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Overview

▷ Theory/algorithms
▶ Potts models
▶ Transformers
▶ Topological persistence / Union-Find

▷ Protein science
▶ Analysis of Multiple Sequence Alignments (MSA)
▶ Contact predictions
▶ Generation of sequences
▶ AlphaFold and AlphaFold-DB



2024 Nobel prize in Chemistry

▶ D. Baker: For computational protein design
▶ D. Hassabie and J. Jumper: For protein structure prediction



Perspective of the lecture

▷ AlphaFold:
▶ EvoFormer: supervised inference of contacts
▶ Structure module: production of the 3D structure

▷ This lecture:
▶ Unsupervised inference of contacts: slightly less accurate . . . but explainable

• Unsupervised: sequences only, no structures

▶ Assessment of AlphaFold reconstructions



From Darwin to AlphaFold

PART 1: MSA and DCA
PART 2: AlphaFold and AlphaFold-DB
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Evolution, phylogeny, and multiple sequence alignments

Figure: Evolution and multiple sequence alignments. From [1].

▷ The PFAM database: currently > 20, 000 familes and their MSA
https://en.wikipedia.org/wiki/Pfam,
https://www.ebi.ac.uk/interpro/entry/pfam

https://en.wikipedia.org/wiki/Pfam
https://www.ebi.ac.uk/interpro/entry/pfam


Multiple Sequence Alignments

Figure: Example Multiple Sequence Alignment. From Wikipedia
https://en.wikipedia.org/wiki/Multiple_sequence_alignment.
The depth of the sequence is the number of rows.

https://en.wikipedia.org/wiki/Multiple_sequence_alignment


The 20 natural amino acids (a.a.)

Figure: The 20 natural a.a. and their properties.



Speaking the language of proteins: Alphabets

Figure: PLM and reduced a.a. alphabets. From

[2].

▷Ref: Ieremie at al, PLM meet reduces a.a. alphabets, Bioinformatics,
2024



Contacts and their prediction
▷ Example: pairs of a.a. at distance < 8Å in 5ahw/chain A

Figure: 5ahw-chainA: structure and contact prediction

▷ Contacts assessment: important parameters
▶ Sequence separation: number of residues in-between the two a.a. in contact:

short: 6-11; medium: 12-23; long: 24+; extra-long: 50+ residues.
▶ Precision at length: since the number of contacts grows linearly, prediction of

the top 10, top L/5, top L/2, top L.

▷ Usual statistics: see https://en.wikipedia.org/wiki/F-score
▶ recall: percentage of positives TP/(TP+FN)
▶ precision: fraction of true positives TP/(TP+FP)
▶ F-score: 2 (precision*recall)/(precision + recall)

https://en.wikipedia.org/wiki/F-score


Number of pairwise contact: linear in protein length

Figure: Number of contacts as a function of the protein length:
linear. From [1].

▷ Question: implication for models ?
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MSA and observables
▷ Assumptions:

▶ A sequence is denoted A = (a1, . . . , aL), or Am = (am1 , . . . , amL )

▶ Consider a database D of M protein sequences of length < L.
▶ A MSA has bee computed: in matrix form

Matrix of shape (M, L) : (ami ), i ∈ [L],m ∈ [M]

▶ MSA alphabet with q = 21 symbols: 20 for the natural amino acids and the ’-’
for blanks in the MSA.

▶ All sequences: AL – qL of them

▷ Frequency column-wise: i-th column of the MSA, frequency of a.a. a is:

fi (a) =
1
M

∑
m

δa,ami
. (1)

▷ Frequency for two columns: co-occurrence of a.a. a and b in columns i and j

fij (ab) =
1
M

∑
m

δa,ami
δb,amj

. (2)

NB: adding up frequencies for pairs Eq. (2) yields frequencies for one column Eq. (1).



Correlations: pairwise and third-order

▷ Rationale: capture correlations between pairs/triples/etc of columns

Definition 1. The a.a. pair correlation is the qL× qL matrix whose entries are
define by:

Cij (a, b) = fij (ab)− fi (a)fj (b). (3)

NB: in fact (q − 1)L× (q − 1)L, see later

Definition 2. The third-order correlation tensor is defined by:

Cijk (a, b, c) = fijk (abc)− fij (ab)fk (c) − fik (ac)fj (b) − fjk (bc)fi (a) + 2fi (a)fj (b)fk (c).
(4)

▷ Rmk. The expression of the third order correlation stems from the expansion of

C3(X , Y , Z) = E [(X − µX )(Y − µY )(Z − µZ )] . (5)



Modeling MSA: goals

▷ Goal: design a probability model for the sequences

P [a1, . . . , aL] , (6)

so that it matches the observables from Eq. 1 and 2:

Pi [a] =
∑

A∈AL|ai=a

P [A] = fi (a), (7)

Pij [ab] =
∑

A∈AL|ai=a,aj=b

P [A] = fij (ab) (8)

▷ Two main applications:
▶ Infer contacts – cf AlphaFold
▶ Sample non existing sequences – protein design
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Direct Coupling Analysis (DCA): Potts models

▷ Rationale: define an energy model for the sequences, and apply Boltzmann’s
distribution

▷ Hamiltonian: parameters
▶ h

ai
i : L× q parameters, one for each position and a.a. type.

▶ J
ai aj
ij :

(L
2

)
q2 parameters, one for each pair of positions and a.a. types.

With these, we define the following Hamiltonian of the sequence A:

H(A) = −
∑
i

h
ai
i −

∑
i<j

J
ai aj
ij (9)

NB: a linear model based on order 2 + order 4 tensors

▷ Statistical model: mimicking statistical physics

P [A] =
1
Z

exp(−H(A)), with Z =
∑

A∈AL

exp(−H(A)). (10)

▷Ref: Weight et al, PNAS 2011, [3]



DCA model: free parameters

Lemma 3. The Hamiltonian model of Eq. 9 has Lq +
(L
2

)
q2 parameters, but

L+
(L
2

)
(2q − 1) constraints.

Equivalently, the model has L(q − 1) +
(L
2

)
(q − 1)2 free parameters.

Proof. We have one constraint per position i , since

∀i :
∑
a

Pi [a] = 1.

Consider now two positions i and j, and an a.a. a. We have

∀i, ∀j, ∀a : Pi [a] =
∑
b

Pij [ab]

This yields L(L− 1)q =
(
L
2

)
2q constraints. However, the constraints when a = b have been counted

twice, and we need to return
(
L
2

)
degrees of freedom.

Therefore, the number of constraints is
(
L
2

)
(2q − 1).

Equivalently, the model has L(q − 1) +
(
L
2

)
(q − 1)2 free parameters. □

The dependent parameters are set as follows [3]:

Jaqij = Jqaij = hqi = 0. (11)



DCA model: applications

▷ Sequence generation:
▶ MCMC sampling with Metropolis-Hastings. Move set: changing one a.a. at a

time.

▷ Contact prediction:

Definition 4. Using the order four tensor, the contact strength between positions i
and j is given the following Frobenius norm:

Ĉij =
∥∥∥J··ij ∥∥∥

F
(12)

▷ Top contacts: sort contacts by decreasing Ĉij , and compute the usual stats
(precision, recall, F1, etc)



Properties and learning

▷ Derivatives: easily computed using the linearity in the Hamiltonian

Lemma 5.
∂ logZ

∂hai
= Pi [a] (13)

∂2logZ

∂hai ∂h
a
i

= Pij [ab]− Pi [a]Pj [b] . (14)

▷ Learning: based on pseudo-likelihood – omitted
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Auto-regressive DCA model: arDCA
▷ Rationale: walk along the sequence

▷ For a given i , the prefix in the sequence:

(a1, . . . , ai−1) = ai−1. (15)

With Bayes formula

P [a1, . . . , aL] = P [a1]P [a2 | ai ] . . .P
[
aL | aL−1

]
(16)

The auto-regressive term aims at predicting the symbol ai . We compute it as follows:

P
[
ai | ai−1

]
=

exp(h
ai
i +

∑
j=1,...,i−1 J

ai aj
ij )

zi (a
a
i−1, . . . , a

a
1)

, (17)

with
zi (a

a
i−1, . . . , a

a
1) =

∑
ai

exp(h
ai
i +

∑
j=1,...,i−1

J
ai aj
ij ) (18)

NB: the expression involves 1 + i − 1 parameters which are specific to position i ,
namely h

ai
i and J

ai aj
ij .

1 2 2 i− 1 i

J1,i(a1, ai)

J1,i(ai−1, ai)

Figure: Auto-regressive model
to predict ai .

The prediction of ai involves
1 + i − 1 = i parameters. From [4].
See also [5]
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Attention and weighted sums

Consider a n × d matrix P = [v1, . . . , vn]
T of n vectors vi in Rd .

The product of P and its transpose yields the covariance matrix and the Gram matrix:{
C = PTP = (Cij )–shape (d , d)

G = PPT = (⟨vi , vj ⟩)–shape (n, n).
(19)

Consider the following transformation, which takes a weighted sum of all vectors,
weighted by the soft max of the dot products:

v
′
i =

∑
j

exp(−⟨vi , vj ⟩)vj∑
j exp(−⟨vi , vj ⟩)

. (20)

For the n vectors, this transformation reads as follows in matrix form:

P′ = softmaxr (−PPT)P. (21)

This is the weighted sum implemented by transformers and attention mechanisms.
Note that here, the soft max is taken row-wise, whence the subscript.



Attention: single head

▷ Attention: with data are vectors of shape (1, dm), weights matrices WQ ,WK ,WV

Data Projection matrix Result
Queries X : n × dm WQ : dm × dk Q = XWQ : n × dk
Keys WK : dm × dk K = XWK : n × dk

Values WV : dm × dv V = XWV : n × dv

▷ Single head attention. The attention mechanisms consider three projection
matrices (to be learned), yielding the so-called Query, Key, and Value matrices:

Query:Q = XWQ , Key:K = XWK , Value:V = XWV . (22)

▷ Attention score matrix: the n × n matrix coding the attention each token has for
every other token:

QKT. (23)

▷ Sparsifying and rescaling with softmaxr : yields the final embedding i.e. a matrix of
shape n × dv

softmaxr (
QKT
√
dk

)V. (24)

NB: dimension-wise: (n × dk )(dk × n)(n × dv ) = (n × dv ).



Q vs WQ, etc: example

▷ Consider a MSA: size (M, L)

▷ Position i of the sequence x : two types of attributes:
▶ sequence info: the a.a. type,
▶ position info: some positional information, e.g. the secondary structure type, or

a vector encoding biophysical properties.

Assume that both encodings are represented as vector of Rdm , we obtain:

x
′
i = Eseq + Epos.

Then, the matrix Q is obtained as Q = X ′WQ , with X ′ = x
′
1, . . . , x

′
m

T
.

▷Ref: Example from [1]



Attention: multiple heads

▷ Using H attention heads: with dimensions dk = dv = dm/h

▶ Each individual head computes

softmaxr (hQhK
T
) hV. (25)

▶ Concatenating the H outputs yields a matrix of shape n × dm.
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Factored attention: rationale

▷ DCA limitations: model size L(q − 1) +
(L
2

)
(q − 1)2 is suboptimal in two respects:

▶ Two pairs of a.a. with identical properties yield two terms which will be alike
Recall that charged interactions correspond to: { (R) arginine, (K) lysine, (H)
histidine } × { (D) aspactic acid, (E) glutamic acid}.
Therefore, we expect:

JDR
ij ≡ JEKij

▶ In a protein, the number of contacts is linear and not quadratic in the protein
length [6].

Problem 6. Define a Hamiltonian subquadratic in size, ideally linear, exploiting
universal properties of a.a. types.



Factored attention: model
▷ Simplification 1 wrt DCA: focus on pairwise interactions, discard the terms h

ai
i

▷ With head-size d (hyper-parameter): consider
▶ WQ : L× d matrix, position dependent,
▶ WK : L× d matrix, position dependent,
▶ WV : q × q matrix, depending on a.a. properties.

▷ Coupling term: expression

J
ai aj
ij = symmetrized(softmaxr (WQWK

T))ijWV (ai , aj ). (26)

▷ Comments are in order:
▶ The previous eq. decouples positions and a.a. properties
▶ The L× L matrix WQWK

T: self attention for pairs of a.a.
▶ Model size: 2dL+ q2 instead of O(L2q2) for a classical DCA model.
▶ The matrix WV encodes pairwise interactions between a.a. types.

▷ With multiple heads:

J
ai aj
ij =

∑
h

symmetrized(softmaxr (WQh
WKh

T))ijWVh
[ai , aj ]. (27)



Factored attention: model sizes

Figure: fig18 Models’ sizes: Pott’s models versus transformers, for
head size d = 18. Potts requires a total of 12 billion parameters to
model all 748 families. Factored attention with 256 heads and head size
32 has 3.2 billion parameters; lowering to 128 heads reduces this to 790
million. Half of this reduction comes from 107 families of length greater
than 400. ProtBERT-BFD is the most efficient, with 420 million
parameters. From [1].



Factored attention: results (I)



Factored attention: results (II)

Figure: fig13 Performance as a function of the number of heads.
From [1].



Factored attention: results (III)

Figure: fig5 Incidence of the number of heads on precision. (Left)
Impact of the number of heads on precision at L/5. NB: one point per
MSA/protein family. (Right) Sharp decline with fewer than 32 heads.
From [1].



From Darwin to AlphaFold

Multiple sequence alignments and protein contacts

MSA: observables and models

Direct Coupling Analysis

The auto-regressive DCA model: arDCA

Attention and transformers

Coupling analysis with factored attention

Coupling analysis with tied attention: MSA transformer



MSA transformer: rationale
▷ Axial attention for a MSA of size M × L:

▶ Row based: yields size O(ML2)
▶ Column based: yields size O(LM2)

▷ MSA transformer:
▶ aggregate information across sequences / lines of the MSA
▶ constrains the contact structure

Figure: Axial attention versus tied
attention. From [7].

▷ Tied attention for rows:

M∑
m=1

QmKm
T

λ(M, d)
, (28)

NB: MSA transformer block
▶ Row then column attention

▶ Model size: O(L2).
▶ The std

√
d normalization is replaced by:

• λ(M, d) = M
√
d or λ(M, d) =

√
Md – used in practice.



MSA transformer: results (I)

Figure: fig2 Top-L long-range contact prediction – higher is better.
The MSA transformer performs well with low depth. From [7].

Table: Unsupervised prediction of contacts.



MSA transformer: results (II)
▶ Pott model: uses the covariance information in the MSA
▶ PLM: uses patterns in the sequence

▷ Braking both inference models:
▶ Covariance ablation: random permutation within a MSA column; preserves the

a.a. frequencies, but brakes correlations.
▶ Sequence patterns ablation: permute columns in the MSA; covariance

information between pairs of columns preserved, but scrambled sequences.

Figure: fig6 Learning modes: covariance of sequence patterns Left:
one example. Right: results binned per MSA depth. Potts breaks with
the covariance ablation; EMS break with sequence position ablation.
From [7].



MSA transformer vs DCA models: third order correlations

▷ Protocol:
▶ Sample sequences using MSA transformer and DCA
▶ Compare statistics against those of PFAM families

▷ NB: higher order correlations better captured

▷Ref: Sgarbossa et al, eLife 2023; [8]
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Topological invariants: Betti numbers

▷ Torus / doughnut / inner tube: β0 = 1, β1 = 2, β2 = 1

▷ Euler characteristic:
χ =

∑
i

(−1)iβi . (29)



What we see/like is stable – at certain scale

▷ Clustering: how many clusters ?

A plausible number of clusters corresponds to a plateau ⇒ connected components
maintained with the Union-Find algorithm



The Union-Find problem
▷ Connected components of a graph:

▶ Static graph: run a depth first search algorithm
▶ Dynamic graph: Union-Find

Problem 7. Consider a dynamics graph into which nodes and edges are being
added. Problem: maintain the connected components over time.
The principles behind Union-Find are pretty simple (Fig. ??):

1. Represent a c.c. by a rooted tree: the leader of the c.c. is the node of the tree.
2. Find : find the leader of a node
3. Union : union 2 components

▷ Union-Find example:
a

b

c

d

e

a

b

c

d

e

a

b
c

d

e

a

b
c

d

e

Forest after the Find operations Forest after the Union operation

Graph Its representations as a forest of trees

Connecting two nodes i and j yields the merge of their connected components. The
c.c. are represented by trees, whose structure changes over the operations.



Union-Find: heuristics

▷ UF.find uses path compression:
▶ Action: find uses path compression: any node on the path from the query to the

root (leader) is attached to the root.
▶ (Rationale) Path compression useful for future queries – amortized analysis.

▷ UF.union uses Union-by-rank:
▶ Action: the tree with largest rank remains the leader.
▶ Rationale: keep trees shallow.

a

b

c

d

a

b

c
a b c

d
a, rank(a) b, rank(b)

rank(a) = rank(b)

rank(a) < rank(b)

a, rank(a) b, rank(b)

b, rank(b) + 1

b, rank(b)

Path compression Union by rank



Union-Find: complexity

Definition 8. The Ackermann function is defined by:

A(1, j) = 2j , j ≥ 1

A(i , 1) = A(i − 1, 2), i ≥ 2

A(i , j) = A(i − 1,A(i , j − 1)), i , j ≥ 2

Its inverse is defined by

α(m, n) = min{i ≥ 1 : A(i , ⌊m/n⌋ > log n}

▶ For n fixed, α(m, n) is decreasing in m

▶ α(m, n) is ≤ 5 for all practical purposes

Theorem 9. A sequence of m union-find operations on a n elements set has
complexity O(mα(m, n))

▷Ref: Tarjan, Data structures and network algorithms, SIAM, 1983
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AlphaFold predictions at a glance:
Towards a coherent perspective on

packing properties, pLDDT values, and IDPs/IDRs

AF-Q8NEL0-F1

AF-Q8IWJ2-F1

AF-P0DJD3-F1

AF-Q9H1Q7-F1 AF-O95219-F1 AF-P57730-F1-v4

F. Cazals, E. Sarti, Centre Inria at Université Côte d’Azur, France



Databases of protein models: AlphaFold-DB

▷ Goal: provided AlphaFold predictions for all known sequences

https://alphafold.ebi.ac.uk/

▷ Selected quotes:
▶ “One of the Biggest Problems in Biology Has Finally Been Solved”, Scientific

American, 2022 https://www.scientificamerican.com/article/
one-of-the-biggest-problems-in-biology-has-finally-been-solved/

▶ “. . . over 200 million protein structure predictions to accelerate scientific
research.”

▷Ref: Jumper et al, Nature, 2021
▷Ref: Varadi et al, NAR, 2021

https://alphafold.ebi.ac.uk/
https://www.scientificamerican.com/article/one-of-the-biggest-problems-in-biology-has-finally-been-solved/
https://www.scientificamerican.com/article/one-of-the-biggest-problems-in-biology-has-finally-been-solved/


Intrinsically Disordered Regions / Proteins: metaphors

▶ (A) singleton: rocks
▶ (B) pair: +noodles
▶ (C) triplet: + molten globules
▶ (D) quartet: + native coil
▶ (E) continuum !

▷Ref: Uversky, Unusual biophysics of intrinsically disordered proteins,
2013



Intrinsically Disordered Regions / Proteins:
energy landscapes and functions

▷Ref: Uversky, Unusual biophysics of intrinsically disordered proteins,
2013



AlphaFold-DB: Helping sorting the wheat from the chaff

AF-Q8NEL0-F1

AF-Q8IWJ2-F1

AF-P0DJD3-F1

AF-Q9H1Q7-F1 AF-O95219-F1 AF-P57730-F1-v4

▷Ref: Uversky, Unusual biophysics of intrinsically disordered proteins,
2013
▷Ref: Cazals and Sarti,
https://www.biorxiv.org/content/10.1101/2024.11.16.623929v4, 2025

https://www.biorxiv.org/content/10.1101/2024.11.16.623929v4


Assessing AlphaFold models: main goals

▷ AlphaFold predictions: contacts, domains, whole structures
▶ Methods:

• Unsupervised methods: DCA, MSA transformers
• Supervised: EvoFormer

▶ Our analysis on AlphaFold-DB:
• (Q1) Structures: whole genome analysis and clustering
• (Q2) Domains: high quality vs hallucinations

▷ pLDDT values and order/disorder:
▶ Methods:

• Intrinsically disordered proteins/regions, IDRs and functions
▶ Our analysis on AlphaFold-DB:

• (Q3) pLDDT versus (IDRs / IDPs): true/false positives?
• (Q4) Coherence of pLDDT values along the chain, fragmentation



pLDDT values on whole genomes

▷ pLDDT ranges: 100 very high 90 high 70 low 50 very low 0

EXple 1: H. Sapiens

Exple 2: P. Falciparum

genome / pLDDT 50 70 90
AThaliana/all 0.204 0.315 0.550
CAlbicans/all 0.213 0.312 0.570
CElegans/all 0.202 0.323 0.597
DDiscoideum/all 0.288 0.423 0.681
DMelanogaster/all 0.281 0.387 0.623
DRerio/all 0.246 0.343 0.593
EColi/all 0.029 0.078 0.275
GMax/all 0.217 0.338 0.577
HSapiens/all 0.284 0.382 0.666
MJannaschii/all 0.035 0.084 0.264
MMusculus/all 0.255 0.352 0.597
OryzaSativa/all 0.257 0.408 0.623
RattusNorvegicus/all 0.253 0.351 0.596
SCerevisiae/all 0.213 0.314 0.582
SPombe/all 0.187 0.289 0.558
ZeaMays/all 0.260 0.394 0.635
SAureus/all 0.045 0.096 0.295
HPylori/all 0.053 0.123 0.347
MTuberculosis/all 0.069 0.133 0.322
Aeruginosa/all 0.036 0.086 0.278
PFalciparum/all 0.460 0.584 0.804



pLDDT distributions per genome: illustrations
▷ H. Sapiens:

pLDDT all pLDDT median pLDDT mean
▷ P. Falciparum (cf Malaria):

pLDDT all pLDDT median pLDDT mean



Assessing contacts: arity and arity signature

Definition 10. arity of a Cα: # neighboring Cαs within distance range r(= 10Å).

▷ For a polypeptide chain, consider:
▶ La = {an, . . . , an}: arities of the n Cα carbons;
▶ LA = [A1, . . . ,Am]: unique arities sorted by increasing value,
▶ CDFCα

: arity CDF – on sorted unique arities in LA.

Definition 11. (Arity signature Sig.Cα
(P) of a polypeptide chain P.)

▶ PK = {p1, . . . , pK} of increasing percentiles.

Let arity_Cα(pk ): smallest arity Aj such that the CDF is ≥ pk :

arity_Cα(pk ) = CDF−1
Cα

(pk )
Def
= argmin

j
CDFCα

(Aj ) ≥ pk . (30)

Cα signature: Sig.Cα
(P) = {arity_Cα(p1), . . . , arity_Cα(pK )}.

▷ NB: with {q1 = 0.25, q2 = 0.75}: the two arity values required to gather 25% and
75% percent of the number of amino acids in the chain.



Arity distribution and arity signature: prototypical folds

Fold α Globin, 154 a.a.

Fold β Propeller, 350 a.a.

▶ Fold α: 101m-globin-alpha; 154 amino acids. Quantile-arity signature [(0.25,
14), (0.5, 17), (0.75, 20)]

▶ Fold β: 1erj-propeller-beta; 350 amino acids. Quantile-arity signature [(0.25,
16), (0.5, 20), (0.75, 25)]



Filtrations Gu of the primary structure
▷ Primary structure: modeled as a path graph with n nodes/a.a. and n − 1 edges

▷ Filtration: sequence of nested topological subspaces – subgraphs in our case:
▶ Smallest subspace: ∅
▶ Largest subspace: whole path graph i.e. primary structure

▷ Construction of a filtration: each amino acid (vertex) is equipped with a real value
u, and a.a. are inserted incrementally

Definition 12. Filtration Gu : sequence of nested subgraphs obtained by inserting
a.a. by increasing value of u.

▶ u = −∞ : Gu = ∅; u = ∞ : Gu = whole polypeptide chain
▶ The num. of c.c. at each value of u is denoted ν = Ncc(u), with ν ∈ [1, ⌈n/2⌉].

a1 a2 a3

a.a. insertion and reduction of the number of c.c.

▷Ref: R. Tarjan, Data structures and network algorithm, SIAM, 1983



Arity based filtration Garity

Definition 13. (Arity filtration Garity) Filtration obtained using as parameter the
arity of a Cα.

▷ Algorithm: batch processing to handle at Cα with a given arity at once

procedure Build_arity_filtration({ai}i=1,...,n)
Compute all individual arities
Compute the the sorted list L = [A1, . . . , Am ] of unique arities
for Ai ∈ L do

for cj ∈ A−1
Cα

(Ai ) do

UF.make_set(cj )
if j > 1 and cj−1 exists in the UF data structure: UF.union(cj , cj−1)
if j < n and cj+1 exists in the UF data structure: UF.union(cj , cj+1)

end for
cci ← UF.num_cc
nni ← UF.num_nodes

end for
return {(cci , nni )} and the associated persistence diagram

end procedure



pLDDT based filtration GpLDDT

Definition 14. (pLDDT filtration Garity) Filtration obtained using as parameter
u = −pLDDT values.

NB: increasing the a.a. by increasing −pLDDT values: high confidence first

▷ Algorithm: standard Union-Find

procedure Build_path_graph_filtration([(j, uj )]i=1,...,n)
Form the list [(j, uj )], j = 1, . . . , n, for the n amino acids
Let L be this sorted list ascending uj values
for (j, uj ) ∈ L do

UF.make_set(cj )
if j > 1 and cj−1 exists in the UF data structure: UF.union(cj , cj−1)
if j < n and cj+1 exists in the UF data structure: UF.union(cj , cj+1)
ccj ← UF.num_cc
nnj ← nnj + 1

end for
return {(cci , nni )} and the associated persistence diagram

end procedure
Union-Find on the polypeptide chain and filtration Gu . Particular case: using pLDDT as value for the
parameter u yields the filtration GpLDDT.



Filtration GpLDDT: null model using u = pLDDT

▷ Rationale: what is the coherence of pLDDT values along the polypeptide chain?

▷ Two illustrations:

▶ Left: n = 1000 a.a. with random pLDDT values in[0, 100];
▶ Right: the first (resp. last) 500 a.a. with random pLDDT values in in [0, 49] (resp. [50, 100]).
▶ (Top row) Blue curve: function Ncc(pLDDT); red curve: fraction of amino acids.
▶ (Bottom row) persistence diagrams.

▷ Conjecture. For a n-nodes graph/path, the expectation of the maximum of the number of connected
components yielded by the incremental construction is equal to n/4.



Filtration Gu: persistence diagram
▶ Persistence diagram: one point per connected component. Persistence of ci

pG(ci ) = deathG(ci )− birthG(ci )

▶ Persistence diagram (PD): P = {c1 = (b1, d1), . . . , cm = (bm, dm)}
▶ Critical points with persistence > 0: fraction of positive c.p.:

f +cp = m′/m.

▶ The normalized persistence entropy – assuming a finite set of values P:

Hp = −
∑
pi∈P

P [pi ] log P [pi ] / log|P|. (31)

n = 500 + 500 n = 1000



Filtration Gu: persistent maximma of the function ν = Ncc(u)

▷ Goal: find the salient salient /
persistent local maxima of the
function Ncc(u).

▷ Algorithm sketch to process Ncc(u):
▶ Filtration on the filtration Hν associated with super-level sets N−1

cc ([ν, ⌈n/2⌉).
NB: H indicates that the filtration is on the height function Ncc(u).

▶ Persistence of a local maximum: elevation drop leading to a saddle point also
connected to a more elevated local maximum

pH(ci ) = deathH(ci )− birthH(ci )

▶ Simplification of Ncc(u): uses the Morse-Smale-Witten chain complex to
iteratively cancel pairs of critical points

▶ Result: PLM(tν) the number of persistent local maxima of Ncc(u) at
persistence threshold tν .
NB: in practice, with a relative threshold tp ∈ (0, 1): tν = n ∗ tp

▷Ref: Cazals and Cohen-Steiner, Reconstructing 3D compact sets, CGTA,
2011



Arity map of a collection of structures
the example of H. Sapiens

▷ Rationale: for a collection of structures, perform dimensionality reduction +
clustering at once

Definition 15. Given two quantiles q1(= 0.25) and q2(= 0.75), the arity map is
the map whose x and y axis are the arities at q1 and q2. A bin/cell of the map hosts
all structures with a prescribed arity signature.

AF-Q8NEL0-F1

AF-Q8IWJ2-F1

AF-P0DJD3-F1

AF-Q9H1Q7-F1 AF-O95219-F1 AF-P57730-F1-v4



Arity map of HSapiens: clustering in a cell

(A)

(B)

(C)

(D)

H. Sapiens: hierarchical clustering of the 558 structures in the 7x13 cell of the arity map, with three
random structures from every cluster.



Q2. Predicted domains and their quality

▷ ECOD: hierarchical classification of protein domains
▶ Top level: close to CATH
▶ Enriched with AlphaFold predictions: high and low quality domains

▷ H. Sapiens: arity map of the human proteome vs ECOD domain enrichment in
human proteins

(A) (B) (C)

The upper triangle always reports the human proteome arity map for reference. (A)
Number of unique ECOD H-groups for each arity signature. (B) Enrichment difference
(with respect to the proteome) of unique ECOD H-groups. (C) Enrichment difference
(with respect to the proteome) of non-redundant ECOD low-confidence domains.



Q3. Predictions and intrinsically disordered proteins/regions
▷ H. Sapiens: arity map discriminates IDRs: False positives and False negatives

(A) (B)

▶ (A) DisProt analysis on 266 target proteins lacking structural data. The
size of the red crosses over the arity map indicates the fraction of amino acids
incorrectly predicted as disordered–pLDDT < 50% but lacking a disorder
annotation in DisProt.

▶ (B) AIUPred analysis. IDRs on the whole human genome, and for each protein,
computation of the number of residues characterized by pLDDT ≥ 0.5 and a
disorder score of > 0.5 according to AIUPred The triangle delimited by
([6, 8], [6, 13], [12, 13]) is enriched in predicted structures not clearly recognized
by AlphaFold.



Q4. pLDDT values and fragmentation of AlphaFold reconstructions
▷ HSapiens predictions and GpLDDT: regular and random structures

Persistence entropy Hp and fraction of positive critical points (FPCP) f +cp : illustrations
for HSapiens, with structures achieving the minimum and maximum Hp values.



Q4. pLDDT values and fragmentation of AlphaFold reconstructions
▷ Fragmentation of HSapiens predictions: using GpLDDT, large Hp + large number of
local maxima Ncc(pLDDT)

(A) (B; AF-P12111-F4-model-v4)

(C; AF-Q6V9R5-F1-model-v4) (D; AF-Q9H342-F1-model-v4)

(A) Scatter plot with protein size × persistence entropy Hp × fraction of positive
critical points f +cp . (B, C, D) For HSapiens, at persistence threshold tp = 0.025, 86
structures are characterized by Hp ≥ 0.25,#a.a. ≥ 200,PLM ≥ 3. Three of them are
displayed.



AlphaFold and AlphaFold-DB: take home messages

▶ Excellent structures, with high pLDDT all over
▶ But a whole zoo, with a number of hallucinations
▶ With respect to IDPs/IDRs: both false positives and false negatives

▷Ref: Cazals and Sarti,
https://www.biorxiv.org/content/10.1101/2024.11.16.623929v4, 2025

https://www.biorxiv.org/content/10.1101/2024.11.16.623929v4
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