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We present a multiscale method for the determination of collective reaction coordinates for macro-
molecular dynamics based on two recently developed mathematical techniques: diffusion map and
the determination of local intrinsic dimensionality of large datasets. Our method accounts for the
local variation of molecular configuration space, and the resulting global coordinates are corre-
lated with the time scales of the molecular motion. To illustrate the approach, we present results
for two model systems: all-atom alanine dipeptide and coarse-grained src homology 3 protein do-
main. We provide clear physical interpretation for the emerging coordinates and use them to cal-
culate transition rates. The technique is general enough to be applied to any system for which
a Boltzmann-sampled set of molecular configurations is available. © 2011 American Institute of
Physics. [doi:10.1063/1.3569857]

I. INTRODUCTION

The pursuit of collective reaction coordinates is of great
interest to researchers that deal with macromolecular dynam-
ics, as such coordinates are crucial for extracting meaningful
information from the large volume of data routinely produced
by molecular dynamics (MD) simulations. This search is
based on the premise that while the dimensionality of molec-
ular configuration space is high, oftentimes the distribution
of physically relevant states is highly clustered around a set
of much lower dimensionality. This working assumption has
been empirically verified for a number of different systems,
e.g.,1–4 and motivates the definition of reaction coordinates
with which to study the system’s collective dynamics and
identify (meta-)stable states.

Methods for the determination of coordinates capable of
describing this low-dimensional space have been developed
by a number of researchers. For example, isocommittor sur-
faces can be computed, giving the probability of a given con-
figuration to transition to a reactant or product free-energy
minimum.5 Genetic neural network algorithms6 and Bayesian
analysis methods7 have been developed to assess and select
the best reaction coordinates from a set of prospective ones. In
addition, methods for finding the minimum free-energy path,
such as the string method,8, 9 transition path sampling,10 and
milestoning,11 provide a reaction coordinate as the collective
variable mapping the resulting path. For all of these methods,
some initial specification of collective variables and/or reac-
tant and product states are required.

Geometrical dimensionality reduction techniques have
also been applied to molecular systems, including linear prin-
cipal component analysis12 and its nonlinear variants,13, 14

local linear embedding,15 and Isomap.16, 17 These techniques
do not require any input information concerning potential
reaction coordinates or reactant/product states; however, they
are limited in that they consider the number of effective

a)Electronic mail: cecilia@rice.edu.

dimensions only as a global property and do not account
for the local heterogeneity of MD simulation data. We (and
others18) have found these variations to be important, and in
the currently proposed method such differences are used in
the construction of overall coordinates.

The approach we propose builds upon two recently
developed mathematical techniques: diffusion maps19–23

(which have been applied in various context such as machine
learning tasks24, 25 and manifold parametrization26), and
estimation of the intrinsic dimensionality of noisy datasets.27

We make two new contributions: (1) extending the diffusion
map method to include a locally determined variable length
scale and (2) applying the method to molecular dynamics
simulation data. A collection of Boltzmann-distributed
molecular configurations plays the role of “noisy dataset,”
and our algorithm determines both the number of effective
dimensions at each configuration, and the length scale
within which this intrinsic dimensionality persists. These
position-dependent local length scales are input to a diffusion
map calculation, yielding a few global coordinates that
correlate with different time scales in the system. Since our
work is a combination and extension of diffusion map and
local scale analysis, we refer to the method as “locally scaled
diffusion map” (LSDMap). Our method does not require any
a priori knowledge about the system (such as prospective
reaction coordinates and/or the definition of reactant and
product states), and the local heterogeneity of the MD data is
accounted for in the construction of global coordinates.

We apply the LSDMap framework to characterize the
dynamics of two very different and well-understood test
systems: an all-atom model of alanine dipeptide and a coarse-
grained model of the src homology 3 domain protein (SH3).
Through an analysis of the LSDMap, we find insights into
the nature of the free-energy minima, transition regions, and
overall free-energy landscape. We verify the mathematical
assertion that the diffusion coordinates (DCs) are good
reaction coordinates through calculation of the diffusion
rate between free-energy minima. We find that the diffusion
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coordinates provide rates closer to the simulation rate than
those of competing empirical coordinates. By comparing
with the empirical coordinates and probability of contact
formation, we obtain a straightforward physical interpretation
of the diffusion coordinates.

The remainder of this paper is organized as follows. In
Sec. II we outline the mathematical underpinnings of the dif-
fusion map and local scale determination. We detail our pro-
cedure for obtaining an LSDMap from molecular dynamics
simulation data in Sec. III. In Sec. IV we provide results for
the two test systems; in Sec. V we give concluding remarks.

II. MATHEMATICAL BACKGROUND: LSDMap

Below we present some of the relevant mathematical
background on diffusion maps in the current context of MD
simulations. We refer the reader to the original literature19, 23

for the full details.
For a system with N atoms, with a given potential energy

function E(x), at constant temperature T , and in the limit of
high friction, the Fokker–Planck equation governs the tem-
poral evolution of the probability distribution p(x, t) at any
configuration x ∈ R3N of the system,

∂p

∂t
= −

3N∑
i

∂

∂xi

(
1

β

∂

∂xi
+ ∂ E

∂xi

)
p = −HFP p, (1)

where β = 1/(kB T ), kB is Boltzmann’s constant, and t is
the time variable. Under rather general conditions, the op-
erator HFP, which acts on an infinite-dimensional space of
probability distributions, has a discrete eigenspectrum of
non-negative eigenvalues λi , with λ0 = 0 < λ1 ≤ λ2 ≤ . . . ,
and corresponding eigenfunctions φi (x). Formally (and rig-
orously in an appropriate metric that depends on various as-
sumptions about HFP), the general solution of the Fokker–
Planck equation is

p(x, t) = φ0(x) +
∞∑

i=1

ciφi (x)e−λi t , (2)

where the coefficients ci are determined by the initial distri-
bution p(x, t = 0). The eigenfunction φ0(x) is the Boltzmann
distribution, approached by any initial distribution when
t � 1/λ1.

For systems with one (or a few) slow process(es) dom-
inating the dynamics (such as the crossing of a free-energy
barrier), the eigenspectrum will present a gap; i.e., λk+1 � λk

for some k, and the evolution of the probability distribution
toward equilibrium may be approximated as the first k terms
of the general solution,

p(x, t) = φ0(x) +
k∑

i=1

ciφi (x)e−λi t , (3)

at least at time scales t � 1/λk+1. In these situations it has
been shown that φi (x)/φ0(x), which are eigenfunctions of the
backward Fokker–Planck operator,28 serve as collective coor-
dinates in the sense that their time evolution is approximately
Markovian and independent of the remaining degrees of free-
dom. These are the diffusion coordinates, and the diffusion

map is the nonlinear mapping from the space of molecular
configurations to the diffusion coordinate space.

An efficient numerical method to approximate these first
few eigenfunctions and associated eigenvalues using samples
of the equilibrium distribution has been recently proposed.23

The approach involves defining a weighted graph on the sim-
ulation data and determining the first few eigenvalues and
eigenvectors of a random walk on the graph. The weights
are related to the transition probability between configurations
and will be larger for configurations that are similar in struc-
ture. Here we measure similarity by the root mean square de-
viation (RMSD) between structures (as opposed to Euclidean
distance used previously23) in order to quotient out irrelevant
translational and rotational degrees of freedom. The transi-
tion probability between any two structures is based on the
kernel,

K (xi , x j ) = exp

(
−||xi − x j ||2

2εiε j

)
, (4)

where xi and x j represent two molecular configurations, and
||xi − x j || is their RMSD. An appropriate renormalization of
K , described in Sec. III B, leads to a random walk on {xi }
whose eigenfunctions approximate those in Eq. (3).

This method is predicated on the idea that the high-
dimensional space of molecular configurations can be ap-
proximated by a lower dimensional set M, and that the in-
trinsic dimensionality of M is location dependent. The local
scale parameter εi can be interpreted as the distance around
xi within which M can be well approximated by a low-
dimensional hyperplane tangent to M at xi . This is the region
around xi in which M is approximately linear (i.e., “locally
flat”). In previous applications of diffusion maps, εi has al-
ways been chosen equal to a constant value ε independently
of xi .19, 23

Little is known about the choice of this crucial local scale
parameter, with theoretical results providing only some guid-
ance in the asymptotic regime when the number of configura-
tions is very large (at least exponential in the intrinsic dimen-
sion of the effective configuration space), and often ad hoc
techniques are used in practice. If the data sample is dense
and lies on a smooth, non-noisy, low-dimensional manifold,
the choice of ε is not critical to the numerical estimation of the
Fokker–Planck eigenfunctions—using a constant value yields
meaningful results (as the number of samples grows, the esti-
mated generator of the diffusion converges to the true gener-
ator of the Fokker–Planck equation).

However a dataset of macromolecular configurations
from MD simulations has highly variable density (due to the
properties of the Boltzmann distribution), it is very noisy
(with the characteristics of the noise changing with the region
of configurational space), and it is not infinitely dense. In such
a situation, if the parameter ε is selected too small, e.g., com-
parable to the scale of the noise, the results will be corrupted
because the “locally flat” region will correspond to that of the
noise rather than that of the actual data. On the other hand if
ε is too large, regions of the system will be considered artifi-
cially flat, again corrupting the results. We have found that in
molecular dynamics applications a uniform value of ε yields a
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Fokker–Planck eigenspectrum strongly dependent on the se-
lected value of ε, and no straightforward interpretation of the
results is possible. Examples of the application of diffusion
map with constant ε to both systems considered here are dis-
cussed in the supplementary material29 Sec. I.

Inspired by the results of Little et al.,27 we define below
an algorithm for determining the intrinsic dimension and local
scale associated with each configuration in a set of MD data.
As the local scale parameter εi indicates the (unknown) length
scale around xi at which M can be well approximated by its
(unknown) tangent hyperplane at xi , we obtain an estimate of
εi by performing multidimensional scaling (MDS), a linear
dimensionality reduction technique, over increasingly large
neighborhoods of xi . Under very general assumptions on the
geometry of M, the density of points, and the noise, such
a technique leads to robust identification of the local scale
and intrinsic dimension around any point on M.27 Moreover,
this technique requires a number of samples {xi } linear in
the intrinsic dimension of M and independent of the large
ambient dimensionality.27

III. ALGORITHM: LSDMap

The first step in the LSDMap calculation is to acquire a
Boltzmann-distributed set of molecular configurations. These
may be obtained either as one long run or many short runs of
molecular dynamics simulation. Then the local scale and the
diffusion coordinates can be obtained through the algorithm
we detail below.

A. Determination of local scale and dimension

The estimation of the local scale εi for each configura-
tion xi in the dataset is as follows. For each xi we order the
remaining configurations according to their RMSD to xi . We
perform MDS on increasingly larger neighborhoods (ε-balls)
around xi . This yields an MDS singular value spectrum as a
function of the RMSD radius of the ε-balls. We divide these
singular values by the square root of the number of config-
urations within the ε-ball. These are the normalized MDS
spectra.

An analysis of the gaps between the singular values
as a function of neighborhood size provides information
about both the intrinsic local dimensionality and the local
scale. First of all, this analysis allows for a separation of
the relevant degrees of freedom (“data”) from the irrelevant
ones (“noise”). Singular values corresponding to noise will
decrease in value and clump together at larger length scales,
while the singular values that correspond to the actual data
continue to increase (see, for example, Fig. 1 of Little
et al.27). A conservative estimate of the local scale εi around
a point xi is obtained by considering the size of the ε-balls
at which the noise spectra begin to decrease and separate
from the data. We have found that the intrinsic dimension-
ality of MD data changes rapidly from region to region
(see Sec. IV), and we have modified the algorithm proposed
by Little et al.27 to take it into account; the full details are
explained in Appendix A.

FIG. 1. The negative exponential of the eigenvalues of the Fokker-Planck
operator are plotted as a function of eigenvalue number. For both systems the
zeroth eigenvalue λ0 = 0, exp {−λ0} = 1 corresponds to the Boltzmann dis-
tribution. The spectral gap between the first and second eigenvalues (denoted
by the black bars) suggests that there is a single slow time scale dominating
the dynamics. This time scale corresponds to the C5, P‖ → αP , αR isomer-
ization process in alanine dipeptide and the folding/unfolding transition for
SH3.

B. Diffusion map with local scale

Once the local scale of each xi is determined, the first
few eigenfunctions of the backward Fokker–Planck operator,
i.e., the diffusion coordinates, are calculated as follows. The
algorithm below closely parallels that of Coifman et al.23; the
differences being the use of the RMSD as the distance mea-
sure (rather than the Euclidean distance) and set of εi val-
ues {ε} (rather than a uniform ε). Here the RMSD distance
is more appropriate because molecular systems are invariant
under rigid rotations and translations of the system; the lo-
cally determined εi is required due to the very high variability
of the molecular data, as discussed above. In practice, for a
dataset with N configurations:

1. Construct the N × N matrix, the transition probability
kernel K, as

Ki j = exp

(
−‖xi − x j‖2

2εiε j

)
, (5)

where xi and x j represent two molecular configurations,
εi and ε j are their respective local scales, and ‖xi − x j‖
is the RMSD distance between them.
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2. For each xi , sum the corresponding row of K to compute

Pi =
N∑

j=1

Ki j , (6)

which is proportional to a density estimation around xi .
3. Normalize the kernel as

K̃i j = Ki j√
Pi Pj

. (7)

4. Define the diagonal matrix D as Di = ∑N
j=1 K̃i j , and

construct a Markov matrix M = D−1 K̃ ,

Mi j = K̃i j

Di
. (8)

5. Compute the first few largest eigenvalues and the corre-
sponding right eigenvectors of M .

These eigenvectors serve as the diffusion coordinates.
Coifman and Lafon19 have shown that for data points xi ran-
domly sampled from a Boltzmann distribution, as N → ∞
and as ε → 0 (for uniform ε and at an appropriate rate
in N , depending on unknown quantities, such as the in-
trinsic dimension of the data, and possibly the size of the
noise), the right eigenvectors of M converge (in probability)
to the eigenfunctions of the backward Fokker–Planck oper-
ator. This result enables approximation of the eigenfunctions
of the Fokker–Plank operator from simulated trajectories even
for high-dimensional systems where standard discretization
methods are not feasible.

The matrix M is adjoint to a symmetric matrix Ms

= D−1/2 K̃ D−1/2, and the numerical computation of the first
few eigenvalues and eigenvectors is in practice performed on
Ms . The complexity of the above algorithm, including the lo-
cal scale determination, is O(kN 2 N ) for N configurations in
R3N and k eigenvectors. In practice, one may not construct the
full matrix K but rather a sparse version where entries below
a certain threshold are set to 0. If the cost of identifying the
nonzero entries, i.e., finding the ε-neighbors of each point, is
less than O(N 2) and the resulting matrix is sparse, substantial
computational savings may be achieved.

IV. RESULTS AND DISCUSSION

We apply the LSDMap approach to two test systems:
all-atom alanine dipeptide in implicit water and coarse-
grained SH3. To verify the mathematical assertion that the
diffusion coordinates function as good reaction coordinates,
we calculate transition rates between free energy minima.
We determine the free-energy profile along the diffusion
coordinates and various competing empirical coordinates,
then calculate transition rates using Kramers’ expression
for the escape rate of a system moving over a barrier.30 The
Kramers’ escape rate is given by

rate =
(∫

barrier

eβF(x)

D(x)
dx

∫
well

e−βF(x ′)dx ′
)−1

, (9)

with β = (kB T )−1, free-energy F(x), and diffusion coeffi-
cient D(x). In the evaluation of the integrals above, the barrier
region is defined as the segment of the coordinate between
the free-energy minima; the well region is defined as the
half of the configurational space containing the free-energy
minimum corresponding to the “reactant” state and delimited
by the top of the barrier. In practice only configurations at the
top of the barrier or bottom of a minimum will significantly
contribute to these integrals, and the resulting rates are very
robust upon changes of the integration limits around the ones
so defined.

The Kramers’ rate calculated from a free-energy profile
is strongly dependent on the choice of coordinates used in
defining the free-energy.31 A poor reaction coordinate tends
to convolute motion directed over the top of a free-energy
barrier with motion perpendicular to the barrier, and there-
fore underestimates the barrier height and overestimate the
rate. An optimal reaction coordinate is perpendicular to the
separatrix defining the transition state,4 and the rate evaluated
via the Kramers’ expression along such a coordinate should
provide a good estimate of the actual rate.

In order to calculate the Kramers’ rate through Eq. (9),
the coordinate-dependent diffusion coefficient D(x) along the
reaction coordinates is required. These were obtained through
Bayesian analysis,32 which allows for an estimation of D(x)
from MD simulation data. We used these techniques as origi-
nally proposed in Ref. 32; the choice of the parameters and a
brief description of the methods are given in Appendix B.

A. Alanine dipeptide

Alanine dipeptide is a typical testbed for collective dy-
namics studies. Although the molecule consists of 22 atoms,
multiple steric constraints effectively reduce the configuration
space to two dimensions under standard conditions. The two
dimensions of choice are the dihedral angles � and 	. As the
two angles are a priori known, this system represents an ideal
case to test our approach.

The MD data are obtained with AMBER (Ref. 33) from
a 300 K simulation with the AMBER99 force field in im-
plicit water. Configurations collected every 0.1 ps during a
20 000 ps simulation are used as input to the local scale deter-
mination and diffusion map calculation. The hydrogen atoms
were removed before the local scale determination, since they
do not contribute to important conformational changes of the
molecule.

It is important to emphasize a few points about the
trajectory data. A much smaller dataset can be used in the
LSDMap approach; using only 10 000 configurations yields
a free-energy landscape as a function of diffusion coordinates
that is indistinguishable from that of the 200 000 configura-
tion result and can be calculated in a day of computer time on
a single-core workstation. The reason for using such a large
dataset here is twofold: to test the robustness of the small sam-
ple results and to provide adequate sampling for the Bayesian
analysis used to calculate the diffusion coefficients32 from
a single long trajectory. Alternatively, if a smaller data
sample is used, the position-dependent diffusion coefficients
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FIG. 2. (Top) Free energy of alanine dipeptide as a function of the first and
second diffusion coordinates. (Bottom) Free energy profile along the first dif-
fusion coordinate (DC). The Kramers’ rate along the first DC is shown in
Table I.

could be estimated by using many independent short
simulations.32

The Fokker–Planck eigenvalue spectrum calculated with
the LSDMap is displayed in the top panel of Fig. 1. The λ0

= 0 eigenvalue corresponds to the Boltzmann distribution; λ1

to the first DC; λ2 to the second DC, etc. The gap between
exp(−λ1) and exp(−λ2), denoted by the vertical bar, shows
that there is a separation of time scales between the collective
motion corresponding to the first DC and that of the second
DC.

Figure 2 shows the free-energy as a function of the first
and second DCs (top panel), from which it is clear that the
first DC corresponds to a transition between two pairs of min-
ima: C5–P‖ and αR–αP . This can be corroborated through
Fig. 3, the top panel of which shows the free-energy as a
function of the dihedral angles � and 	 and is displayed
for reference here in order to locate the free-energy minima.
In the bottom panel the first DC is seen to change smoothly
along the path between the pairs of minima, C5–P‖ and αP –
αR , and corresponds to a transition between these two pairs.
In addition, the first DC is well correlated with the empirical
coordinate 	.

In Fig. 1, the fact that the gap between exp(−λ2) and
exp(−λ3) is small compared to the gap between exp(−λ1) and
exp(−λ2) shows that the second and third DCs describe mo-
tions on similar time scales. We analyze these motions in the
supplementary material29 and find that the second DC corre-
sponds to diffusion from the P‖ minimum to the C5 minimum,
while third DC to transitions between the αP and αR minima.
Supplementary material29 Fig. S5 shows the free-energy as a
function of the first and third DCs; Supplementary material29

FIG. 3. Comparison of the first DC with empirical coordinates � and 	.
(Top) Free energy (kcal/mol) as a function of dihedral angles � and 	; dis-
played to show the locations of the free energy minima in �−	 space. (Bot-
tom) Raw molecular configuration data plotted according to � and 	, and
colored according to first DC. The smooth color change between the pairs of
minima C5–P‖ and αR–αP shows that the first DC corresponds to a transition
between these pairs, and that the first DC correlates well with 	. Analo-
gous figures for the second and third DCs are available in the supplementary
material.

Fig. S6 shows the figures analogous to Fig. 3 for the first (left)
and third DCs (right).

Figure 4 displays the results of the local scale analysis
for a representative configuration near a transition barrier
(top) and free-energy minimum (bottom). For the configura-
tion near a transition barrier, there are a few MDS singular
values that are large and well separated from the remaining
“noise” MDS singular values, while for the configuration
near the minimum, the “data” and “noise” singular values
are more closely spaced. This figure can be compared with
Fig. 1 of Little et al.27 to get a sense of the difference between
MD datasets and high-dimensional noisy datasets generated
by the addition of Gaussian white noise to lower dimensional
datasets.

For the configuration near the minimum, the local
intrinsic dimensionality of M is larger, and the locally linear
region is smaller, than that for the configuration near the tran-
sition region; representative examples of this are shown in
Fig. 4. This trend is apparent throughout the dataset as
evidenced in Fig. 5, which displays the results of the local
scale analysis for all of the data points. Figure 5 plots the
local scale (top), and the intrinsic dimensionality of M
(bottom) at each configuration in the dataset as a function of
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FIG. 4. MDS singular value spectra for configurations inside ε-balls around
a configuration near a transition region (top), and near a free-energy mini-
mum (bottom) for alanine dipeptide. The horizontal axis is the RMSD radius
of each ε-ball in Å. For the top (bottom) panel the intrinsic dimension deter-
mined by our algorithm is 2 (8), and the red vertical line denotes the value
of the estimated local scale εi . Note the differences in the scales of the axes
between the two figures.

the first and second DCs. A comparison with the free-energy
(Fig. 2) demonstrates that the “locally flat” region of M
is smaller in length and of a higher intrinsic dimension
near the free-energy minima compared to transition regions.
This result is in accord with chemical intuition: the classic
definition of a transition state is a state in which the energy
is a maximum along one degree of freedom and a minimum
along all other orthogonal degrees of freedom. Following the
minimum energy path of a reaction, we expect the intrinsic
dimension in such a state to be close to one.

We quantify the assertion that the first DC captures the
essential dynamics of the isomerization process between C5–
P‖ and αR–αP by calculating the Kramers’ rate from Eq. (9)
along both the first DC and 	. A comparison with the rate ob-
tained directly from the simulation is reported in Table I. Both
the rate along the first DC and 	 are in excellent agreement
with the rate extracted directly from simulation, suggesting
that both the first DC and 	 are good reaction coordinates for
this transition. It is expected that these coordinates perform
similarly, as they are strongly correlated.

We have performed these same calculations using a con-
stant value of ε, and find that the diffusion coordinates

FIG. 5. Alanine dipeptide local scale analysis. Raw molecular configuration
data plotted as a function of the first and second DCs, and colored by the
local scale εi in Å (top), and the local intrinsic dimension (bottom). For vi-
sual clarity the following cutoffs have been imposed on the color bars: the
maximum value of ε is 0.23 Å, and the maximum value of the intrinsic di-
mension is set at 8. There are a few outliers near transition regions that have
local scales high above this cutoff. Most of the configurations in the minima
have an intrinsic dimensionality in the range 8–24.

emerging from such calculations depend strongly on the ε

value chosen. Moreover it is a priori unknown which value
provides meaningful results. These results are detailed in
Sec. I of the supplementary material.29

B. SH3

The folding dynamics of the 57-residue protein do-
main SH3 have been well characterized both by simula-
tion studies34–36 and wet-lab experiments.37 This protein
is known to fold in a two-state manner, that is, only the
unfolded or folded states are significantly populated near
the folding transition temperature T f . The folding/unfolding

TABLE I. Alanine dipeptide isomerization rates (ps−1)a.

Coordinate C5, P‖ → αR αP αR αP → C5, P‖
Direct simulationb 0.023 0.047
1st DC 0.023 ± 0.001 0.048 ± 0.003
	 0.020 ± 0.001 0.040 ± 0.003

aSee Appendix B for details on the error analysis.
bStandard deviation for simulation rates are of order 10−4 ps−1.
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FIG. 6. (Top) Free energy of the coarse-grained SH3 model as a function of
the first and second DCs. (Bottom) Free energy profile along the first DC.
The Kramers’ rate along the first DC is shown in Table II.

process is known to be the longest time scale and corresponds
to diffusion over the free-energy barrier separating the folded
and unfolded states. Previous studies have shown that the
free-energy landscape of SH3 can be well approximated by a
few global coordinates, either empirically defined34, 38 or ob-
tained through nonlinear dimension reduction techniques.17, 39

As with alanine dipeptide, the previous work on this system
makes it an ideal test case for our approach.

We apply our method to simulation data obtained with the
coarse-grained DMC model of SH3.40 MD simulations were
performed in GROMACS (Ref. 41) near T f , and configurations
collected every 5 ps during a 500 000 ps run. As with alanine,
the trajectory used here is at least ten times longer than needed
to obtain reliable results; a similar free-energy landscape is
obtained with only 10 000 configurations.

The large spectral gap in the Fokker–Planck eigenspec-
trum (Fig. 1) between exp(−λ1) and exp(−λ2), denoted by the
vertical bar, shows that the time scale between the collective
motion corresponding to that of the first DC is much longer
than that of the second DC. Figure 6 displays the free-energy
as a function of the first and second DCs in the top panel and
the profile along the first DC in the bottom panel. The min-
imum on the right corresponds to the folded state, and the
minimum on the left is the minimum of the unfolded state.
From this we see that the first DC separates the folded and
unfolded minima, while the second DC seems to be related to
the motion toward the transition region.

In order to relate the diffusion coordinates to quantities
that have a direct physical interpretation, in Fig. 7 we com-
pare the first DC with two empirical coordinates: RMSD to
the native structure and the fraction of native contacts, Q. The
top panel shows the free energy in terms of these coordinates,
presented for reference to locate the free-energy minima. The
lower right minimum is the folded minimum (with a high frac-
tion of native contacts and a small RMSD to the native struc-
ture), and the upper left minimum is the unfolded minimum.

FIG. 7. (Top) Free energy (kcal/mol) as a function of the empirical coor-
dinates RMSD to the native structure (Å) and fraction of native contacts
Q. (Bottom) Raw molecular configuration data points, plotted in terms of
the same empirical coordinates, and colored according to the first DC. The
smooth color transition along the first DC shows qualitatively that the first
DC and the RMSD to the native structure are correlated.

The bottom panel displays the first DC as a function of these
same two coordinates, and a comparison between the panels
shows that the first DC corresponds to the folding/unfolding
transition and correlates well with the RMSD to the native
structure.

For protein systems, it is also possible (and illuminating
when there are no empirical coordinates available) to examine
the relationship between the diffusion coordinates and contact
probabilities. We calculate the probability of contact forma-
tion along the first and second DCs for all nonbonded contacts
of SH3, and from that calculate the correlation between the
contact probabilities and first DC (second DC) in the lower
(upper) triangle of Fig. 9. Both the Spearman rank correlation
ρ (which measures the monotonicity of the correlation: ρ = 1
for a perfect monotonic relationship) and the Pearson correla-
tion coefficient r (which measures the linearity of the relation-
ship) are considered. Only contacts with both the Spearman
and Pearson correlations greater than 0.8, and a probability
of formation greater than 0.1 are included in the figure.

The contacts shown in blue tend to form as the first DC
increases. These are mostly the native contacts, confirming
that the motion along the first DC corresponds to the fold-
ing process. The contacts in red tend to form as the second
DC increases. Interestingly, these contacts include the set of
non-native contacts involved in the formation of a nonspecific
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FIG. 8. SH3 local scale analysis. Raw molecular configuration data plotted
as a function of the first and second DCs, colored according to the local scale
εi in nm (top) and the local intrinsic dimension (bottom).

hydrophobic nucleus (circled in red in the figure). This is
the only set of non-native contacts with both the Spearman
rank and Pearson correlation coefficients larger than 0.9. Both
experimental42 and simulation (see Fig. 4 of Das et al.40) re-
sults suggest these contacts to be important in the folding
mechanism of SH3.

FIG. 9. Correlation of SH3 probability of contact formation with the first
(lower right) and second DCs (upper left). Native contacts are marked by
a black dot. Different shades of red or blue indicate different values of the
Pearson correlation coefficient, as indicated in the colorscale on the right.

TABLE II. SH3 folding rates (ps−1)a.

Coordinate Folded → Unfolded Unfolded → Folded
Direct simulation (4.4 ± 0.4) × 10−5 (6.4 ± 0.4) × 10−5

1st DC (6.9 ± 0.8) × 10−5 (8.0 ± 0.9) × 10−5

RMSDb (9 ± 1) × 10−5 (12 ± 1) × 10−5

Q (3.1 ± 0.5) × 10−4 (3.7 ± 0.7) × 10−4

aSee Appendix B for details on error analysis.
bRMSD with respect to the native structure.

The analog of Fig. 7 for the second DC shows that it
has an extremum at the transition state and decreases when
moving to either of the minima (Fig. S7 of the supplementary
material29). Taken together with the results of the correlation
analysis, these results indicate that the second slowest time
scale in the folding of SH3 corresponds to the formation of
a folding nucleus involving this set of non-native contacts,
which are formed at the transition state, but not formed in the
unfolded and folded states.

The results of the local scale analysis are displayed in
Fig. 8. It is interesting to compare and contrast these results
with those of alanine dipeptide. For SH3 the local scale
is small and the local intrinsic dimension of M is larger
around configurations in the folded minimum in comparison
with configurations around the transition region—a result
similar to that of alanine dipeptide (see Fig. 5). However for
configurations in the unfolded minimum, the local intrinsic
dimension is high, while the local scale is large when
compared to configurations in the transition region. While for
alanine dipeptide configurations in both free-energy minima
have small local scale, for SH3 there is a clear difference
between the folded, potential energy minimum and the
entropic minimum of the unfolded states. This difference is
expected by considering that the structures in the unfolded
minimum are far apart from one another in terms of RMSD
distance, while in a potential energy minima the structures
are more similar to one another.

The rates obtained by using Kramers’ escape rate
expression30 along a reaction coordinate are presented in
Table II; the rates along three different coordinates: the
first DC, the RMSD to the native structure, and the fraction
of native contacts Q, are compared with the rate obtained
directly from simulation. The rate estimate along the first
DC is more accurate than the rate along both RMSD and
Q, confirming that the first DC better describes the overall
folding/unfolding motion of this SH3 model than empirically
defined reaction coordinates.

V. CONCLUSIONS

We present a multiscale, mathematically justified
approach for extracting collective coordinates from a
configurational sample of macromolecular motion. This
method provides not only global reaction coordinates and
a free-energy landscape but also information about the
geometrical structure of the configuration space. In addition,
no prior estimation of prospective reaction coordinates and/or
definition of reactant/product states is required. The approach
is based on the determination of the length scale at which the
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dynamics can be considered locally linear at each point in the
configuration space; this position-dependent length scale is
then used to locally “renormalize” the kernel of the transition
probability between each pair of configurations. A diffusion
map is then constructed on the global diffusion process.

For systems with a separation of time scales in which
the slowest time is associated with the diffusion over a free-
energy barrier, the first diffusion coordinate is a good reaction
coordinate. Reaction rates computed by using Kramers’ rate
expression along the first diffusion coordinate are in remark-
able agreement with the rates measured directly from simula-
tion data.

The analysis of the correlation of the first few diffusion
coordinates with collective variables such as empirical reac-
tion coordinates (if available), and/or the probability of con-
tact formation allows for a physical understanding of the col-
lective motions corresponding to the diffusion coordinates.
Through such an analysis of coarse-grained SH3, we find the
slowest time scale corresponds to the folding/unfolding tran-
sition, and the second slowest time scale corresponds to the
formation of a set of non-native contacts at the core of the
protein.

The local scale analysis at the base of the LSDMap ap-
proach provides insight into the local intrinsic dimensionality
of the molecular configurational space, which can be used to
approximately locate free-energy minima and transition re-
gions, and gain some understanding of the nature of these
regions.

At present, the method is only applicable to systems for
which it is possible to obtain Boltzmann-sampled data. We are
currently working to extend the method to non-Boltzmann-
distributed data, such as that from biased molecular dynamics
runs.

To the best of our knowledge, this is the first time math-
ematical techniques in multiscale geometric theory have been
extended to the analysis of macromolecular dynamics data;
this is a first step in the direction of quantifying and exploiting
geometric properties of trajectories arising from MD simula-
tions. We believe the approach presented provides a powerful
tool to understand the collective processes in complex diffu-
sion reactions over a spectrum of different time and length
scales.

APPENDIX A: LOCAL SCALE DETERMINATION

To obtain information about the local geometry around a
configuration xi , we perform multidimensional scaling on in-
creasingly larger neighborhoods (ε-balls) around xi . We nor-
malize these singular values by the square root of the number
of configurations within the corresponding ε-ball. In order
to numerically distinguish between the non-noise and noise
MDS singular values, we calculate the gap between each pair
of consecutive singular values at three locations along the
range of values of ε considered: 3/7, 1/2, and 4/7 of the largest
value. The reason for performing the analysis at three distinct
points is to ensure robustness of the results. To analyze the
gaps between the singular values, we construct a “status vec-
tor” as follows. The first entry corresponds to the gap between
the largest and second largest singular values, the second en-

try to the gap between the second and third largest, etc. The
entry for each pair of consecutive singular values is “1” if
the value of the gap for that pair is greater than twice the
value of each of the following five gaps at any of the three
fractions considered; the entry is “0” otherwise. The separa-
tion between the non-noise and noise singular values is de-
fined to be between the first pair whose entry is “1” and with
the following three entries equal to “0”. This analysis is simi-
lar in spirit to the one proposed in Little et al.,27 and provides
robust results.

The next step is to determine the local scale εi . A conser-
vative estimate is to define εi as the length scale at which the
noise singular values begin to decrease and clearly separate
from the non-noise ones. To numerically find these lengths,
we fit the noise spectra to a low-order polynomial (decreasing
the order of the polynomial if the Vandermonde matrix is ill
conditioned) and calculate the derivatives of the noise spectra
as a function of the neighborhood size ε from the fit. We then
scan from smallest to largest ε, and define εi as the value at
which the first derivative of each noise singular value is less
than a given cutoff (0.03 for alanine dipeptide, 0.04 for SH3—
the results are robust against variations of these parameters).
If no such value of ε is found, we define the noise more con-
servatively by considering the highest noise singular value to
belong with the data and repeat the scan.

APPENDIX B: BAYESIAN DETERMINATION OF
DIFFUSION COEFFICIENTS AND KRAMERS RATE
ERROR ANALYSIS

We determine the diffusion coefficients along the vari-
ous coordinates (first DC and 	 for alanine dipeptide; first
DC, RMSD, and Q for SH3) using Bayesian analysis.32 The
method is based on the fact that through Bayes inference the-
orem, the probability distribution of position-dependent dif-
fusion coefficients giving rise to a trajectory is proportional
to the probability of observing the same trajectory for given
values of the diffusion coefficients. In order to obtain a likeli-
hood function associated with the MD data, for a given choice
of the collective coordinate X , the range of values spanned by
X is discretized in m cells Xi , i = 1, . . . , m. The informa-
tion associated with a given MD trajectory (or a set of many
short MD trajectories) is then translated into the number of
transitions Ni j between cells i and j observed in a time tα .
Assuming Markovian dynamics, the position-dependent dif-
fusion coefficient Di+1/2 = D( 1

2 (Xi + Xi+1)) at the bound-
ary between two consecutive cells i and i + 1 can be defined
in terms of the rate matrix R as

Di+1/2 = |Xi+1 − Xi |2
√

Ri,i+1 Ri+1,i . (B1)

The likelihood function L associated with the observed Ni j

for a given rate matrix R is

ln L =
m∑

i=1

m∑
j=1

Ni j ln (etα R)i j . (B2)

The rate matrix R (and the corresponding diffusion
coefficients) is then determined by performing a Metropolis
Monte Carlo simulation in the space of the matrix elements
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Ri j in which the negative log-likelihood is used as an “energy
function.”43 The resulting distribution for Ri j is sharply
peaked around the most probable values of the matrix
elements, which are then used to determine the diffusion
coefficients. For each system we use a long MD trajectory to
obtain the Ni j matrix elements for the likelihood function.

In order to ensure smoothness in the diffusion coefficients
we use the prior in the form,

∏
i

exp

{−[D(Xi ) − D(Xi+1)]2

2γ 2

}
, (B3)

as proposed in Eq. (14) of Hummer’s work.32 The values of
the γ parameter used for alanine dipeptide are 0.1 for both the
first DC and 	; and for SH3 are 0.0001 for the first DC, and
0.00005 for both RMSD and Q. Some caution must be used
in choosing the values of γ . Too large a value may produce
large spikes in the diffusion coefficients in the slightly less
sampled regions; a value too small may artificially flatten the
diffusion coefficient profile along the coordinate. For all the
coordinates considered, a range of values of γ consistently
reproducing the same diffusion coefficients can be defined.
Our results are robust against variations of the parameter γ

around the values reported above.
The other parameters to be chosen for the Bayesian anal-

ysis are the observation times tα and the number of cells m
along a collective coordinate. We used several sets of these
parameters and calculated the Kramers’ integrals from each
set of diffusion coefficients. The final rate values in Tables I
and II of the main text are a result of averaging over the fol-
lowing sets of tα and numbers of cells. For alanine dipeptide,
along the first DC: tα = 0.5, 0.6, 0.7, and 0.8 ps, with 20, 24,
28, and 32 cells; along 	: tα = 0.5 and 0.6 ps, with 24, 28,
32, and 36 cells. For SH3, along the first DC: tα = 60 and 70
ps, with 16, 24, 36, and 48 cells; along RMSD: tα = 60 and
70 ps, with 16, 24, 36, and 48 cells; along Q: tα = 60 and
70 ps, with 16, 24, 36, and 48 cells. These choices for tα and
the numbers of cells m were motivated by the need to obtain
an Ni j matrix with transitions between each pair of neigh-
boring cells. Very long tα values result in poor sampling of
the transition between cells along the top of the barrier; very
short tα values result in the observation of too few transitions
from the cells near free-energy minima. In the supplementary
material,29 Figs. S8 and S9 show the rates of the various tran-
sitions for each of the choices of tα and m.

The errors reported for each rate in Tables I and II are
calculated as follows. The Bayesian analysis produces diffu-
sion coefficients evaluated on the cell edges as well as their
standard deviations. These standard deviations are the largest
errors in the calculation and are propagated through the nu-
merical evaluation of the Kramers’ integral to yield an esti-
mate of the error for the Kramers’ rate calculated for each
pair of parameters tα and m. These are the error bars shown
in Figs. S7 and S8 of the supplementary material.29 The er-
rors reported in Tables I and II are the average of the errors
for each pair of tα and m that were used in determining the
Kramers’ rate.
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