ALGORITHMS AND LLEARNING FOR PROTEIN
SCIENCE

Lecture 6: Nearest neighbors in high dimensional spaces:
algorithms and significance

Frederic.CazalsQinria.fr



Overview

> Theory/algorithms

» Data structures to report nearest neighbors: kd-trees, random project trees,
metric trees

» Performance analysis

> (Distance) concentration phenomena

> Structural bioinformatics
» Lecture 3: Exploring conformational spaces

» Lecture 4: Structural comparisons



Algorithms

PART 1:  Nearest neighbors: data structures
PART 2:  Nearest neighbors: analysis
PART 3:  Concentration phenomena: introduction



Algorithms

Introduction



Applications

> A core problem in the following applications:
» clustering, k-means algorithms
information retrieval in databases
information theory : vector quantization encoding

>
>
» classification in learning theory
>



Nearest Neighbors: Getting Started

> Input: a set of points (aka sites) P in R?, a query point g

> Output:  nn(q, P), the point of P nearest to gq

d(q,P)=d(q,nn(q,P)).

nn(q)

(1)



The Euclidean Voronoi Diagram
and its Dual the Delaunay Triangulation

> Voronoi and Delaunay diagrams

> Key properties:
» Voronoi cells of all dimensions
» Voronoi - Delaunay via the nerve construction
» Duality : cells of dim. d — k vs cells of dimension k
» The empty ball property




Nearest Neighbors Using Voronoi Diagrams

> Nearest neighbor by walking
- start from any point p € P
- while 3 a neighbor n(p) of p in
Vor(P)
closer to g than p,
step to it: p = n(p)
- done nn(q) = p

> Argument:  the Delaunay neighborhood of a point is complete
Vor(p, P)= cell of p in Vor(P)
N(p) = set of neighbors of p in Vor(P)
N'(p) = {p}UN(p)
Vor(p, N'(p)) = Vor(p, P)

> Exercise:  specify the algorithm using DT



The Nearest Neighbors Problem: Overview

> Strategy: prepocess point set P of n points in R into a data
structure (DS) for fast nearest neighbor queries answer.

> ldeal wish list:
» The DS should have linear size
» A query should have sub-linear complexity i.e. o(n)

» When d = 1: balanced binary search trees yield O(log n)

> Core difficulties:

» Curse of dimensionality in RY: for high d, it is difficult to
outperform the linear scan

» Interpretation: meaningfull-ness of distances in high dimensional
spaces — distance concentration phenomena.



The Nearest Neighbors Problem: Elementary Options

> The trivial solution :
O(dn) space, O(dn) query time

> Voronoi diagram

d =2, O(n) space O(log n) query time
d>2 0 (nf%W) space

— Under locally uniform condition on point distribution
the 1-skeleton Delaunay hierarchy achieves :
O(n) space, O(c?log n) expected query time.

> Spatial partitions based on trees



The Nearest Neighbors Problem: Variants

> Variants:
» k-nearest neighbors: find the k points in P that are nearest to g
» given r > 0, find the points in P at distance less than r from g
» Various metrics
> [, L, Ly
» String: Hamming distance

> Images, graphs: distance based on optimal transportation
» Point sets: distances via optimal alignment

» Non metric spaces — cf metric trees
> Main contenders in metric spaces:
» Tree like data structures:

» quad-trees — and its variant ANN
» (randomized) kd-trees
P k-means trees — partition derived from k-means with k=2

» Locally Sensitive Hashing



Comparison and appetizer: setup

> Contenders: various hierarchical methods for approximate NN

» randomized kd-trees: hierarchical partition with split direction chosen at
random

» k-means trees: hierarchical partition with split direction derived from
k-means

> Approximate Nearest Neighbors (ANN)
» Locally Sensitive Hashing (LSH)

> Assessment for the accuracy of the approximation: precision i.e. fraction of
queries for which the correct NN is found

> Two main questions addressed:
» Question 1: for a fixed database, which algorithm is best?
» Question 2: are the performances stable when the size of the DB

changes?

>Ref: Muja and Lowe, VISAPP 2009
>Ref: 0’Hara and Draper, Applications of Computer Vision (WACV), 2013



Main Contenders: Typical Results for Approximate NN
> DB used : Scale-Invariant Feature Transform (SIFT) for images: {(x;,yi,oi)}

> Question 1: best algorithm > Question 2 — for winners only
i.e. for rand. kd-trees and k-means
trees

+:[—6—k-means tree - sift 100K
;| —v—rand. kd-trees - sift 100K]
{| —=— ANN - sift 100K

—o— LSH - sift 100K

—#+— k-means iree - sift 31M
—w— rand. kd-lrees - sift 31M
—o— k-means tree — sift M
100 || = rand. kd-trees - sitt 1n
—&—k-means tree — sift 100K
—%—rand. kd-trees - sift 100K

%0 100 50 50

Speedup over inear search
Speedup over linear search

70 80 90 100
Correct neighbors (%)

(@) (b)

70 80
Gorrect neighbors. (%)

> Take-home messages:
» Randomized kd-trees and k-means trees win
» splits must exploit the variance in the dataset

» Speed-ups consistent when DB size increases

>Ref: Muja and Lowe, VISAPP 2009
>Ref: O0’Hara and Draper, Applications of Computer Vision (WACV), -2013



Algorithms

kd-trees and basic search algorithms



kd-tree for a collection of points (sites) P

> Definition:

>
>

A binary tree

Any internal node implements a spatial partition induced by a hyperplane
H, splitting the point cloud into two equal subsets

» right subtree: points p on one side of H
P left subtree: remaining points

The process halts when a node contains < np points

3 Nb: the point realizing the median
° ° | is stored in the node performing the

split




kd-tree for a collection of points P

procedure build kdTree((S))

n < newNode

if | S |< ng then

Store the point of S into a container of n

return n

. else

dir = depth mod d

Project the points of S along direction dir
Compute the median m

. > Split into two equal subsets

n.sample <— sample v realizing the median

L + point from S\{v} whose dirth coord is < m
R < point from S\{v} whose dirth coord is > m
n.left < build_kdTree(L)

n.right < build_kdTree(R)

return n




kd-tree: search

> Main considerations:
» Exact versus approximate NN

» No free lunch: complexity matters

> Three main search strategies:

> (Approx.) the defeatist search: simple, but may fail
(Nb: see later, distance concentration phenomema)

> (Exact) the descending search: always succeeds, but may take time

> (Exact) the priority search: strikes a compromise between the defeatist
and descending strategies



kd-tree search: the defeatist search

> Key idea: recursively visit the subtree containing the query point

procedure DEFEATIEST_SEARCH(q)
> Maintains nn(q) of q, and 7 = d(q, nn(q))
n « root; T + d(q, n.sample)
while n # NIL do
Possibly update nn(q) using n.sample, and 7
> Left subtree only
if g € Domain of L then
| defeatist_search_kdTree(n.left)
> Right subtree only
if g € Domain of R then
| defeatist_search_kdTree(n.right)

> Complexity: assuming leaves of size ng — depth satisfies 2" ng = n

» search cost: O(ng + log(n/ng))

> Caveat: failure




kd-tree search: the exhaustive descending search

> Key idea: visit one or two subtree, depending on the distance d(gq, nn(q))

procedure DESCENDING_SEARCH_KDTREE(q)
> Maintains nn(q) of q, and T = d(q, nn(q)
> Uses the domain of a node n
n < root
7 < d(q, n.sample)
while n # NIL do
Possibly update nn(q) using n.sample
if Sphere(q, ) N Domain of L then
| descending_search_kdTree(n.left)
if Sphere(q, ™) N Domain of R then
| descending_search_kdTree(n.right)

> Complexity: 7




kd-tree search: the priority search

> Challenge: report the exact NN, while visiting as few nodes as possible.

> Priority search, key ideas:

> Uses a priority queue to store nodes (regions), with a priority inversely
proportional to the distance to q.

» Upon popping a node, the corresponding subtree is descended to visit the node
closest to g. Upon descending, nn(q) is updated.

» While descending, the child not visited is possibly enqueued,



kd-tree search: priority search (algorithm)

> Uses a priority queue @ to enumerate nodes by increasing distance to query g

NB: Enquing

procedure PRIORIRY_SEARCH(q)

crite

> Maintains nn(q) of q, and 7 = d(q, nn(q) <
nn(q) < root.sample

Q.insert(root)

while True do

if Q.empty() then

L return

r < Q.pop() > Node with highest priority
> The nearest box is too far wrt nn(q) <
if d(bbox(r),q) > T then

L return

> Descend into box nearest to q (or contain-

ing q) and possibly enqueue the 2nd node <
for Nodes n on the path from r to the box
nearest to g (or containing q) do

> One subtree: rocessed for sure q
d <+ d(q, n.sample)

if d < 7 then

| nn(q) <+ n.sample; T+ d

> Second subtree: possibly enqueued N

f < brother of n
if d(bbox(f),q) < T then
| Q.insert(f,1/d)

> Priority: 1/d

ion can be adapted to report an (1 + €) approx. of the exact NN

Box of current node r

Visited

Enqueud with
priority 1/d




kd-tree search: priority search (analysis)

> Pros and cons:
» + nn always found

+ linear storage

| 4
» — nn often found at an early stage ... then time spent in useless recursion
» — In the worst-case, all nodes are visited.

| 4

— Maintaining the priority queue Q has a cost

> Variants and improvements:

v

Initially the Q with all nodes from root to leaf containing the query
» Stopping the recursion once a fraction of nodes has been visited

» Backing up defeatist search with overlapping cells
>

Combining multiple randomized kd-trees



References

Sam06 H. Samet. Foundations of multidimensional and metric data structures.
Morgan Kaufmann, 2006.

SDEO5 G. Shakhnarovich, T. Darrell, and P. Indyk (Eds). Nearest-Neighbors
Methods in Learning and Vision. Theory and Practice. MIT press, 2005.



Algorithms

kd-trees and random projection trees: improved search algorithms



Improvements aiming at fixing the defeatist search

> Defeatist search: (early) choice of one side is risky

> Simple improvements:
» Use several trees, and pick the best neighbor(s)

» Allow overlap between cells in a node: selected points stored twice —
spill trees

» Use randomization to obtain different partitions rescuing the defeatist
search

» different permutations of coordinate axis
» directions aiming at maximizing the variance

» Next: randomization captures information on directions carrying variance



Random projection trees (RPTrees)
Aka Random partition trees (RPTrees!)
> kd-tree: axis parallel splits

> Splitting along a random direction U € S?7*: project onto U and split at
the (perturbed) median

> Resulting spatial partition




Random projection trees: generic algorithm with jitter

> Below: version where one also jitters the median defining the split

procedure BUILD_RPTREE(S)
if If |S| < ng then

n < newNode
L Store S into n

return n
Pick U uniformly at random from the unit sphere
Pick 8 uniformly at random from [1/4,3/4]
Let v be the B-fractile point on the projection of S onto U
Rule(x) = (left if (x, U) < v, otherwise right)
left_tree < build_RPTree({x € S : Rule(x) = left})
right_tree < build_RPTree({x € S : Rule(x) = right})
return (Rule(-), left_tree, right_tree)

> Remark: RP trees have the following property — more later: diameter of the
cells decrease down the tree at a rate depending on the intrinsic dimension of
the data.




RPTrees: varying splits and their applications

> Various types of splits possible
Randomized partition tree: Randomized partition tree: Spill tree with overlapping split:

e exact split e perturbed split e regular spill tree

o virtual spill tree

1/2 1/2 B 1-8 Ve 1/2+4a
> NB: splits monitor the tree structure and the search route
> Spill trees:
— Regular spill trees:
overlapping cells yield redundant storage of points
— Virtual spill trees:
median splits used — no redundant storage
query routed in multiple leaves using overlapping splits
> Summary: tree creation versus search
Routing data Routing queries (defeatist style)
RP tree Perturbed split Perturbed split
Regular spill tree | Overlapping split  Median split
Virtual spill tree Median split Overlapping split

[} =5 =




Failure of the defeatist search

> Goal: probability that a defeatist seach does not return the exact nearest
neighbor(s)?
> The event to be analyzed, denoted Err:

»> k =1 :the NN query does not return p()

» k > 1: the NN query does not return pgy,...,p()



Qualifying the hardness of nearest neighbor queries

> Notations:

» Dataset P =p1,...,pn 2
> Sorted dataset wrt g: p1),

K P R
-5 P(n)
llg = pal| v
o(a. 2
(q Z |q P || ()

> Extreme cases:

» & ~ 0: p; isolated, finding it should

S \\\\3
be easy le y H
» & ~ 1: points equidistant from g; A
finding p(1y should be hard AN e
> Rationale: i

in using RPT and spill trees with the defeatist search, the
probability of success should depend upon ¢



Generalizations of the function ®

> Rationale: function ® shall be used for nodes containing a subset of the
database

> For a cell containing m points — evaluate the remaining points in that cell:

®n(q, P) = Z“" Pu H (3)

lla— pq

> If one is interested in the k nearest neighbors — evaluate the remaining points
too:

lg = poyll +---+ lla = peoll
Dim(q, P) = E (4)
; et} g — Pl



Theoretical results on the performances

> Analysis to come next:
» RPTrees: success/failure probability to report NN
» Random projections and adaptation to intrinsic dimension

» NN, distances and concentration phenomena



Algorithms

Metric trees and variants



Metric spaces

Definition 1. A metric space is a pair (M, d), with d : M x M — R™, such

that:
» (1) Positivity: d(x,y) >0

> (1a) Self-distance: d(x,x) =0

» (1b) Isolation: x # y = d(x,y) >0

> (2) Symmetry: d(x,y) = d(y,x)

> (3) Triangle inequality: d(x,y) < d(x,z)+ d(y, z)

> Product metric. Assume that for some k > 1:

M:M1><-~~><Mk.

and that each (M;, d;) is a metric space. For p > 1, the product metric is:

k

d(x,y) = (O dilx, y1)")/*

k=1
Some particular cases are:
» (Mi=R,d =|-|): L, metrics.

» p =1, d; = uniform metric: Hamming distance.

()



Using the triangle inequality

Lemma 2. For any three points p, q,s € M, for any r > 0, and for any
point set P C M, one has:

| d(q,p) —d(p,s) |< d(q,s) < d(q,p) +d(p,s) (7)
d(q.5) > dp(q,s) := max | d(q, p) — d(p. s) | (8)

(9)

{d(p, s)>d(p,q)+r=d(q,s)>r
d(p,s) <d(p,q) —r=d(q,s) >r.

EANY

' lower bound
\

for d(q, s)

p

Figure: Lower bound from the triangle inequality, see Lemma 2



Metric tree: definition
> Definition:
» A binary tree
» Any internal node implements a spherical cut defined by the distance p to
a pivot v
> right subtree: points p such that d(pivot, p) > pu
» left subtree: points p such that d(pivot, p) < i

Figure: Metric tree for a square domain (A) One step (B) Full tree



Metric tree: construction

> Recursively construction:
» Choose a pivot, ideally inducing a partition into subsets of the same size
> Assign points to subtrees and recurse
» Complexity under the balanced subtrees assumption: O(nlog n).

> Algorithm build_MetricTree(S)

procedure build MetricTree(S)

if S =0 then

L return NIL

n < newNode

Draw at random Q C Sand v € Q

n.pivot <— v

p < median({d(v, p), p € Q\{v}})

> The pivot splits points into two subsets

L+ {s € S\{p}ld(s,v) < u}

R« {s € S\{p}ld(s,v) > p}

> For each subtree: min/max distances to points in that subtree
n.(d1, d2) < (min,max) of distances d(v,p),p € L
n.(d3, ds) < (min,max) of distances d(v, p),p € R
> Recursion

n.L < build_MetricTree(L)

n.R <« build_MetricTree(R)




Searching a metric tree: algorithm

procedure SEARCH_METRICTREE((T, q))

> Node of T is denoted n q
nn(q) < 0

T 4 00

if n = NIL then

L return T

o v pivot node

> Check whether the pivot is the nn
I + d(gq, n.pivot)

o distances dy,da, d3,dy

if / <7 then R
L nn(q) < n.pivot
T

> Dilate the distance intervals for left and
ight subtrees

dy - minyepd(v, p) ds : minyepd(v, p
I/ «— [n_dl -, n_d2 + 7—] dy : max,erd(v, p) dy : maxyepd(v, p)
Ir < [n.d3 — 7, n.dg + 7]

if / € I; then

| search_MetricTree(n.L, q)

if /| € I, then

| search_MetricTree(n.R, q)




Searching a metric tree: correctness — pruning lemma

Lemma 3 Consider the intervals associated with a node, as defined in Algorithm
??, thatis lj < [n.di — 7,n.d> + 7] I < [n.d3 — 7, n.ds + 7]. Then:

(1) If I € 1}, the left subtree can be pruned.

(2) If I € Iy, the left subtree can be pruned.

Proof.

We prove (1), as condition (2) is equivalent. Let us denote /|, = [d1, d2]. Since
I=d(v,q) & I;, we have d(v,q) < di — 7 and d(v, q) > do + 7. We analyze these
two conditions in turn.

> Condition on the right hand side. By definition of d», with v the pivot, we have:
VpeL:d(v,q) > d(v,p) +T.
Using the triangle inequality for d(v, q) yields

d(v,p) +d(p,q) > d(v,q) > d(v,p) + 7= d(q,p) > .

> Mutatis mutandis.



Metric tree: choosing the pivot

> By the pruning lemma: for small 7 and if g is picked uniformly at random,
the measure of the boundary of the spheres of radius di, ..., ds determines the
probability that no pruning takes place.

= pick the pivot so as to minimize this measure.

> Example in 2D: 3 choices for the pivot, so as to split the unit square (mass:
1) into two regions of equal size (mass: 1/2)

> Choice of pivots (illustrated using
o (rather than the djs):

» Best pivot: pc
» Worst pivot: pm

Pry P
=0.3989 =0.5225
b=2.5066 b=1.3338

Figure: Metric trees:
minimizing the measure of
boundaries.



From metric trees to metric forests
> Search options:
> (1) The exact search, based on the pruning lemma.

> (I1)The defeatist style search: visit one subtree only

> Compromising speed versus accurary
> (1) Exact, but possibly costly if little/no pruning occurs. Worst-case: linear time.

> (Il) Faster, but error prone.
» Compromise: using a forest of trees rescues erroneous branching decisions in the
course of the defeatist search.

Figure: Metric forest



References

AMN-+98

MLO9

MSMO03

OD13

Yia93

S. Arya et al. An optimal algorithm for approximate nearest neighbor searching
fixed dimensions. Journal of the ACM (JACM), 45(6):891-923, 1998.

Marius Muja and David G Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. In VISAPP (1), pages 331-340, 20009.

Francisco Moreno-Seco, Luisa Mico, and Jose Oncina. A modification of the
laesa algorithm for approximated k-nn classification. Pattern Recognition
Letters, 24(1):47-53, 2003.

S. O'Hara and B.A. Draper. Are you using the right approximate nearest
neighbor algorithm? In Applications of Computer Vision (WACV), 2013 IEEE
Workshop on, pages 9-14. IEEE, 2013.

Peter N Yianilos. Data structures and algorithms for nearest neighbor search in
general metric spaces. In SODA, volume 93, pages 311-321, 1993.



Algorithms

PART 1:  Nearest neighbors: data structures
PART 2:  Nearest neighbors: analysis
PART 3:  Concentration phenomena: introduction



Algorithms

Intrinsic dimension?



Nearest neighbors: on the importance of locality

> Typical settings:
P Regression — estimating a response variable from neighbors
» Supervised classification using neighbors
» Manifold / shape learning: learning a mathematical model for the data
(e.g. simplicial complex)
> Samples used at a given location g:
P nearest neighbors

» points in a cell of a spatial partition e.g. a RPTree



Intermezzo: data and their intrinsic dimension (1)
> Intrinsic dimension: in many real world problems, features may be
correlated, redundant, causing data to have low intrinsic dimension, i.e., data
lies close to a low-dimensional manifold

> Example: binary ie B&W image

» Consider an n X n binary image: image ~ point on the hypercube of
dimension n®

> Example: rotating an image

» Consider an n x n pixel image, with each pixel encode in the RGB
channels: 1 image ~ on point in dimension d = 3n°.

. . . _ 2
» Consider N rotated versions of this image: N point in R*"

> But these points intrinsically have one degree of freedom (that of the
rotation)



Intermezzo: data and their intrinsic dimension (I1)

> Example: 2D robotic arm with 3 d.o.f.

> Example: human body motion capture
» N markers attached to body (typically N=100).
» each marker measures position in 3 dimensions, 3N dimensional feature
space.

» But motion is constrained by a dozen-or-so joints and angles in the
human body.

>Ref: Verma et al. Which spatial partitions are adaptive to intrimsic
dimension? UAI 2009



Formal notions of intrinsic dimension

> Natural ones:
» Affine dimension

» Manifold dimension

> Requiring (elaborate) calculations:
» (Local) covariance dimension

» Assouad - doubling dimension



Local covariance dimension and its multi-scale estimation

> Def.: aset T C RP has covariance dimension (d, €) if the largest d
eigenvalues of its covariance matrix satisfy

o4+ >(1—€) (0744 0p).

> Def.:  Local covariance dimension with parameters (d, €, r): the previous
must hold when restricting T to balls of radius r.

SO

> Multi-scale estimation from a point cloud P:

For each datapoint p and each scale r
Collect samples in B(x, r)
Compute covariance matrix
Check how many eigenvalues are required: yields the dimension



Assouad / doubling dimension: intuition

> Pick a cube of side length L: count how many cubes of side length L/2 are
needed to cover it

L=1 L=1
L=1
-
D=1 D=2 D=3
N =2! N =22 N =293

= take the log of the number of cubes



Assouad dimension

> Def: Set S C R has Assouad dimension < d: for any ball B, subset SN B
can be covered by 27 balls of half the radius. Also called doubling dimension.

L

> Examples:

» S = line: Assouad dimension = 1

» S = k-dimensional affine subspace: Assouad dimension = O(k)
» Union of D intervals [-1,1] in R?; dim is log 2D
>

S = k-dim submanifold of R? with finite condition number: Assouad
dimension = O(k) in small enough neighborhoods

» S = set of N points: Assouad dimension < logl

> Hardness: computing doubling dimensions and constants is generally hard:
related to packing problems.



Generalization: doubling dimension and doubling measures

> Def.: A metric space X with metric is called doubling if there exists
M(X) € N so that any closed ball B(x, r) can be covered by at most M balls
of radius r/2. The doubling dimension is log, M.

> Def.: A measure p on a metric space X is called doubling if 3C > 0 such
that Vx € X and r > 0

w(B(x,2r) < Cu(B(x,r)).
The dimension of the doubling measure satisfies dy = log, C.

> Remarks:

» A metric space supporting a doubling measure is necessarily a doubling
metric space, with dimension depending on C.

» Conversely, any complete doubling metric space supports a doubling
measure.



Algorithms

Selected experiments on NN, regression, dimension estimation



Empirical results: contenders

> Contenders / algorithms:

>

dyadic trees aka tries: pick a direction and split at the midpoint; cycle
through coordinates.

kd-tree: split at median along direction with largest spread.
random projection trees: split at the median along a random direction.

PD / PCA trees: split at the median along the principal eigenvector of
the covariance matrix.

two means trees: solve the 2-means; pick the direction spanned by the
centroids, and split the data as per cluster assignment.

> dyadic trees, kd-trees, RP trees




Real word datasets

> Datasets:
» Swiss roll

> Teapot dataset: rotated images of a teapot (1 B&W image: 50x30 pixels); thus,
1D dataset in ambient dimension 1500.

> Robotic arm: dataset in R1?; yet, robotic arm has 2 joints: (noisy) 2D dataset
in ambient dimension 12.

» 1 from the MNIST OCR dataset; 20x20 B&W images, i.e. points in ambient
dimension 400.

» Love cluster from Australian Sign Language time-seris
» aw phoneme from MFCC TIMIT dataset

P e w
W

Ty W o0 o ol o)
e b G G W W Gy o

PENMRRWIRR RV PRI
o Gy 00 Do) 8 (U

dw L

33
&% 3
333
332
333
323
332
3317
237

v 0ot ¢

>Ref: Verma, Kpotufe, and Dasgupta, UAI 2009.



Empirical results: local covariance dimension estimation

> Conventions: bold lines: estimate d(r); dashed lines: std dev; numbers: ave. over
samples in balls of the given radius

Swissroll dataset ( = 0.1) Teapot dataset ¢ = 0.01) Robotic Arm dataset (¢ = 0.01)
3.5 50 - 8
g __ 4470 o o
2 £ 2
£l £ 40 g
525 3 %6
é > ®
£ 9 < 30 c
=] =4 e
2 2 24
5 1.5 220 5
= = E
5 1 T Tyl
§ = 10}, 3
805 8 8
0 o 0
] 2 4 6 8 0 2 ‘ 4 o
radius radius x10° radius

> Observations:

> Swiss roll (ambient space dim is 3): failure at small (noise dominates) and large
scales (sheets get blended).

» Teapot: clear small dimensional structure at low scale, but rather 3-4 than 1.

> Robotic arm: tiny spot (r values) to get the correct dimension. .. noise.

>Ref: Verma, Kpotufe, and Dasgupta, UAI, 2009



Intermezzo: medial axis of an open set
Using local neighborhoods / topological disks
> Def.:

\ maximal ball

A
V

> Construction from Voronoi: idea

— 4,




Empirical results: performance for NN searches

> Searching p(y): performance is the order of the NN found / dataset size

> percentile order: order of NN found / dataset size (the smaller the better; max

is 100%)
» tree depth: NN sought at

decorating numbers: distance ratio ||q — nn(q)|l / ||g — pg)||

OCR dataset - digit 1

-~ Dyadic Tree|
——kD Tree
- RP Tree
——PD Tree
| 2M Tree

~
o
s

~
]

1.2929

Vs

-4
o

Near Neighbor Percentile Order
°
[

Near Neighbor Percentile Order

<31

e

each level in the tree

ASL dataset - word sign love

- -Dyadic Treg]

1.4708

11974

Near Neighbor Percentile Order

r

TIMIT dataset — phoneme aw

g

1.192 4

‘LB I :
i

.

b=
] 2

E]
of

4 6
Tree depth

> Observations:

1oaa1 1% ‘,’/
S
—a— g
2 4 5 8
Tree depth

0

.
2

» percentile order deteriorates with depth — separation does occur

> yet, the distance ratio remains small even at high percentile orders

4 5
Tree depth

> 2M and PD (i.e. PCA trees) consistently yield better nearest neighbors: better

adaptation to the intrinsic

>Ref:

dimension

Verma, Kpotufe, and Dasgupta, UAI, 2009



References

» Dasgupta, Sanjoy, and Yoav Freund. Random projection trees and low
dimensional manifolds. Proceedings of the fortieth annual ACM
symposium on Theory of computing. ACM, 2008.

» Verma, Nakul, Samory Kpotufe, and Sanjoy Dasgupta. Which spatial
partition trees are adaptive to intrinsic dimension?. Proceedings of the
twenty-fifth conference on uncertainty in artificial intelligence. AUAI
Press, 2009.

» J. Heinonen, Lectures on analysis on metric spaces, Springer, 2001.



Algorithms

RPTrees: search performance analysis



Random projection trees and nearest neighbors

> Recap:
» Points iteratively projected on random directions

> Risks jeopardizing the search strategy: points far away (from the NN)
squeeze in-between g and nn(q)

» Hardness of the NN search: function ¢

R

lla=xoll

(10)



Projections on random directions is needed

as Projections on coord. axis fails even for cases of & ~ 0

> ldea: with g = (0, ..., O)T, generate a DB of neighbors such that a kd-tree will
always separate g from its NN which is xj

( M) . . .
L0.:'";‘0“‘” > Consider the following point set
{x1,...,xn}:
T
> x =(1,...,1)

» For each x;,i > 1: pick a
random coord and set it to a
large value M; set the remaining
coords to uniform random
numbers is (0, 1)

> Query point q: the origin
> kd-trees separate g and xi, even though function @ is arbitrarily small:
»> The NN of g (=origin) is x1
» But by growing M, function ® gets close to 0 = random projections will work
well
» However, any coord. projection separates g and x;: on average, the fraction of
points falling in-between g and x; is arbitrarily large:
1

1 n
(n=)Y=1-=
o Clr) d

> Coming next: RPTrees work well in this case; randomness' is needed.



Demo with DrGeo

Compulsory tools for geometers

b In the sequel: Consider 3 points g, x, y with ||g — x|| < |lq — y||.
> In projection on a random direction U: probability to have the projection of
y nearest to g than the projection of x?

> DrGeo: http://www.drgeo.eu/

> Event E to avoid: (y, U) falls strictly
in-between (g, U) and (x, U)

> NB: also of interest: IPE, http://ipe.otfried.org/


http://www.drgeo.eu/
http://ipe.otfried.org/

Random projections: relative position of three points
> In the sequel: g, x,y: 3 points with ||g — x|| < |lg — y||

> Colinearity index g, x, y:

(q—x,y—X)

1] =
col@: %) = g =Xl Ty =1

(11)
> Event E: (y, U) falls strictly in-between (g, U) and (x, U)

Lemma 4. Consider q,x,y € R? and ||g — x|| < ||]g — y||. The proba. over
random directions U, of E, satisfies:

1 (llg—x|
P[E] = farcsm( 1 —coll(g, x, y)? 12
[E] = 9=l ( ) (12)
Corollary 5.
1 lg - x| 1= x|
— V1-—col(g,x,y)2<P[E] < = 13
7 llg =yl ( ) [E] 2 gyl (13)



Proof of the corollary

> Using the Inequality: : _

0e€l0,7/2]: —9 <sinf <6 (14)

0

sl
L

JLA 3n z
1531 B 2

S

B T

> Lower bound of the corr.: from the upper bound of Eq. (14): 0 < arcsin6
applied to P [E]

> Upper bound of the corr.:

First note that:
g — x| llg — x|

llg -yl lla -yl
Then, apply (2¢/7) < ¢ to ¢ = arcsin||qg — x| / [|g — y||.

1- CO”(q7X7y)2 <



Random projections: separation of neighbors
> Recall that for m > 1

la = pall
w6 )= 53 ol o

Theorem 6. Consider q,p1,---,Pn € RY and a random direction U.
The expected fraction of the projected p; that fall between g and p(;) is at most

1
—®(q, P).
5 ®(a.P)
> Proof. Let Z; be the event:  “p(;) falls between g and p(;) in the projection” . By

the corollary 5, P [Z;] < (1/2) ||q — H / Hq p(i || Then, apply the linearity of
expectation to > Z;/n (divide by n to get the fractlon)

Theorem 7. Let S ¢ P with p1y € S. If U is chosen uniformly at random, then
(1)

for any 0 < o < 1, the proba. (over U) that a fraction > « of the projected points in

S fall between q and p(y) is

1
< 2*“’\5\(% P).
(07

> Proof. @ is maximized when S consists of the points closest to q. Then, previous
Thm + Markov's inequality.



Random projection trees
> Recap:
» Pick a random direction and project points onto it
> Split at the 3 fractile for 8 € (1/4,3/4)
> Storage: each point mapped to a single leaf
>

Query routing: query point mapped to a single leaf too

Theorem 8. Consider an RP tree for P. Define B =3/4, and
I = log;,5(n/no). One has:

2e
P [NN query does not return p()| < | OZ: ICDB;,, In o, (16)
1= .

> Proof, key steps:

> Fe{0,1/2,...,(m—1)/m}: fraction of points falling in-between g and p(y) in
projection

» Since split chosen at random in interval of mass 1/2: it separates q and p(1) is at
most F/(1/2). (Indeed: assume any value in the interval of width F is eligible.)

» Summing on values of F yields the result for one level; then, union bound.



Error bound depends on ®7?

P> ® qualifies the hardness of the query situations

» Focus: pathological cases versus settings with some regularity

(0,...,0, M)t

g

"7’111 . q \v\'\




Bounding function ® in specific settings

> Perspective: assume that xj,...,x, are drawn i.i.d. from a doubling measure. Can
this regularity be used?

Theorem 9. Let 1 be a continuous measure on RY, a doubling measure of
dimension dy > 2. Assume p1,...,pn ~ p. Let 0 < § < 1/2.

With probability > 1 — 34:

2
—1

1
Vme|[2,n: ®n(q,P)< 6(m n 7)1/do

5

Theorem 10. Under the same hypothesis, with k the num. of NN sought:
— For both variants of the spill trees:

PErr] < coido (Smax(k,ln 1/5))1/d0

no

— For random projection trees with ng > cp(3k)% max(k,In1/5):
8 k,In1/6
P [Err] < cok(do + In no)(w)l/do
no
> Rmk:
» failure proba. can be made arbitrarily small by increasing the leaf size ng

» The failure proba increases with dy



References

DS13 S. Dasgupta and K. Sinha. Randomized partition trees for exact nearest
neighbor search. JMLR: Workshop and Conference Proceedings, 30:1-21,
2013.

V12 S. Vempala. Randomly-oriented kd Trees Adapt to Intrinsic Dimension.
FSTTCS, 2012.

VKDO09 N. Verma, S. Kpotufe, S. Dasgupta, Which spatial partitions are adaptive
to intrinsic dimension? UAI 2009.



Algorithms

PART 1:  Nearest neighbors: data structures
PART 2:  Nearest neighbors: analysis
PART 3:  Concentration phenomena: introduction



Algorithms

Concentration phenomena: application to nearest neighbor
searches



p-norms and Unit Balls

> Notations:
» d: the dimension of the space
> F: a 1d distribution
» X = (Xi,...,Xq) a random vector such that X; ~ F
> P ={pY}: a collection on n iid realizations of X

> Generalizations of L, norms, p > 0:

IXl, = Q21 X7y an vary

Unit balls: see plots Y

-1 -05 0 05 1

Fig. 2. Two-dimensional unit balls for several values of the parameter of
the p-norm

> Cases of interest in the sequel:
» Minkowski norms: p, an integer p > 1:

» fractional p-norms: 0 < p < 1. NB: triangle inequality not respected; NB:
balls not convex for p < 1. sometimes called pre-norms.

> Study the variation of ||[|, as a function of d



Concentration of the Euclidean norm: Observations
b Plotting the variation of the following for random points in [0, 1]%:
min |17, E[IP] = [0P] . B[0P B [IP) +o [I7], max)?,m = vd
(18)

Fig. 1. From kottom tatop: minimum

3 . average plus standard deviation, maximum
and of norm of a i 3
A small subinterval of the domain of the norm is reached in practice.

> Observation:
» The average value increases with the dimension d

» The standard deviation seems to be constant; likewise for the min-max
values

» For d <10 i.e. d small: the min and max values are close to the bounds:
lower bound is 0, upper bound is M = v/d

» For d large say d > 10, the norm concentrates within a small portion of
the domain; the gap wrt the bounds widens when d increases.



Concentration of the Euclidean Norm: Theorem

Theorem 11. Let X € RY be a random vector with iid components X; ~ F.
There exist constants a and b that do not depend on the dimension (they
depend on F), such that:

E [|\X||2] =ad — b+ O(1/d) (19)
Var [HXHZ] = b+ O(1/Vd). (20)

> Remarks:
» The variance is small wrt the expectation, see plot
> The error made in using E [||X||’] instead of || X||> becomes negligible: it
looks like points are on a sphere of radius E [||X|[*].

» The results generalize even if the X; are not independent; then, d gets
replaced by the number of degrees of freedom.




Algorithms

Concentration phenomena: key properties



Geometry in high dimension:
scaled bodies and their volume

> Scaling a body from R¢:
A/ YA = {yx,z € A}

>Fory=1—-¢":

Volume((1 — g)A)

Volume (A) =(-ef<e™ (21)

> Fix € and let d — oco: the ratio tends to zero. That is: nearly all the volume
of A belongs to the annulus of width e.

Use e ™ >1—x



Unit sphere: surface area and volume
> The Gamma function I

Mx)= 7OSX1€SdS. (22)

NB: for integers ' (n) = (n — 1)!
> The surface area and volume of the unit sphere S? are given by:

2md/? A(d)
- Variation of the surface area (red)

and volume (blue) of the unit
sphere, as a function of the
20 dimension d

o 10 20 30 40 50



Unit ball: volume concentration near the equator

> Thm: (Slab Thm.) For ¢ > 1 (slab width) and d > 3, at least a fraction
— 2 . . .

1-2e¢ /2 of the volume of the unit ball satisfies | x; |< T

> Corr: With ¢ = 2VInd, a fraction at least 1 — O(%) > 1/2 of the volume of

the unit ball lies in a cube of half side length </\/a=1 = 2VInd//g—1.

Since the vol. of this cube — 0, the volume of the unit ball goes to 0 when

d — oo.

Proof: apply the Thm with ¢ = 2v/Ind.

Nb: Vertices of the cube are outside the ball. This does not matter since the
Thm integrates slices up to ¢/+/d — 1.



Unit ball:

are points near the surface of within a small cubic core?
> Apparent contradiction:

» Argument from body scaling: mass located near the surface of the unit
sphere

» Previous argument: > 1/2 of the volume located near the equator, within
a cube of side length 4,/Ind/q—1
> Explanation:
» cube whose vertices are on the unit sphere: half side 1/v/d

» corners of the cube of half side length h = 2,/nd/q—1 are at distance

~ 2+/Ind from the origin. this cube covers a significant portion of the
unit ball.

1

<— Cube of half side h = 2y/Ind/q—1
Cube of half side u = 1/v/d

The cube of small side length h
projects vertices far away from the
unit sphere.

Distance 1 from the origin

<« Distance ~ 2vInd from the origin



Random points are almost orthogonal with high probability

> Thm. Consider n points {x1,...,Xs} drawn uniformly at random from the
unit ball. The following holds with probability 1 — O(1/n):

L P[|xi >1—28] >1—0(1/n),vi

2. P[I (xi,xj) |< (/S22 > 1= O(1/n),Vi # j.

> Discussion:

1. Points near the surface of the ball

2. Vectors associated with a pair of points are nearly orthogonal



Generating random points on S9! /inside S9!

> Generate a point x = (xi,...,x4)" whose coordinates are iid Gaussians:
> Generate xi,. .., Xy iid Gaussian N(u =00 =1)

» distribution is spherically symmetric (on a sphere of given
radius).
» random vector has arbitrary norm

» The density of X is

1 G odt 3 1 xIP/2
fo(x) = We z = (271')"/26 . (24)
» To obtain a unit vector: *-. NB: its coordinates are not independent.

(B
> Inside the unit ball: the point ﬁ needs to be scaled by a density
p(r) =dri .



The Gaussian annulus theorem

for an isotropic d dimensional Gaussian

> Density of the isotropic Gaussian: Gaussian of zero mean and o2 along each dir.:
1 BB 2
fe(X) = ———e~ = 2 . 25
0= Gy (25)

b Expectation of || X||%:

E[XIP]=E| Y x|= > E[]=dE[¢]=d (26)
i=1,...,d

i=1,...,d

> Thm. Consider an isotropic d dimensional Gaussian with & = 1 in each direction.
For any 3 < V/d, consider the annulus defined by

A= {X such that Vd — 8 < ||X|| < Vd + B}. (27)
There exists a fixed positive constant c(~ 1/100) such that
P(A) < 367", (28)
> Rmk: how come the mass concentrates around /d?
> Concentration thm: the mass concentrates near 4 /E [||XH2] =d

» The density f; is max. at the origin; but integrating over the unit ball ... no
mass since the volume of the unit ball tends to 0. (prop. seen earlier.)

» In going well beyond v/d: the density fg gets too small.



Projecting onto a (random) affine subspace

> k-dimensional affine subspace: matrix R : d X k whose vectors define an
(orthonormal) basis
> To obtain such an orthonormal matrix R:

» draw k (unit) random vectors (see above)

» perform a Gram—Schmidt orthonormalization
NB: the orthonormalization process complicates things, since entries of
the matrix are no longer independent

> To get a randomized dimension-k matrix R — dim is d X k):

» Draw the d X k entries at random, using a the normal distribution
(Gaussian with 0 mean and unit variance)

» Then f(v)=(u1- v,uz- v,... ug- v)T

Projection f(v) of a vector v onto
a (random) affine space of
dimension k, in matrix form:

f(v)=R"-v. (29)

NB: f(v) has dimensions
(kxd)(dx1l)=kx1




Projection theorem
onto a random dimension k affine subspace

> Goal: we shall prove that in projection ||f(v)|| ~ vk ||v||

> Rmks:

» The distance/norm ||f|| (-) increases since the vectors defining the affine
space are not unit length.

» The basis defined by R is not orthonormal.

» BUT: the analysis are much simpler!

> Thm. Let v be a vector from RY. Consider a random affine subspace as
defined on the previous slide. Then, for any € > 0:

B[ 17 W)l — Vvl 2 eV v]l] <3¢ (30)

NB: the constant ¢ comes from the Gaussian annulus them.
> Proof: See textbook.

> NB: versions where matrix R is orthonormal also exist. See the bibliography.



Application: the Johnson-Lindenstrauss lemma

> Rationale: project a point set P = {x1,...,x,} from R to R* while
preserving distances / with low distorsion.

> Thm / lemma: Johnson-Lindenstrauss For any ¢ € (0, 1), consider

3
k > —2Inn.
ce

(NB: ¢ from the Gaussian annulus Thm.) For a random projection onto an
affine space of dim. k, define the event:

E:(1-eWk< [ (xi) = FOg) < (14 e)Vk,¥(xi, x)).

i — x|
One has: 3
>1——.
PE]>1 o

> Proof: See textbook.
> NB: the only property of data used while defining the projection is the
number of samples.

(31)

(32)

(33)



Johnson-Lindenstrauss:

> Embedding dimension k:

(34)

> Medium: € € [0.1 — 5]

m

g
A
) ll%llll

i
2 %’{’ll

lower bound

> Large: ¢ € [0.5 — 0.99]

-
900000 <.
800000 | N
70000 RN
600001 -
500000

400000~
300000~
200000~
100000

X

CXIXKAKY
0N

Q0
OB

e
oe
000

XAXKX
o

AKX
0

XX
X

osese
oo

V4
AKX

4R
P

e
%

oo

V.4
XX

N



Bibliography

v

S. Dasgupta and A. Gupta, an elementary proof of a theorem of Johnson
and Lindenstrauss, Random structures and algorithms, 2003.

v

S. Vempala, The random projection method, AMS, 2005.

v

S. Levy, Flavors of geometry, Cambridge, 1997

v

A. Blum, J. Hopcroft, R. Kannan, Foundations of Data Science,
Cambridge, 2020.



	Nearest neighbors: data structures
	Introduction
	kd-trees and basic search algorithms
	kd-trees and random projection trees: improved search algorithms
	Metric trees and variants

	Nearest neighbors: analysis
	Intrinsic dimension?
	Selected experiments on NN, regression, dimension estimation
	RPTrees: search performance analysis

	Concentration phenomena: introduction
	Concentration phenomena: application to nearest neighbor searches
	Concentration phenomena: key properties


