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Model-Based Clustering, Discriminant Analysis, and 

Density Estimation 

Chris FRALEY and Adrian E. RAFTERY 

Cluster analysis is the automated search for groups of related observations in a dataset. Most clustering done in practice is based largely 
on heuristic but intuitively reasonable procedures, and most clustering methods available in commercial software are also of this type. 
However, there is little systematic guidance associated with these methods for solving important practical questions that arise in cluster 
analysis, such as how many clusters are there, which clustering method should be used, and how should outliers be handled. We review 
a general methodology for model-based clustering that provides a principled statistical approach to these issues. We also show that 
this can be useful for other problems in multivariate analysis, such as discriminant analysis and multivariate density estimation. We 
give examples from medical diagnosis, minefield detection, cluster recovery from noisy data, and spatial density estimation. Finally, 
we mention limitations of the methodology and discuss recent developments in model-based clustering for non-Gaussian data, high- 
dimensional datasets, large datasets, and Bayesian estimation. 

KEY WORDS: Bayes factor; Breast cancer diagnosis; Cluster analysis; EM algorithm; Gene expression microarray data; Markov chain 
Monte Carlo; Mixture model; Outliers; Spatial point process. 

1. INTRODUCTION 

Cluster analysis is the identification of groups of observa- 
tions that are cohesive and separated from other groups. Inter- 
est in clustering has increased recently due to the emergence 
of several new areas of application. These include datamin- 
ing, which started from the search for groupings of customers 
and products in massive retail datasets; document cluster- 
ing and the analysis of Web use data; gene expression data 
from microarrays, where one goal is to find of genes that 
act together; and image analysis, where clustering is used for 
image segmentation and quantization. 

Most clustering done in practice is based largely on heuris- 
tic but intuitively reasonable procedures, and most clustering 
methods available in commercial statistical software are also 
of this type. One widely used class of methods involves hier- 
archical agglomerative clustering, in which two groups cho- 
sen to optimize some criterion are merged at each stage of 
the algorithm. Popular criteria include the sum of within- 
group sums of squares (Ward 1963) and the shortest dis- 
tance between groups, which underlies the single-link method. 
Another common class of methods is based on iterative relo- 
cation (also called iterative partitioning), in which data points 
are moved from one group to another until there is no fur- 
ther improvement in some criterion. Iterative relocation with 
the sum of squares criterion is often called k-means cluster- 
ing (MacQueen 1967). Although there has been considerable 
research in this area (e.g., dendrogram analysis for hierarchical 
clustering), there is little systematic guidance associated with 
these methods for solving basic practical questions that arise 
in cluster analysis, such as how many clusters there are, which 
clustering method should be used, and how outliers should be 
handled. Moreover, the statistical properties of these methods 
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are generally unknown, precluding the possibility of formal 
inference. 

It was realized early on that cluster analysis can also be 
based on probability models (see Bock 1996, 1998a, 1998b, 
for a survey). This realization has provided insight into when 
a particular clustering method can be expected to work well 
(i.e., when the data conform to the model), and has led to 
the development of new clustering methods. It has also been 
shown that some of the most popular heuristic clustering meth- 
ods are approximate estimation methods for certain probability 
models. For example, standard k-means clustering and Ward's 
method are equivalent to known procedures for approximately 
maximizing the multivariate normal classification likelihood 
when the covariance matrix is the same for each component 
and proportional to the identity matrix. 

Finite mixture models have often been proposed and stud- 
ied in the context of clustering (Wolfe 1963, 1965, 1967, 
1970; Edwards and Cavalli-Sforza 1965; Day 1969; Scott 
and Symons 1971; Duda and Hart 1973; Binder 1978). More 
recently, it has been recognized that these models can provide 
a principled statistical approach to the practical questions that 
arise in applying clustering methods (McLachlan and Basford 
1988; Banfield and Raftery 1993; Cheeseman and Stutz 1995; 
Fraley and Raftery 1998). In finite mixture models, each com- 
ponent probability distribution corresponds to a cluster. The 
problems of determining the number of clusters and of choos- 
ing an appropriate clustering method can be recast as statistical 
model choice problems, and models that differ in numbers of 
components and/or in component distributions can be com- 
pared. Outliers are handled by adding one or more components 
representing a different distribution for outlying data. 

In this article we describe and review a methodological 
framework that underlies a powerful approach not just to 
cluster analysis, but also to some other basic problems of 
multivariate statistics-discriminant analysis and multivariate 
density estimation. This strategy arose from the demonstrated 
promise in clustering applications of two methods based on 
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Figure 1. A Projection of the UCI Wisconsin Diagnostic Breast Can- 
cer Data Showing the Two-Group Model-Based Classification (a) and 
a Projection of 280 Additional Observations (b). The ellipses shown 
are projections of the ellipsoids defined by the covariances of the 
two multivariate normal components in the mixture model fitted to the 
data. There are 569 observations. Although no information about the 
known malignant versus benign classifications is used by the cluster- 

ing method, and there is considerable overlap between the two groups, 
model-based clustering produces a partition that is nearly 95% cor- 
rect. In (b), the classification produced by the EM-based discriminant 
analysis technique of Section 6.2, using the UCI Wisconsin Diagnos- 
tic Breast Cancer Data as a training set is shown. Circles represent 
benign observations; triangles, malignant observations. Filled symbols 
represent misclassified observations. The resulting out-of-sample clas- 
sification is nearly 96% correct. 

multivariate normal mixture models with covariances parame- 
terized by eigenvalue decomposition. These methods are hier- 
archical agglomeration based on the classification likelihood 
(Murtagh and Raftery 1984; Banfield and Raftery 1993) and 
the EM algorithm for maximum likelihood estimation of 
multivariate mixture models (McLachlan and Basford 1988; 
Celeux and Govaert 1995). The two approaches are comple- 
mentary; model-based hierarchical agglomeration tends to pro- 
duce reasonably good partitions even when started without any 
information about the groupings, whereas initialization is crit- 

ical in expectation-maximization (EM) because the likelihood 
surface tends to have multiple modes, although EM typically 
produces improved partitions when started from reasonable 
ones. By initializing EM with partitions from model-based 
hierarchical agglomeration and using approximate Bayes fac- 
tors with the Bayesian Information Criterion (BIC) approx- 
imation (Schwarz 1978) to determine the number of groups 
present in the data, Dasgupta and Raftery (1998) achieved 
good results for some difficult problems in minefield and seis- 
mic fault detection. Their method was extended by Fraley and 
Raftery (1998) to select the parameterization of the model as 
well as the number of clusters simultaneously using BIC. 

Figure l(a) shows the two-group model-based classification 
of a dataset used for breast cancer diagnosis (Mangasarian, 
Street, and Wolberg 1995). Although no information about the 
known malignant versus benign classifications was used by the 
clustering method, and there is considerable overlap between 
the two groups, model-based clustering produced a partition 
that is nearly 95% correct. Figure l(b) shows 280 additional 
data points classified by discriminant analysis with a model- 
based method described in this article, which makes use of the 
known classifications. Nearly 96% of these new data points are 
correctly classified by this procedure. This dataset is discussed 
in more detail in Section 8.1. 

This article reviews the model-based approach to clustering 
and shows how it can also be applied in discriminant anal- 
ysis and multivariate density estimation. The organization is 
as follows. Sections 2-5 include a review of material cov- 
ered in earlier work (Fraley and Raftery 1998) and elsewhere. 
Section 2 discusses mixture models, including the multivariate 
normal model and the geometric interpretation of its parame- 
terization by eigenvalue decomposition. Section 3 covers the 
EM algorithm for maximum likelihood estimation and its spe- 
cialization to mixtures. Section 4 gives background on Bayes 
factors, their approximation via BIC, and their use for select- 
ing the number of clusters and the clustering model. Section 5 
describes the overall clustering methodology that combines 
hierarchical agglomeration, EM, and BIC. Section 6 shows 
how these ideas can be applied to discriminant analysis, and 
Section 7 does the same for multivariate density estimation. 
Section 8 gives examples illustrating these methods. Section 9 
gives sources for model-based clustering software. Finally, 
Section 10 discusses some limitations of the method and sug- 
gests extensions to overcome them, including strategies for 
large datasets. 

2. MIXTURE MODELS 

Given data y with independent multivariate observations 
yi ... ,y,, the likelihood for a mixture model with G 
components is 

n G 

?MIX(OI... * G; 
' .. G * I Y) = E Tkfk(Y I Ok), (1) 

i=1 k=l 

where fk and ok are the density and parameters of the kth com- 
ponent in the mixture and Tk is the probability that an obser- 
vation belongs to the kth component (rk > 0; Ek,= Tk = 1). 

Most commonly, fk is the multivariate normal (Gaussian) 
density (k, parameterized by its mean ILk and covariance 
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matrix lk, 

exp(- i /?? \ (Yi - k 1k 2 k(Yi I A/k, 'k) 2= expj k) k (yi- . (2) 
v/det(27rrE) 

Data generated by mixtures of multivariate normal densi- 
ties are characterized by groups or clusters centered at the 
means /-k, with increased density for points nearer the mean. 
The corresponding surfaces of constant density are ellipsoidal. 
Geometric features (shape, volume, orientation) of the clus- 
ters are determined by the covariances Ek, which may also 
be parameterized to impose cross-cluster constraints. Com- 
mon instances include Ek = AI, where all clusters are spher- 
ical and of the same size; Ek = E constant across clusters, 
where all clusters have the same geometry but need not be 
spherical (Friedman and Rubin 1967); and unrestricted Ek, 
where each cluster may have a different geometry (Scott and 
Symons 1971). For Ek = AI, only one parameter is needed to 
characterize the covariance structure of the mixture, whereas 
d(d + 1)/2 and G(d(d + 1)/2) parameters are required for 
constant lk and unrestricted lk if the data are d-dimensional. 

Banfield and Raftery (1993) proposed a general framework 
for geometric cross-cluster constraints in multivariate nor- 
mal mixtures by parameterizing covariance matrices through 
eigenvalue decomposition in the form 

k = AkDkAkDk, (3) 

where Dk is the orthogonal matrix of eigenvectors, Ak is a 
diagonal matrix whose elements are proportional to the eigen- 
values, and Ak is an associated constant of proportionality. 
Their idea was to treat Ak, Ak, and Dk as independent sets of 
parameters and either constrain them to be the same for each 
cluster or allow them to vary among clusters. When parame- 
ters are fixed, clusters will share certain geometric properties; 
Dk governs the orientation of the kth component of the mix- 
ture, Ak its shape, and Ak its volume, which is proportional 
to A~ det(Ak). For example, if the largest eigenvalue of Ek is 
much larger than the other eigenvalues, then the kth cluster 
will be concentrated close to a line in d-space, which will 
be the first principal component of the distribution of the kth 
group. Similarly, if the two largest eigenvalues are of the same 
magnitude and dominate the other eigenvalues, then the kth 
cluster will be concentrated close to a plane in d-space. The 
kth cluster will be roughly spherical if the largest and smallest 
eigenvalues of Ek are of the same magnitude. 

This approach generalizes the work of Murtagh and Raftery 
(1984), who used the equal shape/equal volume model (2k = 

DADkAD[) for clustering in character recognition and other 
situations involving thin, highly linear, and possibly overlap- 
ping clusters with different orientations. It also subsumes the 
three most common models-Al, equal variance, and uncon- 
strained variance-mentioned earlier, as well as other useful 
models, such as Ek = AkI, where the clusters are spherical but 
have different volumes, and Ek = AkAk, where all covariances 
are diagonal but otherwise their shapes, sizes, and orientations 
are allowed to vary. For an extensive enumeration of possible 
models resulting from (3), see Celeux and Govaert 1995. 

Other proposed parsimonious parameterizations of covari- 
ance matrices could be applied in the context of cluster anal- 
ysis. These include the intraclass correlation or one-factor 
model, in which all of the off-diagonal elements of the corre- 
lation matrix are equal, generalizations of this based on factor 
analysis and structural equations (e.g., Joreskog 1973; Bollen 
1989), autoregressive and other parameterizations common in 
time series (Box and Jenkins 1976), and models common in 
geostatistics in which covariances are functions of distance 
(e.g., Journel and Huijbrechts 1978) in either a Euclidean or 
a deformed space (Sampson and Guttorp 1992). 

3. THE EXPECTATION-MAXIMIZATION ALGORITHM 
FOR MIXTURE MODELS 

The EM algorithm (Dempster, Laird, and Rubin 1977; 
McLachlan and Krishnan 1997) is a general approach to max- 
imum likelihood estimation for problems in which the data 
can be viewed as consisting of n multivariate observations 
xi recoverable from (yi, Zi), in which yi is observed and zi 
is unobserved. If the xi are independent and identically dis- 
tributed (iid) according to a probability distribution f with 
parameters 0, then the complete-data likelihood is 

n 

'c(xi I O) = f(xi I O). 
i=1 

Further, if the probability that a particular variable is unob- 
served depends only on the observed data y and not on z, then 
the observed-data likelihood, ?o(y I 0), can be obtained by 
integrating z out of the complete-data likelihood, 

?o(yI 0)= f c(x I 0)dz (4) 

The maximum likelihood estimate (MLE) for 0 based on the 
observed data maximizes ?o(y I 0). 

The EM algorithm alternates between two steps, an "E 
step," in which the conditional expectation of the complete- 
data log-likelihood given the observed data and the current 
parameter estimates is computed, and an "M step," in which 
parameters that maximize the expected log-likelihood from 
the E step are determined. The unobserved portion of the data 
may involve values that are missing due to nonresponse and/or 
quantities that are introduced to reformulate the problem for 
EM. Under fairly mild regularity conditions, EM can be shown 
to converge to a local maximum of the observed-data like- 
lihood (e.g., Dempster et al. 1977; Boyles 1983; Wu 1983; 
McLachlan and Krishnan 1997). Although these conditions do 
not always hold in practice, the EM algorithm has been widely 
used for maximum likelihood estimation for mixture models 
with good results. 

In EM for mixture models, the "complete data" are consid- 
ered to be xi = (Yi, Zi), where zi = (zi .. . iG) is the unob- 
served portion of the data, with 

1 if xi belongs to group k 
Zik - otherwise. 

Assuming that each zi is iid according to a multinomial dis- 
tribution of one draw from G categories with probabilities 
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71 . .., T, and that the density of an observation Yi given zi 
is given by LG=1 fk(yi I Ok)z, the resulting complete-data log- 
likelihood is 

n G 

l(k, Tk, Zik | X) =E E Zik l0g[Tkfk(Yi I ok)] (6) 
i=1 k=l 

The E step of the EM algorithm for mixture models is given 
by 

kfk(Y ) k) 

EZik( iy )' (7) 

while the M step involves maximizing (6) in terms of Tr and 
Ok with Zik fixed at the values computed in the E step, Zik. 

The value z, of Zik at a maximum of (1) is the estimated 
conditional probability that observation i belongs to group 
k. The maximum likelihood classification of observation i is 

{j I Z = maxk zik}, so that (1 - maxk z*.) is a measure of the 
uncertainty in the classification (Bensmail, Celeux, Raftery, 
and Robert 1997). 

For multivariate normal mixtures, the E step is given by (7) 
with fk replaced by Ok as defined in (2), regardless of the 

parameterization. For the M step, estimates of the means and 

probabilities have simple closed-form expressions involving 
the data and Zik from the E step, 

nk - 1,= ziykYi. 
7T <- - ; kk -ik (8) 

n Ynk i=1 

Computation of the covariance estimate 2k depends on its 

parameterization. Details of the M step for Ek parameter- 
ized by the eigenvalue decomposition (3) have been given by 
Celeux and Govaert (1995). 

EM estimation for mixture models has a number of limi- 
tations. First, the rate of convergence can be slow. However, 
EM typically gives good results if the data conform reasonably 
well to the model and the iteration is started at reasonable val- 
ues. Second, the EM algorithm for multivariate normal mix- 
tures breaks down when the covariance associated with one or 
more components is singular or nearly singular. It may either 
fail or give inaccurate results if one or more clusters contain 

only a few observations (which can happen if there are too 

many components in the mixture), or if the observations that 

they contain are concentrated close to a linear subspace of 
lower dimension than the data. 

A variant of EM called classification EM (CEM) (Celeux 
and Govaert 1992), in which the zik are converted to a discrete 
classification before performing the M step, is equivalent to 
standard k-means clustering (MacQueen 1967; Hartigan and 

Wong 1978) when a uniform spherical Gaussian distribution is 
used as the probability model. It should be noted that CEM is 
a procedure for maximizing the classification likelihood (10) 
discussed in Section 5.1 rather than the mixture likelihood 

(Celeux and Govaert 1993). 

4. MODEL SELECTION 

Two basic issues arising in applied cluster analysis are 
selection of the clustering method and determination of the 

number of clusters. In the mixture modeling approach, these 
issues can be reduced to a single concern, that of model 
selection. Recognizing that each combination of a number of 
groups and a clustering model corresponds to a different sta- 
tistical model for the data reduces the problem to comparison 
among the members of a set of possible models. 

There are trade-offs between the choice of the number of 
clusters and that of the clustering model. If a simpler model 
is used, then more clusters may be needed to provide a good 
representation of the data. If a more complex model is used, 
then fewer clusters may suffice. As a simple example, con- 
sider the situation with a single Gaussian cluster whose covari- 
ance matrix corresponds to a long, thin ellipsoid. If a model 
with equal-volume spherical components (the model underly- 
ing Ward's method and the k-means method) were used to fit 
this data, then more than one hyperspherical cluster would be 
needed to approximate the single elongated ellipsoid. 

Our approach to the problem of model section in clustering 
is based on Bayesian model selection via Bayes factors and 
posterior model probabilities (e.g., Kass and Raftery 1995). 
The basic idea is that if several models, M, .... MK, are con- 
sidered, with prior probabilities p(M,), k = 1, . . ., K (often 
taken to be equal), then, by Bayes's theorem, the posterior 
probability of model Mk given data D is proportional to the 
probability of the data given model Mk, times the model's 
prior probability, namely 

p(M ID) C p(DIMk)p(M,). 

When there are unknown parameters, by the law of total prob- 
ability, p(DIMk) is obtained by integrating (not maximizing) 
over the parameters, that is, 

p(DMk) = 
fp(Dle, M,)p(0, M,) dk,, 

where p(0,kMk) is the prior distribution of Ok, the parameter 
vector for model Mk. The quantity p(DIM,) is known as the 
integrated likelihood of model M,. 

A natural Bayesian approach to model selection is then 
to choose the model that is most likely a posteriori. If the 

prior model probabilities, p(Mk), are the same, then this 
amounts to choosing the model with the highest integrated 
likelihood. For comparing two models, M, and M2, the Bayes 
factor is defined as the ratio of the two integrated likeli- 
hoods, B12 = p(DIM,)/p(DIM2), with the comparison favor- 

ing M, if B,2 > 1 and conventionally being viewed as provid- 
ing very strong evidence for M, if B12 > 100 (Jeffreys 1961). 
Often, values of 2log(B,2) rather than B,, are reported, and 
on this scale, rounding, very strong evidence corresponds to a 
threshold of 10 (Kass and Raftery 1995). 

This approach is appropriate in the present context, because 
it applies when there are more than two models and can 
be used for comparing nonnested models. Besides being a 

Bayesian solution to the problem, it has some desirable fre- 

quentist properties. For example, if one has just two models 
and they are nested, then basing model choice on the Bayes 
factor minimizes the total error rate, which is the sum of the 

type I and type II error rates (Jeffreys 1961). 
The main difficulty in using Bayes factors is the evalua- 

tion of the integral that defines the integrated likelihood. For 
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regular models, the integrated likelihood can be approximated 
simply by the BIC, 

2logp(DIM,) 2log p(Dk,, Mk) - vlog(n) = BICk, (9) 

where vk is the number of independent parameters to be esti- 
mated in model Mk (Schwarz 1978; Haughton 1988). This 
approximation is particularly good when a unit information 
prior is used for the parameters, that is, a prior that contains 
the amount of information provided on average by one obser- 
vation (Kass and Wasserman 1995; Raftery 1995). The reason- 
ableness of this prior has been discussed by Raftery (1999). 

Finite mixture models do not satisfy the regularity con- 
ditions that underly the published proofs of (9), but several 
results suggest its appropriateness and good performance in 
the model-based clustering context. Leroux (1992) showed 
that basing model selection on a comparison of BIC values 
will not underestimate the number of groups asymptotically, 
and Keribin (1998) showed that BIC is consistent for the num- 
ber of groups. Roeder and Wasserman (1997) showed that if 
a mixture of (univariate) normals is used for one-dimensional 
nonparametric density estimation, then using BIC to choose 
the number of components yields a consistent estimator of 
the density. Finally, in a range of applications of model-based 
clustering, model choice based on BIC has given good results 
(Campbell, Fraley, Murtagh, and Raftery 1997; Campbell, 
Fraley, Stanford, Murtagh, and Raftery 1999; DasGupta and 
Raftery 1998; Fraley and Raftery 1998; Stanford and Raftery 
2000). 

Several other approaches to choosing the number of clus- 
ters in model-based clustering have been proposed. McLach- 
lan and Basford (1988) discussed the use of resampling in 
this context. Banfield and Raftery (1993) derived an approx- 
imation to the integrated likelihood based on the classifica- 
tion likelihood, called the Approximate Weight of Evidence 
(AWE), but in subsequent experiments it has consistently per- 
formed less well than BIC. Cheeseman and Stutz (1995) and 
Chickering and Heckerman (1997) used a different approxi- 
mation to the integrated likelihood; other approaches include 
an informational complexity criterion called ICOMP (Boz- 
dogan 1994), an entropy criterion called NEC (Celeux and 
Soromenho 1996; Biernacki, Celeux, and Govaert 1999), the 
integrated classification likelihood (Biernacki et al. 2000), and 
cross-validated likelihood (Smyth 2000). These methods were 
developed for choosing the number of clusters, but presumably 
they could be either applied or extended to choose the cluster- 
ing model as well. The performances of some of these criteria 
were compared by Biernacki and Govaert (1999). Bensmail 
et al. (1997) discussed an alternative approximation to the 
integrated likelihood for choosing both the number of groups 
and the clustering model based on Markov chain Monte Carlo 
(MCMC) estimation of the models. 

5. CLUSTER ANALYSIS 

The purpose of cluster analysis is to classify data of pre- 
viously unknown structure into meaningful groupings. In this 
section we outline a strategy for cluster analysis based on mix- 
ture models. We use the parameterization (3) as the basis for 
a class of models that is sufficiently flexible to accommodate 

data with widely varying characteristics. The strategy com- 
prises three core elements: initialization via model-based hier- 
archical agglomerative clustering, maximum likelihood esti- 
mation via the EM algorithm, and selection of the model and 
the number of clusters using approximate Bayes factors with 
the BIC approximation. 

5.1 Model-Based Hierachical Clustering 

Model-based hierarchical agglomerative clustering is an 
approach to computing an approximate maximum for the clas- 
sification likelihood, 

n 

i=l 

(10) 

where the fi are labels indicating a unique classification of 
each observation, fi = k if y, belongs to the kth component. 
In the mixture likelihood (1), each component is weighted by 
the probability that an observation belongs to that component. 
The presence of the class labels in the classification likelihood 
(10) introduces a combinatorial aspect that makes exact max- 
imization impractical. 

Murtagh and Raftery (1984) successfully applied model- 
based agglomerative hierarchical clustering to problems in 
character recognition using a multivariate normal model 
parameterized as in (3), with volume and shape (Ak and Ak) 
held constant across clusters. This approach was generalized 
by Banfield and Raftery (1993) to other models and applica- 
tions, including tissue segmentation in medical images. 

Model-based agglomerative hierarchical clustering proceeds 
by successively merging pairs of clusters corresponding to the 
greatest increase in the classification likelihood (10) among all 
possible pairs. In the absence of any information about group- 
ings, the procedure starts by treating each observation as a 
singleton cluster. When the probability model in (10) is mul- 
tivariate normal with the equal-volume spherical covariance 
AI, the selection criterion is the well-known sum-of-squares 
criterion (Ward 1963). 

Other common heuristic clustering criteria, such as sin- 
gle link (nearest neighbor), complete link (farthest neighbor), 
and average link, have no known associated statistical model. 
However, there may be relationships that have yet to be uncov- 
ered. The criterion underlying complete link clustering is close 
to, but not the same as, the classification likelihood for a 
model in which each group is uniformly distributed on a 
hypersphere, with the same radius for each group. The crite- 
rion underlying average-link clustering has some similarities 
with the classification likelihood for a model in which each 
group has a multivariate isotropic Laplace distribution, with 
density f(y) oc exp{-ly - /(ro-}. Further investigation of such 
connections may provide insight into when complete-link and 
average-link clustering are most likely to work well. They 
may also point to more fully model-based methods along the 
same lines, as well as to generalizations to nonisotropic set- 
tings or situations in which the groups differ markedly. The 
single-link clustering method seems to be not related to a sta- 
tistical model and does not perform well in instances where 
clusters are not well separated (e.g., Fraley and Raftery 1998). 
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However, nearest-neighbor classification, the supervised ana- 
log of single-link clustering, often works well for discriminant 
analysis. 

In the heuristic methods, the computational cost of merging 
pairs of clusters remains fixed as long as the clusters remain 
unchanged, and computational methods that store and update 
these costs are much faster than the alternatives, provided that 
sufficient memory is available. Many model-based methods 
can also be implemented in this way, although evaluating the 
merge criterion can involve a relatively expensive computa- 
tion, such as a determinant or an eigenvalue decomposition. 
Hierarchical agglomeration should be avoided with those mul- 
tivariate normal models, such as constant variance, for which 
there is no advantage in storing the cost of merging pairs, 
unless an initial partition with a small number of groups is 
available. An alternative model, such as the one with uncon- 
strained variance, can be used in these cases. Efficient numer- 
ical algorithms for agglomerative hierarchical clustering based 
on (10) with multivariate normal models have been discussed 
by Fraley (1998). 

5.2 Combining Hierarchical Agglomeration, EM, and 
Bayes Factors 

In hierarchical agglomeration, each stage of merging corre- 
sponds to a unique number of clusters and a unique partition 
of the data. A given partition can be transformed into indica- 
tor variables (5), which can then be used as conditional prob- 
abilities in an M step of EM for parameter estimation, initial- 
izing an EM algorithm. This, combined with Bayes factors as 
approximated by BIC for model selection, yields a compre- 
hensive clustering strategy: 

* Determine a maximum number of clusters, M, and a set 
of mixture models to consider. 

* Perform hierarchical agglomeration to approximately 
maximize the classification likelihood for each model, 
and obtain the corresponding classifications for up to M 
groups. 

* Apply the EM algorithm for each model and each number 
of clusters 2, . . ,M, starting with the classification from 
hierarchical agglomeration. 

* Compute BIC for the one-cluster case for each model and 
for the mixture model with the optimal parameters from 
EM for 2, .., M clusters. 

Strong evidence for a model and an associated number of clus- 
ters is taken to correspond to a decisive maximum of the BIC. 

Multivariate normal mixtures parameterized through eigen- 
value decomposition as in (3) represent a good set of mod- 
els for clustering in many situations arising in practice. With 
these models, computation can be saved by doing hierarchical 
agglomeration for only one of the models (e.g., unconstrained 
covariance), using the resulting partitions as starting values for 
EM with any other parameterization. This method for model- 
based clustering is illustrated in the examples of Sections 8.1 
and 8.2. 

5.3 Modeling Noise and Outliers 

Noise and outliers can often be handled in this frame- 
work by adding a term or terms to the mixture to represent 

"nonconforming" data. A mixture in which one component 
models noise as a homogeneous Poisson process has been 
used successfully in a number of applications (Banfield and 
Raftery 1993; Dasgupta and Raftery 1998; Campbell et al. 
1997, 1999). The corresponding model is 

4?MIX(OI ..., TO, T, 7r..., rG Y) 

n -T K 

=-n +E Tk(X|) , ( I ) 
i=1 - k=l 

in which V is the hypervolume of the data region, Tk > 0, 
and yGk= rk = 1. Isolated outliers can sometimes be treated 
by iterated sampling (e.g., Fayyad and Smyth 1996), in which 
points of low probability are removed from clusters and 
the clustering/removal process is repeated until all remaining 
observations have relatively high density. Alternatively, noise 
can be modeled in mixtures via the t distribution (Peel and 
McLachlan 2000). 

When the data contain a great deal of noise, the basic 
model-based clustering method of Section 5.2 needs to be 
modified as follows: 

* Obtain an initial categorization of each observation as 
being "data" or "noise." Some possible methods for 
denoising include a Voronoi method (Allard and Fraley 
1997) and a nearest-neighbor method (Byers and Raftery 
1998). 

* Apply hierarchical clustering to the denoised data. 
* Apply EM based on the Gaussian model with the added 

noise term(s) to the entire dataset. Initial values for zik 
are formed by augmenting the indicator variables from 
the hierarchical clustering step with a row of Os for each 
observation initially assessed as being noise and a column 
of indicator variables giving the result of the denoising 
step (1 indicating noise and 0 otherwise). 

An example of model-based clustering with very noisy data is 
given in Section 8.3. 

6. DISCRIMINANT ANALYSIS 

6.1 Discriminant Analysis Background 

In discriminant analysis, also known as supervised classifi- 
cation, known classifications of some observations (the "train- 
ing set") are used to classify others (e.g., McLachlan 1992; 
Ripley 1996). The number of classes, G, is assumed to be 
known. 

Many discriminant analysis methods are probabilistic, based 
on the assumption that the observations in the kth class are 
generated by a probability distribution specific to that class, 
fk('). Then, if Tk is the proportion of members of the popula- 
tion that are in class k, Bayes's theorem says that the posterior 
probability that an observation y belongs to class k is 

jfj (y) Pr[y e class j] = rkfk (Y 
k =kfk,(Y) 

Assigning y to the class to which it has the highest posterior 
probability of belonging minimizes the expected misclassifi- 
cation rate; this is called the Bayes classifier. 
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Most commonly used discriminant analysis methods are 
based on the assumption that the observations in each class 
are multivariate normal, so that 

fk(Y) = (YltLk, IOk). (12) 

If the covariance matrices for the different classes are the 
same (i.e., 2k = E for k = 1, . . , G), and if maximum likeli- 
hood estimates of -Lk and E from training data are used, then 
the (conditional) Bayes classifier is Fisher's linear discrimi- 
nant analysis (LDA) rule. In that case, the classification rule is 
defined by whether or not a linear combination of the compo- 
nents of y exceeds a threshold. This reduces the discrimination 
to a one-dimensional problem and produces a classification 
rule that is a simple thresholding. If the covariance matrices 
Ek are allowed to differ without constraint, then the resulting 
method is standard quadratic discriminant analysis (QDA), in 
which the classification function is a quadratic form in the 
components of y. The ideas discussed in this review allow 
the standard LDA and QDA to be extended in several ways, 
described in more detail in the next two sections. 

6.2 Eigenvalue Decomposition Discriminant Analysis 

Bensmail and Celeux (1996) imposed cross-group con- 
straints on the class covariance matrices in (12) for discrim- 
inant analysis, based on the parameterization by eigenvalue 
decomposition (3) originally proposed for model-based clus- 
tering. This approach, called eigenvalue decomposition dis- 
criminant analysis (EDDA), has the advantage of permitting 
more flexibility than LDA while at the same time allowing 
more structure than the unconstrained model underlying QDA, 
which may have too many parameters to perform optimally. 
They considered 14 possible models for the covariances based 
on (3), allowing the data to choose between them using cross- 
validation. The best model could alternatively be chosen using 
approximate Bayes factors, as we have proposed for clustering 
(Sec. 4), which would typically be less demanding compu- 
tationally. Biernacki and Govaert (1999) compared a number 
of different criteria, including BIC, in simulation studies of 
model-based clustering and discriminant analysis. In a related 
but different context, Stanford and Raftery (2000) found that 
BIC and cross-validation tended to choose similar models, 
with BIC requiring far less computation. 

A single EM iteration provides a simple way of assign- 
ing new observations to known classes, so that the framework 
described earlier for model-based clustering can easily be 
adapted to discriminant analysis. First, an M step is carried out 
for the appropriate model, with indicator variables correspond- 
ing to the known discrete labels of the training set as starting 
values (5). This yields approximate parameters 6 and mixing 
proportions f for the model. (The mixing proportions can be 
treated separately if they are known in advance.) Then an E 
step is computed for the new observations using the parame- 
ters from the "discrete" M step to obtain the conditional prob- 
ability that each new object belongs to each of the possible 
groups in the mixture. An observation Yi is assigned to the 
group for which it has the highest conditional probability, 

max (yi . (13) 
k=l, kfk(Yi | ok) 

If the parameter estimates were replaced with the true param- 
eters for the population, then this discriminant rule would cor- 
respond to the optimal Bayes rule. 

A simple extension allows all of the data (training and new) 
to be taken into account when estimating the parameters, even 
when the size of the training set is too small to provide a 
basis for standard discriminant analysis techniques. The EM 
algorithm is applied as before to all of the data, except that the 
Zik for the training data are constrained to be 0 or 1 throughout 
the algorithm, reflecting the known group memberships. 

6.3 Mixture Discriminant Analysis 

An alternative model-based approach to generalizing LDA 
and QDA is to allow the density for each class itself to be a 
mixture of normals, namely 

(14) 
G, 

fj(y I ok) = E Tjk(Y I Ljk, Ijk). 
k=l 

This idea has been suggested a number of times in the liter- 
ature (e.g., Scott 1992; McLachlan 1992) and is the basis of 
mixture discriminant analysis (MDA) (Hastie and Tibshirani 
1996). In developing MDA, Hastie and Tibshirani made two 
assumptions: that all of the component covariance matrices 
are the same (i.e., ;jk = X for each j, k) and that the number 
of mixture components is known in advance for each class. 
But when learning vector quantization (Kohonen 1989) is used 
for initialization, only the total combined number of mixture 
components for all classes needs to be specified at the out- 
set. Hastie and Tibshirani also proposed several extensions of 
the method under these assumptions. In a similar approach, 
Ormoneit and Tresp (1998) use unconstrained mixtures with 
a fixed number of components, averaged over parameters esti- 
mated via EM with a number of different random starting 
values. 

MDA can also be extended by relaxing the aforementioned 
two assumptions and applying model-based clustering to the 
members of each class in the training set. This would allow 
the component covariance matrices to vary, both within and 
between classes, perhaps with some cross-component con- 
straints. The data would then determine which parameteriza- 
tion of the covariance matrix and which number of mixture 
components is best suited to each class. We call this general- 
ization of MDA MclustDA. 

The basic idea of the model-based discriminant analysis 
methods described here is to allow more flexibility than is pos- 
sible with the traditional methods of LDA and QDA. Friedman 
(1989) earlier proposed an approach to this problem called 
regularized discriminant analysis (RDA), which chooses a lin- 
ear combination of the LDA and QDA models that best fits the 
data. EDDA (Bensmail and Celeux 1996) provides a class of 
models that are intermediate between LDA and QDA, while 
remaining geometrically or substantively interpretable. 

Mixture-based MDA and MclustDA further improve on 
EDDA by expanding the discriminant model from a single 
Gaussian component to a mixture. In particular, this approach 
allows close approximation of nonlinear and nonmonotonic 
classification boundaries. Under fairly weak conditions, a 
mixture model can approximate a given density arbitrarily 
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closely given enough components, allowing great flexibility. 
In MclustDA, the data choose both the number of components 
in each class and the form of the covariance matrices, so that 
the method could revert to LDA or QDA for some datasets 
and use a large number of components (and thus be almost 
"nonparametric") for others. 

7. DENSITY ESTIMATION 

In density estimation, it is the value of the mixture like- 
lihood at individual points that is of interest, rather than the 
membership of the components, which is important in cluster- 
ing or discriminant analysis. Roeder and Wasserman (1997) 
used normal mixtures for univariate density estimation, with 
BIC to determine the number of components. The model- 
based clustering method of Section 5 can be viewed as lead- 

ing to a multivariate extension of their method, because the 

parameter estimates for the best model define a multivariate 
mixture density for the data. However, the issue of choos- 
ing a probability model for the individual components is less 
critical in one dimension and was not discussed by Roeder 
and Wasserman (1997). In one dimension there are only two 

possible models (equal and unequal variance), whereas many 
more models are possible in the multivariate case, so that the 
available set of models and model selection procedures play 
a critical role in density estimation by multivariate normal 
mixtures. Results of simulations for two-dimensional analogs 
of the univariate mixtures from Marron and Wand (1992) 
that were studied by Roeder and Wasserman (1997) are pre- 
sented in Section 8.5, and some applications are illustrated in 
Sections 8.1.3 and 8.4. 

An alternative approach to density estimation using nor- 
mal mixtures models the normal parameters as coming from 
a Dirichlet process. This approach was proposed for one- 
dimensional density estimation by Escobar and West (1995) 
and MacEachern and Muller (1998), and extended to the mul- 
tivariate case by Mtiller, Erkanli, and West (1996). Roeder and 
Wasserman (1997) argued for directly selecting the number of 

components rather than modeling it using a Dirichlet process, 
on the grounds that the former allows direct control over the 
number of components. 

8. EXAMPLES 

8.1 UCI Wisconsin Diagnostic Breast Cancer Data 

8.1.1 Cluster Analysis. In widely publicized work (e.g., 
Mangasarian et al. 1995), 176 consecutive future cases were suc- 

cessfully diagnosed from 569 instances through the use of lin- 
ear programming techniques to locate planes separating classes 
of data. These results were based on 3 out of 30 attributes: 
extreme area, extreme smoothness, and mean texture. The three 

explanatory variables were chosen via cross-validation com- 

paring methods using all subsets of two, three, and four fea- 
tures and one or two linear separating planes. The training 
data is available from the UCI Machine Learning Repository at 
http://www. ics. uci. edu/AI/ML/MLDBRepository. html. The three 
variables of interest are shown in Figure 2. 

Although the diagnoses are available for these data, we 
first applied cluster analysis to the three attributes only, ignor- 
ing the "known" classifications. The model-based clustering 
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Figure 2. Pairs Plots of the Wisconsin Diagnostic Breast Can- 
cer Data From the UCI Machine Learning Repository. Only the three 
explanatory variables used by Mangasarian et al. (1995) are shown. 
There are 569 observations. 

methodology outlined in Section 5 yields the results shown in 
Figure 3. The maximum BIC value occurs for the three-group 
unconstrained model; the difference in BIC values between the 
two- and three-group unconstrained models is small enough 
to conclude that there are either two or three groups in the 
data [Fig. 3(a)]. The two-group classification matches the clin- 
ical diagnosis for all but 29 of the 569 observations (see 
Fig. 1). Note that the most uncertain points tend to fall in 
the same region between the two clusters as the misclassified 
data [Fig. 3(c)], whereas the location of uncertainty of the 
misclassified observations relative to the uncertainty of all of 
the observations [Fig. 3(d)] confirms that the more uncertain 
observations are also the ones most likely to be misclassified. 

The finding that there may be three groups in the data 
is clinically iimportant, because it is necessary to have some 
idea of the chance of malignancy to detelrmine an appropriate 
course of action. Tumors of the intermediate class would be 
followed up by biopsy under local anesthesia, whereas those 
likely to be mialignant would be followed up by a more inva- 
sive biopsy under general anesthesia. 

8.1.2 Discriminzant Analysis With One Gaussiatl Complo- 
nent per Group. According to the documentation for the 
Wisconsin Diagnostic Breast Cancer Data in the UCI Machine 
Learning Repository, the classifier proposed by Mangasarian 
et al. (1995) correctly diagnosed 176 consecutive new patients 
as of November 1995. Because only the training set is avail- 
able from the UCI repository, we obtained additional data 
for discriminant analysis from Dr. William Wolberg of the 
University of Wisconsin, the oncologist involved in the origi- 
nal analysis of these data. Using parameter estimates generated 
via an M step of EM started from the known discrete classifi- 
cation of the UCI data (with two groups) model-based discrim- 
inant analysis via (13) classified 280 new observations with 
95.7% accuracy [see Fig. l(b)]. The model-based approach 
has some advantages over the linear programming method of 
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Figure 3. Cluster Analysis of the Wisconsin Diagnostic Data Reduced to the Three Explanatory Variables. (a) BIC values, excluding those for 
the two spherical models, because they fall well below the others. Models 3-6 correspond to E (equal variance), 2k (unconstrained), ADkADT 
(common shape and volume), and AkDkADT (common shape). Model 4 is the best model. (b) The three-group unconstrained model-based 
classification of the data, showing the projections of the ellipses defined by the covariance of each of the three groups. (c) Uncertainty in the two- 
group model-based classification (shown in Fig. 1). Small dots correspond to observations with uncertainty less than .1; open circles, to those 
with uncertainty in the interval [.1, .25); and filled circles, to those with uncertainty greater than or equal to .25. (d) Location of the misclassified 
observations (vertical lines) relative to the uncertainties of all observations in the two-group model-based classification. 

Mangasarian et al. (1995)-it generalizes easily to data in 
which more than two groups are present, and the groups need 
not be linearly separable. 

8.1.3 Discriminant Analysis With a Mixture for Each 

Group. One application of density estimation is the compu- 
tation of likelihood ratios for discriminant analysis (e.g., Scott 
1992, chap. 9). A model is fitted to each of two sets of data 
known to have different values of a particular characteristic, 
and the ratio of their densities is computed over a range of val- 
ues. When the model-based clustering methodology described 
here is used for each class, this is an application of MclustDA, 
the generalization of mixture discriminant analysis (Hastie and 
Tibshirani 1996) described in Section 6.3. 

Contour and perspective plots of parametric and nonpara- 
metric likelihood ratio surfaces for diseased versus nondis- 
eased observations from plasma lipid data are shown in Scott 
(1992, pp. 250-251). The parametric density estimate was 

obtained by fitting a single normal to each of two sets of 
observations, whereas the nonparametric estimate is an aver- 
age shifted histogram. Scott considered only two possibilities: 
a completely parametric (multivariate normal) density and a 
fully nonparametric approach via kernel density estimation. 
MclustDA includes a single normal density as a special case 
and will reduce to that if the data do not warrant additional 
complexity. MclustDA can also be viewed as nonparametric, 
however, in the sense that it can approximate complex densi- 
ties arbitrarily closely by adding components. 

In a similar calculation, we applied MclustDA to the UCI 
Wisconsion Diagnostic Breast Cancer Data reduced to the two 
explanatory variables shown in the projections of Figure 1: 
extreme area and mean texture, treating the malignant and 
benign observations separately. A single ellipsoidal normal 
was obtained for the benign observations, and a mixture of two 
unconstrained normals was obtained for the malignant obser- 
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Figure 4. Contour and Perspective Plots of a Portion of the Log- 
Likelihood Ratio Surface for Two Covariates of the UCI Wisconsin 
Breast Cancer Data Obtained From Density Estimation via Model-Based 
Clustering. 

vations. Contour and perspective plots of the resulting para- 
metric likelihood ratio surface are shown in Figure 4. This 
ratio of density estimates captures the nonmonotonic nature 
of the likelihood ratio surface, while remaining satisfactorily 
smooth. 

8.2 Minefield Detection 

The Coastal Battlefield Reconnaissance and Analysis 
(COBRA) program (Witherspoon et al. 1995), developed by 
the U.S. Marine Corps, is intended to detect minefields in 
coastal areas via aerial reconnaissance. Figure 5 is a pairs 
plot of the measured intensity for all six bands of a COBRA 
reconnaissance image for each of 173 locations identified as 
possible mines on the basis of acquired images. Only 35 of 
the locations corresponded to actual mines; the other 138 were 
false positives. The goal here was to see whether model-based 
clustering could separate out the mines from the false positives 
based on the intensities, or at least identify a group containing 
the mines, so as to reduce the number of false positives. In 
this application, it is important to avoid false negatives (i.e., 
locations that are actually mines but are identified as non- 
mines). Because of the considerable linear dependence among 

Figure 5. The Six Bands of a COBRA Reconnaissance Image. 

the bands, we applied model-based clustering to the intensity 
measured in bands 1 and 6 only. 

According to BIC, the best model is the four-group non- 
constant spherical model [see Figure 6]. In this grouping, all 
35 mines are confined to one group containing a total of 89 
points. By considering only the 89 points in that group as pos- 
sible mines, the number of false positives is thus reduced by 
more than 60%, from 138 to 54, without introducing any false 
negatives. 

8.3 Cluster Recovery From Noisy Data 

We consider a problem in cluster recovery posed by 
Murtagh, Starck, and Berry (2000) that is based on the 
problem of locating galaxies in a noisy astronomical image. 
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Figure 6. BIC for the COBRA Minefield Detection Problem, Using 
Bands 1 and 6. Models 1 and 2 are 2k = A/ (constant spherical), and 
Akl (nonconstant spherical), while models 3-6 are as given in Figure 3. 
The resulting classification reduced the number of false positives by 
more than 60% without introducing any false negatives. 
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The data consist of two simulated two-dimensional Gaussian 
clusters with centers (64, 64) and (190, 190) and with stan- 
dard deviations in the x and y directions of (10, 20) and (18, 
10). There are 300 data points in the first of these clusters and 
250 in the second. Background noise is provided by adding 
10,000 points from a Poisson distribution. 

The results for this cluster recovery problem are shown 
in Figure 7. The model-based clustering strategy accurately 
determines the cluster means, although the clusters found 
are smaller than the true clusters (and they contain some 
noise points located within the cluster boundaries). A dif- 
ferent threshold for determining the classification from the 

conditional probabilities could be used, as illustrated in 
Figure 7(d). 

It should be noted that the method is sensitive to the value 
of V, the assumed volume of the data region, in (11). Here it 
is clear that V is the area of the image; Banfield and Raftery 
(1993) and Dasgupta and Raftery (1998) similarly used the 
volume of the smallest hyperrectangle with sides parallel to 
the axes that contains all of the data points. Other possibilities 
include taking V to be the smallest hyperrectangle with sides 
parallel to the principal components of the data that contains 
all the data points, or using the volume of the convex hull of 
the data (e.g., Bentley, Clarkson, and Levine 1993). 
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Figure 7. (a) An instance of the cluster recovery data, consisting of two Gaussian clusters with a total of 550 points, and 10,000 noise points. 
(b) The Gaussian clusters. (c) The data after 20 nearest-neighbor denoising with NNclean. (d) BIC from model-based clustering. In model 5, 
groups have equal shape and volumes. (e) Model-based classification. (f) Points with classification uncertainty less than .1. 
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8.4 Spatial Density Estimation 

As an illustration of density estimation with multivariate 
mixtures (Sec. 7), we consider the density of the Lansing 
Woods maples (Gerrard 1969). Figure 8 shows the location 
of the maples, the model-based classification, the correspond- 
ing density, and a standard Gaussian kernel density estimate. 
The BIC [Fig. 8(a)] indicates that a varying-volume spher- 
ical model with six groups is the best model among those 
available. The Gaussian kernel density estimate [Fig. 8(d)] 
was computed with the S+SpatialStats software (Kaluzny, 
Vega, Cardoso, and Shelly 1998), using a bandwidth esti- 
mated by cross-validation using the sm software of Bowman 
and Azzalini (1997). Some advantages of the model-based 

approach are that there are no bandwidth parameters involved, 
and that it is easy to compute the density at points other than 
the data points. 

8.5 Simulation Study for Two-Dimensional 
Density Estimation 

In this section we give the results of simulations using 
two-dimensional analogs of the univariate normal densities 
from Marron and Wand (1992) that were studied by Roeder 
and Wasserman (1997). Figure 9 shows contour plots of the 
10 densities used in the simultations. 
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Table 1 compares the average integrated mean squared 
error (MISE) for density estimation via model-based cluster- 
ing, with those for Gaussian kernel density estimation using 
both the normal optimal bandwidth and cross-validated band- 
width, over 50 simulations for each of the 10 models (250 
data points). The results for Gaussian kernel density estima- 
tion were obtained using the sm software of Bowman and 
Azzalini (1997). The numbers shown are the MISE for ker- 
nel density estimation divided by the MISE for model-based 
clustering for each of the two kernel methods. Only in one of 
the ten simulated situations does kernel estimation outperform 
model-based clustering: the Claw (Bart Simpson) density, the 
most complicated of the ten densities studied. 

Figure 10 shows the density used to generate the data, 
as well as each of the estimated densities from model-based 
clustering, Gaussian kernel with optimal normal and cross- 
validated bandwidths for one dataset simulated from the tri- 
modal density. 

8.6 Gene Expression Microarray Data 

New techniques in biotechnology, such as cDNA microar- 
rays and high-density oligonucleotide chips, allow simulta- 
neous monitoring of the expression of thousands of genes 
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Figure 8. Density Estimation for the Lansing Woods Maples. (a) BIC from model-based clustering. The maximum BIC model is a six-component 
varying-volume spherical mixture. (b) Model-based classification, with circles indicating the circles defined by the estimated covariance of each of 
the six groups. (c) Contours of the density as determined by model-based clustering, with the location of the maples superimposed. (d) Contours 
of a standard Gaussian kernel density estimate with bandwidth selected by cross-validation. 
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Figure 9. Contours of the 10 Two-Dimensional Simulation Densities. 

under any number of desired conditions. Experiments for 
which these data are collected include time series, for exam- 
ple, phases of a cell cycle (Cho et al. 1998; Chu et al. 1998), 
group comparisons, such as benign versus malignant tumors 
(Perou et al. 1999; Ross et al. 2000), and population descrip- 
tions, such as response to drug treatments (Weinstein et al. 
1997; Scherf et al. 2000). Ultimately the data are represented 

in the form of a matrix of measurements, with one dimen- 
sion (usually the rows) for the genes or clones (pieces of the 
gene) and the other dimension for the experiments or sam- 
ples. The amount and complexity of the data generated by 
these new technologies requires specialized bioinformatic and 
statistical tools to extract useful information. Clustering and 
classification are particularly important in this context because 
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Table 1. MISE Ratios for Density Estimation via Model-Based 
Clustering (MBC), Gaussian Kernel Density Estimation With Normal 
Optimal Bandwidth (NOB), and Gaussian Kernel Density Estimation 

With Cross-Validated Bandwidth (CVB) 

Model NOB/MBC CVB/MBC 

Unimodal Gaussian 4.5 4.4 
Skewed unimodal 2.2 1.9 
Strongly skewed 6.7 1.5 
Kurtotic unimodal 12.5 3.5 
Outlier 14.9 4.6 
Bimodal 4.2 3.6 
Separated bimodal 11.5 4.2 
Asymmetric bimodal 4.1 2.6 
Trimodal 4.1 2.1 
Claw (Bart Simpson) 1.8 .7 

Average 6.6 2.9 

NOTE: The numbers shown are the ratios of the MISEs for NOB and CVB to that for MBC. 
For the strongly skewed model, the CVB result is averaged over 42 of the 50 replicates, 
because in the remaining 8 instances, the cross-validated bandwidth could not be computed 
with default parameters. 

of the desire to identify genes whose activities are related in 
circumstances of interest, as well as the desire to group sam- 
ples or experimental conditions on the basis of observed gene 
expression. 

Clustering Gene Expression Data. A wide range of clus- 

tering methods have been applied to gene expression data, 
including hierarchical clustering (e.g., Weinstein et al. 1997; 
Eisen, Spellman, Brown, and Botstein 1998), self-organizing 
maps (e.g., Golub et al. 1999; Tamayo et al. 1999), graph- 
theoretic methods (e.g., Ben-Dor, Shamir, and Yakhini 1999), 
techniques related to principal components (e.g., Alter, Brown, 
and Botstein 2000; Hastie et al. 2000b; Yeung and Ruzzo 
2001), k-means (e.g., Herwig et al. 1999; Tavazoie, Hughes, 
Campbell, Cho, and Church 1999), network models (e.g., 
Michaels et al. 1998), resampling approaches (e.g., Holmes 
and Bruno 2000; van der Laan and Bryan 2000), deterministic 
annealing (Alon et al. 1999), support vector machines (Brown 
et al. 2000), and fuzzy logic (Woolf and Wang 2000). 

In many studies, both genes and samples are clustered and 
the results displayed simultaneously in colored block dia- 
grams (e.g., Perou et al. 1999; Ross et al. 2000). There are 
also explicit methods for two-way or block clustering of gene 
expression data (e.g., Lazzeroni and Owen 2000; Tibshirani, 
Hastie, Ross, Botstein, and Brown 1999). Although gene 
expression clustering software that has been made available 
tends to be applied in other studies (e.g., Chu et al. 1998; Iyer 
et al. 1999; Alizadeh et al. 2000; Ross et al. 2000; Scherf et al. 
2000 all use the method of Eisen et al. 1998), no single method 
has emerged as a method of choice even when restricted to a 
certain type of gene expression data, and new approaches are 
continuing to be proposed at a considerable pace. 

Determining the Number of Clusters. Many techniques for 
cluster analysis of gene expression data rely on graphical dis- 
play and visual inspection to determine the number of clus- 
ters (e.g., Eisen et al. 1998; Wen et al. 1998; Tamayo et al. 
1999). Some studies develop statistics from which to com- 
pare the clustering obtained when different numbers of clus- 
ters are assumed. For example, Tavazoie et al. (1999) chose 

the number of clusters by quantifying a compromise between 
overclassification to avoid missing classes and good separa- 
tion between the classes. Golub et al. (1999) used a neigh- 
borhood analysis technique for deciding whether or not a par- 
ticular gene should belong to a tentative class. In the CAST 
algorithm of Ben-Dor et al. (1999), the number of clusters 
is determined automatically, but it depends on a user-defined 
cluster-affinity parameter whose relationship to the number of 
clusters is monotonic but not transparent. 

Tibshirani, Walther, and Hastie (2000) proposed a gap 
statistic as a general method for determining the number of 
clusters. In tree harvesting for hierarchical clustering (Hastie, 
Tibshirani, Botstein, and Brown 2000a), the model size and 
hence the number of clusters is chosen by k-fold cross- 
validation. In plaid models (Lazzeroni and Owen 2000), lay- 
ers are added only if they are determined to make a signifi- 
cant contribution to the model in terms of minimizing a sum 
of squared errors; the number of clusters is effectively deter- 
mined by the number of layers added to the model. Van der 
Laan and Bryan (2000) suggested determining the number of 
clusters using the average silhouette width measure in the par- 
titioning about medoids method of Kaufman and Rouseeuw 

(1990). 

Model-Based Clustering. Recently, Yeung, Fraley, Murua, 
Raftery, and Ruzzo (2001) applied the model-based method 
of Section 5.2 to the gene clustering problem in both real 
and simulated gene expression datasets for which the clone 
groupings were known in advance. They found that unspe- 
cialized model-based clustering methods showed performance 
comparable to that of a leading heuristic alternative specif- 
ically designed for gene expression data, CAST (Ben-Dor 
et al. 1999). Moreover, model-based clustering provided a way 
of selecting the clustering model and the number of clusters. 

To apply model-based clustering to the experiment cluster- 
ing problem, the set of covariance models would have to be 
restricted, because the number of cases is typically smaller 
than the number of variables. Extension to a more general 
context would be possible, however, via Bayesian estimation 
with a proper prior (see Sec. 10.4). 

Discriminant Analysis. There is also considerable interest 
in discriminant analysis, or supervised classification, of gene 
expression data (e.g., Chu et al. 1998; Wasserman and Fickett 
1998; Golub et al. 1999; Brown et al. 2000; Ben-Dor et al. 
2000; Hastie et al. 2000a, 2000b; West et al. 2000). Dudoit, 
Fridlyand, and Speed (2000a) applied various approaches to 
cancer classification via gene expression data analysis in a 
comparative study. The methods compared included nearest- 
neighbor classifiers, LDA, and classification trees, as well as 
machine learning approaches such as bagging and boosting. 
Discriminant analysis techniques related to model-based clus- 
tering could also be applied here. 

9. MODEL-BASED CLUSTERING SOFTWARE 

The MCLUST software (Fraley and Raftery 1999), imple- 
menting model-based clustering and discriminant analysis 
as described this article, is available at http://www.stat. 
washington.edu/mclust. It is designed to interface with the 
commercial interactive software package S-PLUS. 
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Figure 10. Comparative Density Estimates for Trimodal Multivariate Normal Data. (a) Density used to generate the data; (b) density estimate 
via model-based clustering; (c) Gaussian kernel density estimate with normal optimal bandwidth; (d) Gaussian keel density estimate with cross- 
validated bandwidth. There are 250 data points, superimposed on the contours to show their location. 

Other software packages for model-based clustering include 
EMMIX (McLachlan, Peel, Basford, and Adams 1999) and 
AutoClass (Cheesman and Stutz 1995). Software for MDA 
and some of its generalizations is also available (see Hastie 
and Tibshirani 1996). An S-PLUS function implementing the 

nearest-neighbor denoising method (Byers and Raftery 1998) 
used in the example of Section 8.3 is available through StatLib 
at http://lib.stat. cmu. edu/S/nnclean. 

10. LIMITATIONS AND EXTENSIONS 

The clustering methods based on multivariate normal mix- 
ture models that we have described in this article have been 
used with success in such applications as detection of mine- 
fields and seismic faults (Dasgupta and Raftery 1998), identi- 
fication of flaws in textiles from images (Campbell et al. 1997, 
1999), and classification of astronomical data (Mukherjee 
et al. 1998). However, their practical use without modification 
can be limited for non-Gaussian, high-dimensional, or large 
datasets. 

10.1 Non-Gaussian Data 

Multivariate normal mixtures can accommodate data of 
varying structures. The component distributions are concen- 
trated around surfaces of lower dimension; for example, a 
highly linear distribution is concentrated around a line, which 
is the first principal component. Sometimes clusters are con- 
centrated around lower-dimensional manifolds that are not lin- 
ear. A non-Gaussian component can often be approximated 
by several Gaussian ones (e.g., Dasgupta and Raftery 1998; 
Fraley and Raftery 1998). For example, if one component is 
concentrated about a nonlinear curve, then it may be possi- 
ble to provide a piecewise linear approximation, which could 
be represented by several Gaussian clusters, each one con- 
centrated about a linear subspace. In the COBRA minefield 
example (Sec. 8.2), observations identified as not being mines 
were located in several groups in the model-based classifica- 
tion, whereas the true mines were confined to a single mixture 
component. An explicit approach to the problem of clusters 
concentrated around nonlinear curves rather than lines is to 
model the curves nonparametrically but smoothly using the 
concept of principal curves (Hastie and Stuetzle 1989). This 
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idea of clustering about principal curves was proposed and 
developed by Banfield and Raftery (1992) and Stanford and 
Raftery (2000). 

The model-based framework is flexible and need not be 
restricted to multivariate normal mixtures. In the example of 
cluster recovery from noisy data (Sec. 8.3), the cluster struc- 
ture was recaptured by preprocessing the data to remove some 
of the noise in the hierarchical clustering phase and adding 
a Poisson term to the mixture to model the noise in the EM 
phase. Other mixture models that have been applied in clus- 
tering and related contexts include mixtures of t distributions 
(Peel and McLachlan 2000), mixtures of trees (Meila 1999), 
mixtures of first-order Markov chains (Cadez, Heckerman, 
Meek, Smyth, and White 2000), and mixtures of distributions 
for angular data (Peel, Whitten, and McLachlan 2001). 

Mixture models for multivariate discrete data, often called 
latent class models, have been developed over a long period 
(Lazarsfeld 1950; Lazarsfeld and Henry 1968; Clogg and 
Goodman 1984; Becker and Yang 1998), and could be used for 
clustering within the framework described here. More recently, 
Chickering and Heckerman (1997) pointed out that a finite 
mixture model is a graphical Markov model with a single hid- 
den node. This has opened up the possibility of applying the 
technology of graphical models and Bayes nets to the cluster- 
ing problem, particularly for high-dimensional discrete data of 
the kind generated by, for example, tracking visits to websites. 
Handling data in which attributes or dimensions are of differ- 
ent kinds (e.g., discrete, ordinal, continuous and censored) is 
currently a major challenge for model-based clustering. 

10.2 High-Dimensional Data 

A limitation of model-based clustering with high- 
dimensional data is that the number of parameters per com- 

ponent in multivariate normal mixtures that allow orientation 
to vary between clusters grows as the square of the dimension 
of the data. Moreover, if the dimension of the data is high rel- 
ative to the number of observations, then the covariance esti- 
mates in the ellipsoidal models will often be singular, causing 
the EM algorithm to break down, although the more parsimo- 
nious models such as the spherical and diagonal models may 
still be applicable. 

When the data are of high dimension, some sort of dimen- 
sion reduction strategy is inevitable. Sometimes correlations 
or other relationships among variables are evident, so that 

selecting a subset of the variables with which to work is rel- 

atively easy, as in, for example, the COBRA minefield detec- 
tion problem of Section 8.2 or the gamma ray bursts analyzed 
by Mukherjee et al. (1998). Principal components are often 
used for dimension reduction (e.g., Smyth 2000), but in some 
instances transforming the data into principal components may 
obscure rather than reveal groupings of interest (Chang 1983). 
Recent research has found that the wavelet transform is effec- 
tive for dimension reduction in some clustering applications 
(Murtagh et al. 2000). 

Another approach to high-dimensional data is to replace 
the data by distances or dissimilarities between data points. 
This is prevalent in applications such as document clustering 
or information retrieval, where each dimension corresponds 

to a word or term that may or may not appear in the docu- 
ment. Clustering methods that are not model-based have been 
developed for this situation, and many hierarchical agglomer- 
ative methods can be adapted to this problem. Model-based 
clustering can also be combined with multidimensional scal- 
ing (e.g., DeSarbo, Howard, and Jedidi 1991). A satisfactory 
solution remains a major research challenge, although new 
model-based multidimensional scaling techniques (e.g., Oh 
and Raftery 2001) may help bring the benefits of model-based 
clustering to this setting. 

10.3 Large Datasets 

One reason for the current explosion of interest in cluster- 
ing is the desire to use it for finding patterns in very large 
datasets, sometimes called "datamining." Model-based cluster- 
ing as described in this article does not scale to large datasets 
without modification. A major limiting factor is that time- 
efficient methods for model-based hierarchical agglomeration 
have initial memory requirements proportional to the square 
of the number of groups in the initial partition, which by 
default assigns each observation to a group with a single ele- 
ment. Although in the default procedure adequate memory 
may not be available for processing large datasets, memory 
requirements can be reduced if some of the observations can 
be grouped together in advance. Posse (2001) proposed using 
the minimum spanning tree to obtain initial partitions for hier- 
archical agglomeration for large datasets. 

When the sample size is moderately large, a general and 
simple approach is to take a random sample of the data and 
then apply model-based clustering to the sample. The results 
are then extended to the full dataset using discriminant analy- 
sis, with the sample viewed as the training set, essentially bas- 
ing inference on the sample rather than on the full population. 
Banfield and Raftery (1993) applied this idea in segmenting 
an magnetic resonance image, which they cast as a problem 
of clustering the 26,000 or so nonbackground pixels in the 
image. They took an initial sample of only 500 pixels, clus- 
tered them, and then classified the remaining 25,500 pixels on 
the basis of the results. With the methodology described here, 
the discriminant analysis is straightforward; a final E step is 
applied to the remaining data to obtain conditional probabili- 
ties, using the parameter estimates derived from the sample. 

The simple sampling strategy just described may break 
down when seeking small groups in very large datasets. Small 

groups may not be represented at all in a sample, or they may 
have too few representatives to be distinguished as a cluster. 
Fayyad and Smyth (1996) considered one such instance, find- 

ing a group of about 40 quasars in a catalog of about 2 billion 
objects, which they solved by iterated sampling (see Sec. 5.3). 
The problem could also be approached a modification of the 
simple sampling method. One version of this is as follows: 

1. In the final E step from the simple sampling method, 
compute fi = maxk fk(y IOk) for each observation i in the full 
dataset. 

2. Select out the observations i such that fi is below some 
threshold, that is, those that are not well represented by any 
of the clusters identified so far. 
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3. Form a second sample, including all of the poorly repre- 
sented data points identified, together with a stratified sample 
from the clusters that have been identified (e.g., roughly equal 
numbers from each cluster). 

4. Apply model-based clustering to the new sample, and 
apply the E step to the full sample as before. A final appli- 
cation of the M step to the full sample might also be needed, 
especially to estimate the proportions Tk. These steps could be 
iterated until a stable solution is found. 

So far we have discussed difficulties with moderately large 
datasets-large enough that a set of interpoint distances cannot 
be held in memory, although the data can. Datamining is often 
concerned with even larger datasets. The computation time 
for an EM iteration, which depends only on the data dimen- 
sion when the all of the data can be easily held in memory, 
increases greatly when this is not the case. In this context, 
considerable work has been done on computational techniques 
for making the EM algorithm more efficient when applied 
to large datasets (Bradley, Fayad, and Reina 1998; Moore 
and Lee 1998; Moore 1999; Thiesson, Meek, and Heckerman 
1999). One focus is the development of "one-pass" methods, 
in which each part of the data needs to be loaded into mem- 
ory only once. However, even with memory resources and 
processor speeds large enough for handling massive datasets 
as a whole, numerical error due to finite precision arithmetic 
would remain an obstacle. This limitation favors the traditional 
approach that we have mentioned, clustering a subset of the 
data for use as a training set, and then applying a discriminant 
rule for classification. 

A number of assumptions in the mixture modeling approach 
may be at odds with the realities of massive data entities, so 
straightforward application of the simple or iterated sampling 
approach may not work well. First, it is assumed that the data 
come from a mixture model and are present in the data collec- 
tion in the appropriate proportions. Second, it is assumed that 
somehow a training set can be selected from the data in the 
correct proportions, which may be unrealistic for large out-of- 
core databases that cannot be sampled randomly. Despite these 
apparent obstacles, model-based clustering seems to be emerg- 
ing as an important component within schemes for the clas- 
sification of large datasets (Meila 1999; Smyth 2000; Cadez 
et al. 2000; Posse 2001). 

10.4 Bayesian Estimation 

In this review we have focused on frequentist estima- 
tion, mostly via maximum likelihood, for the mixture models 
underlying model-based clustering. We have found approx- 
imate Bayesian methods more useful for model selection, 
however. Some statisticians also may wish to use Bayesian 
methods for estimation, for reasons of statistical principle, or 
because informative prior information is available. 

For other statisticians, we can think of three reasons why 
they might be interested in adopting a Bayesian approach to 
estimation. The first, and probably most important from a 
practical viewpoint, is that the EM algorithm for maximiz- 
ing the likelihood can converge to degenerate solutions with 
infinite likelihood, corresponding to small and/or highly lin- 
ear clusters. This also makes it difficult to identify small clus- 
ters, especially with the more complex models. A Bayesian 

approach can alleviate this problem by effectively smoothing 
the likelihood so that its many uninteresting infinite spikes are 
removed. 

The second reason has to do with interval estimation. There 
are many ways of calculating approximate standard errors 
from the EM algorithm (e.g., McLachlan and Krishnan 1997, 
chap. 4), and they can be combined with an assumption of 
approximate normality to obtain approximate confidence inter- 
vals. However, one may want more precise estimation inter- 
vals, and these can be obtained from a Bayesian approach. 

The third reason has to do with the assessment of uncer- 
tainty in the posterior probabilities of belonging to groups. 
From the EM algorithm, it is easy to calculate approximate 
posterior probabilities conditional on the MLEs of the model 
parameters, and the error in doing this typically declines to 
zero quickly, at rate O(n-1/2). But because this ignores the 
uncertainty in the parameter estimates, it is likely to under- 
estimate the overall uncertainty and so to bias estimated pos- 
terior probabilities toward greater certainty (i.e., toward 0 or 
1), albeit to an extent that declines to zero as sample size 
increases. 

The simplest Bayesian estimation approach is to use the 
EM algorithm to find the posterior mode rather than the MLE, 
as suggested by Dempster et al. (1977). This is likely to go 
a long way toward alleviating the first and most important of 
the three problems mentioned, although it will not solve the 
other two. 

The problem of specifying the prior remains. If informa- 
tive prior information is available, then this should be used. If 
not, then it would be desirable to have an easy way of spec- 
ifying a prior. Standard reference priors do not seem to be 
directly applicable to the models considered here. A unit infor- 
mation prior, either in the form proposed for testing by Kass 
and Wasserman (1995), in the slightly different form given by 
Raftery (1995), or in a diagonal form with the off-diagonal 
elements set to zero, also may be useful for estimation as a 
kind of reference prior. Raftery (1999) argued that such priors 
can provide a reasonable approximation to the elicited prior of 
someone who knows something, but not much, about the prob- 
lem at hand. They also have the desirable property of being 
fairly flat over the part of parameter space where the likelihood 
is substantial, without being much greater elsewhere. These 
priors are proper, albeit mildly data dependent, and have the 
desirable smoothing properties mentioned earlier. 

Recently, much work has been done on Bayesian estimation 
of mixture models using MCMC. The basic idea is to com- 
pute the joint posterior distribution of the model parameters 
and the "missing data," z, defined in the same way as in the 
EM algorithm. This is typically done by Gibbs sampling or 
random walk Metropolis-Hastings, updating the components 
of the posterior distribution one at a time. Lavine and West 
(1992) were the first to do this, using Gibbs sampling and 
applying the results to clustering in the context of a mixture 
of multivariate normal distributions. They considered only the 
model with unconstrained covariance matrices. Working inde- 
pendently, Diebolt and Robert (1994) applied Gibbs sampling 
to Bayesian estimation of a one-dimensional normal mixture 
model. Bensmail et al. (1997) extended these results to the 
full range of clustering models considered here, and showed 
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how the Bayesian method can be effective when there are very 
small clusters, which would stump the frequentist approach. 

Reversible jump MCMC (Green 1995) was an impor- 
tant development and was applied to one-dimensional normal 
mixtures by Richardson and Green (1997). This allows the 
MCMC sampler to move between different models as well 
as between different parameter values, and hence to yield 
estimates of Bayes factors and posterior model probabilities 
directly. Implementing this method seems somewhat challeng- 
ing, however, and so far applying it to multivariate mixtures, 
such as those that arise in clustering, has proven difficult. 
Castelloe (1999) has succeeded in applying this approach to a 
two-dimensional model-based clustering problem with partic- 
ular constraints. 

A major difficulty with Bayesian estimation of mixtures 
in general, and MCMC implementations of it in particular, 
is the label-switching problem discussed by, for example, 
Richardson and Green (1997). This arises because one can 
switch the labeling of the mixture components without chang- 
ing the likelihood. Because there are G! labelings, it follows 
that there are G! components of the posterior distribution, 
which are identical except for the labeling if the prior is sym- 
metric with respect to labelings. This has various perverse 
consequences; for example, the posterior means of the means 
of the mixture components will all be the same. 

Various solutions to the label-switching problem have been 
proposed. Early proposals involved ordering the components 
a priori in some way (e.g., Celeux, Chaveau, and Diebolt 1996; 
Mengersen and Robert 1996; Richardson and Green 1997), but 
this does not solve the problem in general. Recent proposals to 
postprocess the MCMC output (Celeux 1998; Celeux, Hum, 
and Robert 1999; Stephens 1997, 2000) seem much more 
promising. These consist basically of clustering the MCMC 
output itself according to the apparent labeling in operation, 
then relabeling the sampled parameters so that they all corre- 
spond to the same labeling. Proposed methods for doing this 
include a k-means clustering algorithm and a transportation 
algorithm for optimization. One could imagine that applying 
model-based clustering itself to this "meta-problem" might be 
useful. 

[Received October 2000. Revised October 2001.] 
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