fr/python/
latest/) is strongly recommended.

Contact. Mathieu Carrière: mathieu.carriere@inria.fr
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4 Analyzing contact maps with Mapper

Description. The goal of this project is to analyze a data set of single-cell Hi-C contact maps. An Hi-C
contact map is a pairwise distance matrix (computed from a given human cell) that encodes how chromatin
is folded in the nucleus: each row and column of the matrix represents a small DNA window, and each entry
in the matrix is the spatial distance between these windows in the nucleus. If chromatin is straight, the
contact map will have very few extra diagonal terms, while folded chromatin induces a denser matrix (since
DNA windows at large genomic distances can be spatially close). Since the cell cycle strongly influences
how chromatin folds, it can be efficiently characterized with contact maps. Moreover, the cell cycle is one
of the several biological phenomena that induces strong biases in single cell data sets, and its detection is
thus critically needed. This project aims at recovering the topological structure of the cell cycle (a loop) us-
ing Mappers computed on contact maps, processed with Stratum-adjusted Correlation Coefficients (SCC) [6].

Tasks.

• Download the data set (see Data below). Take a look at the SCC article [6], in particular ”2D mean
filter smoothing”, ”Stratification by distance” and ”Stratum-adjusted correlation coefficient (SCC)” in
”Methods” section, and implement a function that takes as inputs two contact maps, and outputs the
SCC.

• Implement your own Mapper algorithm (bonus), or use existing code (see Code below), and compute
the Mapper using the eigenfunctions of a Kernel PCA run on the pairwise SCC matrix as filters. Try
various Mapper and SCC parameters, and interpret their influence on the Mapper shape. Beware that
the data is huge so you may want to consider applying it to subsamples of your data, although in that
case you will need to find a mechanism to ascertain your results.

• Find a set of parameters for which the cell cycle can be detected as a big loop in the Mapper. Prove
this loop indeed represents the cell cycle by coloring the Mapper nodes with various markers correlated
with the cell cycle, such as ”mean insu”, ”f near band”, ”f mitotic band”, ”repli score” in provided
feature file (see Data below).

• Quantify the cell cycle statistical robustness (whether it is an artifact of computation or not) by
bootstrapping the data: subsample the data set (with replacement) many times, and count the number
of runs in which the cell cycle is detected.

• Compare and discuss your results with directly running dimensionality reduction on the raw contact
maps.

Data. The data set of contact maps can be downloaded at: http://www-sop.inria.fr/abs/teaching/

uca-master-data-science-GTML/exam_mathieu/TDA_projects.html. This folder contains the contact
maps encoded in sparse COO matrices from the SciPy package. The rows and columns are small DNA
windows, and the chromosome they belong to is encoded in the file ”chromosomes.txt”. The feature file
containing the cell info is ”features.txt”.

Code. Mapper can be computed with Scikit-TDA: https://scikit-tda.org/ or Giotto: https://

giotto-ai.github.io/gtda-docs/0.4.0/library.html.

Contact. Mathieu Carrière: mathieu.carriere@inria.fr
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5 Analyzing financial time series with persistent homology

Description. The goal of this project is to analyze the evolution of daily returns of four major US stock
markets indices (DowJones, Nasdaq, Russell2000, SP500) over the period 1989 – 2016 using persistent ho-
mology, following the approach proposed in [7]. A classical approach in TDA to extract topological features
from multivariate time-series with values in Rd (d = 4 here, since we are considering the evolution of four
indices) consists in using a sliding window of fixed length w to generate a sequence of w points in Rd. Using
the Vietoris-Rips filtration, the persistence diagram of each of these point clouds is then computed and used
as a topological feature for further analysis or processing of the initial data. This project aims at reproducing
the experiments of [7] and explore and discuss a few variants.

Tasks.

• Download the article [7] and the data set (see Data below). Have a quick look at the whole article [7]
to get used to the considered problem and proposed approach. Have a careful reading of Sections 3.1
and 4.

• Write a function to compute persistence landscapes WITHOUT using the GUDHI library. This function
should take as input a persistence diagram D (in the GUDHI format), a dimension k, the endpoints
xmin, xmax of an interval, the number n of nodes of a regular grid on the interval [xmin, xmax] and a
number of landscapes m, and should output an m×n array storing the values of the first m landscapes
of the persistence diagram D on the nodes of the grid. Check on some simple examples that your code
is correct.

• Use the landscape function to run the experiments done in Section 4 of [7], using windows of length
w = 40 and w = 80 and w = 120. Compare your results to the ones provided in the article: are they
similar or not?

• Propose and experiment other methods, than just computing the norm of landscapes1. Briefly discuss
and compare your results to the ones in Section 4 of [7].

Data. The data set can be downloaded at the following address: http://www-sop.inria.fr/abs/teaching/
uca-master-data-science-GTML/exam_mathieu/TDA_projects.html.

Code. For persistent homology computations, the use of the GUDHI library (https://gudhi.inria.fr/
python/latest/) is strongly recommended.

Contact. Mathieu Carrière: mathieu.carriere@inria.fr

1For instance, you can try computing the consecutive bottleneck distances between persistence diagrams, the norm of the
differences between consecutive landscapes, etc
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6 Dimensionality reduction for persistent homology

Description. Due to the curse of dimensionality, Topological Data Analysis is difficult to apply on data
living in very high dimension. Various techniques have been proposed to walk around the curse of di-
mensionality. One of them uses random projections in lower affine subspaces. The central result is the
Johnson-Lindenstrauss lemma that states that any subset P of n points of Euclidean space RD can be em-
bedded via random projection in a subspace of (lower) dimension d = O(log n/ε2) without modifying the
interpoint distances by more than a multiplicative factor of 1 ± ε, i.e., for any two points pi, pj ∈ P with
images p′i and p′j , we have (1− ε)‖pi − pj‖ ≤ ‖p′i − p′j‖ ≤ (1 + ε)‖pi − pj‖.

Tasks.

• Write a short survey of the main results about dimensionality reduction using random projections and
their applications in Data Analysis (nearest neighbour search, clustering, persistent homolgy, etc.).

• Read the two papers [8, 9]. The goal of the two papers is to show that the Čech filtration can be
(1 + ε)-approximated using random projections. The second paper uses the Euclidean distance while
the other one uses the k-distance which is more robust to noise and outliers.

• Implement the algorithms in those papers for the Čech filtration using respectively the Euclidean
distance and the k-distance.

Contact. Jean-Daniel Boissonnat: jean-daniel.boissonnat@inria.fr

8

jean-daniel.boissonnat@inria.fr


References

[1] S. Dasgupta and Y. Freund. Random projection trees for vector quantization. Information Theory, IEEE
Transactions on, 55(7):3229–3242, 2009.

[2] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. In ACM-SODA, page
1035. Society for Industrial and Applied Mathematics, 2007.

[3] Elena Facco, Maria d’Errico, Alex Rodriguez, and Alessandro Laio. Estimating the intrinsic dimension
of datasets by a minimal neighborhood information. Scientific reports, 7(1):1–8, 2017.

[4] J. Chodera, W. Swope, J. Pitera, and K. Dill. Long-time protein folding dynamics from short-time
molecular dynamics simulations. Multiscale Modeling & Simulation, 5(4):1214–1226, 2006.

[5] F. Chazal, L. Guibas, S. Oudot, and P. Skraba. Persistence-based clustering in riemannian manifolds. J.
ACM, 60(6):1–38, 2013.

[6] T. Yang, F. Zhang, G. G. Yardımcı, F. Song, R. C. Hardison, W. S. Noble, F. Yue, and Q. Li. Hi-
crep: assessing the reproducibility of hi-c data using a stratum-adjusted correlation coefficient. Genome
Research, 27(11):1939–1949, 2017.

[7] Marian Gidea and Yuri Katz. Topological data analysis of financial time series: Landscapes of crashes.
Physica A, 491:820–834, 2018.

[8] Shreya Arya, Jean-Daniel Boissonnat, Kunal Dutta, and Martin Lotz. Dimensionality Reduction for k-
Distance Applied to Persistent Homology. In 36th International Symposium on Computational Geometry
(SoCG 2020), volume 164, pages 10:1–10:15. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020.

[9] Donald Sheehy. The persistent homology of distance functions under random projection. In Proceedings of
the Thirtieth Annual Symposium on Computational Geometry, pages 328–334. Association for Computing
Machinery, 2014.

9


	Projects: general recommendations
	Evaluation criteria
	Returning your work
	Projects with coding: instructions.

	RPTrees, vector quantization, and dimensionality reduction
	Intrinsic dimension estimation via 2 nearest neighbors
	Detecting metastable states in protein conformations with ToMATo
	Analyzing contact maps with Mapper
	Analyzing financial time series with persistent homology
	Dimensionality reduction for persistent homology

