
Algorithms and Learning for Protein Science

Motions and energies

Frederic.Cazals@inria.fr



Overview

▷ Algorithms
▶ Independent Component Analysis (ICA)
▶ time lagged ICA (tICA)

▷ Theoretical biophysics
▶ Harmonic oscillators in several guises
▶ Notions of statistical physics

▷ Molecular science
▶ Formation of clusters of hard spheres
▶ Slow modes in protein motions
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Normal modes: movie

Figure: NMA in Schrödinger

https://youtu.be/RvYr5Q7J3sI


Normal modes: overview

▷ Pros.
▶ Based on physics, but coarse grain – much faster than molecular dynamics
▶ Theory of normal modes: physics of vibrations, which exhibit correlated motions
▶ At low temperature (< 250K) do vibrate like solids
▶ At room temperature, a number of biological mechanisms exploit low frequency

correlated motions
• opening closing of enzymes
• functioning of the ribosome
• functioning of hemoglobin, etc

▷ Cons.
▶ Harmonic models are local
▶ No anharmonic effects
▶ On the other hand: mechanisms can exploit harmonic effects at early stages,

and then proceed with the energy provided/released



Normal modes and correlations

▷ Goal: study covariances between atomic displacementsC(i , j) =< ⟨∆Xi ,∆Xj ⟩ >,
corr(i,j) = C(i,j)√

C(i,i)C(j,j)
.

(1)

▷ Two types of models
▶ Vibrational normal modes
▶ Energetic normal modes / elastic network models:

• (GNM) Gaussian network model: correlation using whole fluctuations
vector ∆Xi

• (ANM) Anisotropic network model: understanding directional preferences
along the three coordinate axis, via the decomposition
∆Xi = ∆xi +∆yi +∆zi



Vibrational normal modes: generalized eigenproblem
▷ Kinetic energy: With M the diagonal matrix of individual masses

K =
1

2
u̇TMu̇ (2)

▷ Potential energy: locally given by a quadratic form

V =
1

2
uTHu, t with Hij =

∂2V

∂ui∂uj |{ui}=0,{u̇i}=0
(3)

▷ The Lagrangian of the system:

L =
1

2
u̇TMu̇ −

1

2
uTHu. (4)

The Euler-Lagrange equations gives
Mü + Hu = 0. (5)

With A = (a1, . . . , an)
T – the ai are amplitudes, we seek a solution of the form u(t) = A exp(iωt):


u(t) = A exp(iωt),

u̇(t) = iωu(t),

ü(t) = −ω2u(t).

(6)

Plugging into Eq. 5 yields the following generalized eigenvalue problem:

HA = ω
2MA, (7)

⇒ the vector A is solution of a generalized eigenproblem.



Solving the generalized eigenproblem

The previous equation can be rewritten as

HA− ω2MA = (H − ω2M)A = 0. (8)

This is a system of n homogeneous linear equations, so that we aim at solving

det(H − ω2M) = 0. (9)

Expanding yields a n-th order polynomial in ω2.

▷ Remark. Eq. 5: Newton’s equations of motion in the form

Mq̈ = F = −∇V . (10)

Assume the potential energy is invariant by rigid motion. By Newton’s equations –
Eq. 10, no forces are applied to the system: there are actually exactly six null
frequencies / eigenvalues.



Normal modes, example: the triatomic molecule

▷ Model
m1 m1m2

▷ Potential

V =
k

2
(x2 − x1 − b)2 +

k

2
(x3 − x2 − b)2. (11)

We introduce coordinates wrt equilibrium positions. With x3,0 − x2,0 = x2,0 − x1,0 = b:

νi = xi − xi,0, (12)

Then

V =

 k −k 0
−k 2k −k
0 −k k

 ,M =

m1 0 0
0 m2 0
0 0 m1

 (13)

det(V − ω
2M) = det(

k − ω2m1 −k 0
−k 2k − ω2m2 −k

0 −k k − ω2m1

) (14)

Solving
ω

2(k − ω
2m1)(k(m2 + 2m1) − ω

2m1m2) = 0 (15)

with the following solutions

ω1 = 0, ω2 =

√
k

m1
, ω3 =

√
k

m1
(1 +

2m1

m2
). (16)

NB: ω1 = 0 is expected, see previous Remark on null eigenvalues.



Mass weighted coordinates (I)

▷ Eigenproblem revisited: A → ei , and ω2
i → λi :

Hei = λiMei . (17)

Proposition. 1. The normal mode vectors solutions of the generalized
eigenproblem are M-orthogonal:

ei
TMej = δij . (18)

Hint: from Hei = λiMei , transposing and multiplying by ej . . .

Proposition. 2. Using normal mode coordinates {qi}, the potential satisfies

H =
1
2

∑
i

λiq
2
i . (19)

Hint: manipulate H = 1
2u

THu using u =
∑

i qiei



Mass weighted coordinates (II)

Normal mode vectors are also solutions of a std eigenproblem with modified
vector/matrices, yielding mass weighted coordinates:

▶ Let fi = M1/2ei

We have

Hei = λiMei (20)

⇔HM−1/2M1/2ei = λiM
1/2M1/2ei (21)

⇔HM−1/2fi = λiM
1/2fi (22)

⇔M−1/2HM−1/2fi = λi fi (23)

⇔H̃fi = λi fi , with H̃ = M−1/2HM−1/2. (24)



Intermezzo: the equipartition theorem
▷ Canonical NVT ensemble: Boltzmann’s distribution applies

▶ NB: in the microcanonical NVE ensemble: the system has a fixed total energy,
there is no Boltzmann’s factor, and there is a uniform probability for
conformations.

▷ Equipartition theorem: the average energy associated with each quadratic degree of
freedom (dof) is

< Ei >=
1
2
kBT

▷ For one dof of the the harmonic oscillator: in the NM basis:

Ei =
1
2
λiq

2
i , (25)

and we get

< Ei > =
1
2
kBT =

1
2
λi < q2

i >, (26)

and therefore
< q2

i >=
kBT

λi
(27)

▷ NB: the stiffer the spring/larger λi , the smaller < q2
i >



Pairwise correlations
▷ Goal: compute Cab using the NM basis {ei}

Proposition. 3. The pairwise correlations are given by

Cab =< uaub >= kBT
∑
i

ei,aei,b

λi
. (28)

Proof. Rewrite an original displacement vector in the basis of NM:

u =
∑
i

qi ei . (29)

For two original coordinates ua and ub : ua =
∑

i qi ei,a, ub =
∑

j qj ej,b . Whence

Cab =< uaub >=
∑
ij

< qi qj > ei,aej,b. (30)

But since NM coordinates are uncorrelated, that is < qi qj >= 0 if i ̸= j, we get

< uaub >=
∑
i

< q2
i > ei,aei,b. (31)

But each qi is an independent harmonic oscillator, the equipartition theorem gives the following
expectation

E
[
q2
i

]
=< q2

i >=
kBT

λi

, (32)

whence Eq. 3. □



Application: atomic fluctuations

▷ Atom i : three Cartesian coordinates, whence

∆X 2
i = ∆x2

i +∆y2
i +∆z2

i . (33)

Denote J = {j1, j2, j3} the indices of these coordinates, the linearity of expectation
gives

< ∆R2
i >= kBT

∑
i

∑
j∈J

ei,jei,j

λi
. (34)

Should be compared to the experimentally measured B-factor, defined by

Bi = 8π2 < u2
i > . (35)



Elastic Network Models

▷ Goal: depart from full atom models and (complicated) atomic force fields

Figure: Elastic network models GNM/ANM: example. In both cases,
one attaches a spring to residues within a distance threshold.



Graph Laplacian: pre-requisites (I)
Consider the standard Laplacian L = D −W of the graph, with wij = 1 iff the nodes i
and j are connected, and D the generalized degree defined by di =

∑
j wij .

Lemma 1. For any vector F = (f1 . . . fn)
T ∈ Rd , the Laplacian satisfies

FTLF =
1
2

∑
i,j

wij (fi − fj )
2. (36)

Proof.

FT(D −W )F =
∑
i

di f
2
i −

∑
ij

wij fi fj (37)

=
1
2
(
∑
i

(
∑
j

wij )f
2
i − 2

∑
ij

wij fi fj +
∑
j

(
∑
i

wij )f
2
j ) (38)

=
1
2

∑
i,j

wij (fi − fj )
2. (39)

□

▷ Question: positive definite or semi-definite ?



Graph Laplacian: pre-requisites (II)

Proposition. 4. Consider a connected graph. The eigenvalues of its Laplacian
satisfy µ1 ≥ · · · ≥ µn−1 > µn = 0.
Moreover, the pseudo-inverse satisfies of Γ satisfies:

Γ† =

n−1∑
k=1

1
µk

ukuk
T, (40)

or

[Γ†]ij =
n−1∑
k=1

1
µk

uikujk . (41)

▷ NB: one null eigenvalue: the previous quadratic form is positive semi-definite.

▷ Remark. The pseudo-inverse can also be obtained using the SVD of L, that is L = USVT. If the
inverse exists, it satisfies L−1 = VS−1UT. But since L is symmetric, we get L−1 = US−1UT. Now,
since the graph is connected, it has a single null eigenvalue, so that the pseudo-inverse is given by Eq.
40.



Gaussian Network Model: geometric model

▷ Focus: Cα carbons and their displacements ∆Xi with respect to the equilibrium
positions

▷ Vector equality: for Cα;i and Cα;j

◦
s ij +∆Xj − sij −∆Xi = 0 ⇒ sij −

◦
s ij = ∆Xj −∆Xi . (42)

∆Xi ∆Xj

X0
i X0

j

Xi

Xj
sij

s0ij

We also use the following notations for distances: dij =
∥∥sij∥∥,

◦
d ij =

∥∥∥◦s ij∥∥∥.



GNM: potential
▷ Pairwise potential:

Vij =
wij

2

∥∥∥sij − ◦
s ij

∥∥∥2
(43)

=
wij

2

∥∥∆Xi −∆Xj

∥∥2 (44)

▷ wlog, using wij = γ:

VGNM =
γ

2

∑
ij

(∆Xj −∆Xi )
T(∆Xj −∆Xi ). (45)

▷ Laplacian as a quadratic form:

V =
γ

2
∆XTΓ∆X . (46)

Using this potential, one typically uses a unit matrix M for masses, to that the
generalized eigenproblem of Eq. 7 become a standard eigenproblem:

HA = λMA ⇒ ΓA = λA. (47)

That is, the eigenvectors are those of the Laplacian.



Fluctuations
Assume now that a given conformation is given by Boltzmann’s distribution.
We derive the fluctuations using the pseudo-inverse of the Laplacian:

P [X ] =
1
Zn

exp(−
VGNM(X )

kBT
) =

1
Zn

exp(−
γ

2kBT
∆XTΓ∆X ). (48)

The atomic fluctuations, akin to covariances, are given by

Cij =< ⟨∆Xi ,∆Xj ⟩ > = E
[
⟨∆Xi ,∆Xj ⟩

]
(49)

=
1
Zn

∫
⟨∆Xi ,∆Xj ⟩ exp(−

V (X )

kBT
)d∆X (50)

=
1
Zn

∫
⟨∆Xi ,∆Xj ⟩ exp(−

γ

2kBT
∆XTΓ∆X )d∆X (51)

= [Γ†]ij (52)

=

n−1∑
k=1

1
µk

uikujk . (53)

The penultimate line comes from the definition of the covariance for a multivariate
Gaussian, and the last one is the expression of the pseudo-inverse of the Laplacian –
Eq. 40.

Using the previous, we can define a theoretical B-factors as [?]:

Bi = 8π2< ∆X 2
i >

3
. (54)



The Anisotropic Network Model
▷ Rationale: the GNM does not treat coordinates individually yielding isotropic
motions ⇒ use a model coordinate-based

▷ Two potentials: GNM versus ANM

VGNM =
1
2

∑
ij

kij
∥∥∆Xj −∆Xi

∥∥2
,

(55)

VANM =
1
2

∑
ij

kij (dij −
◦
d ij )

2. (56)

dij = d0ij

d0ij

∆Xi
∆Xj

X0
i X0

j

∆Xi −∆Xj

Xi

Xj

Equal distances but different
displacement vectors.

▷ Approximating VANM : Eq. 56 is not quadratic in the individual atomic coordinates.
However, it can be checked that the initial positions {Xi = X 0

i } define a local
minimum, so that a second order Taylor expansion yields

VANM =
1
2

∑
ij

kij (dij −
◦
d ij )

2 (57)

=
1
2
(X − X0)

TH0(X − X0) + higher order terms. (58)



Hessian H0: expression

▷ Goal: for N atoms, find out the 3N × 3N Hessian matrix
▷ Overall:

H0 =


H11 H12 . . . H1N
H21 H2N

.

.

.
.
.
.

HN1 HNN .

 (59)

▷ Off-diagonal blocks: The calculation yields:

Hij = −
kij

d2
ij

 (xj − xi )
2 (xj − xi )(yj − yi ) (xj − xi )(zj − zi )

(yj − yi )(xj − xi ) (yj − yi )
2 (yj − yi )(zj − zi )

(zj − zi )(xj − xi ) (zj − zi )(yj − yi ) (zj − zi )
2


Xi=X0

i
,Xj=X0

j

(60)

or, using the components of the vector XiXj

Hij = −
kij

d2
ij

XijXij XijYij XijZij
YijXij YijYij YijZij
ZijXij ZijYij ZijZij


Xi=X0

i
,Xj=X0

j

(61)

▷ Off-diagonal blocks:
Hii = −

∑
j ̸=i

Hij . (62)



Fluctuations

▷ Use V in a Gaussian model:

P [X ] =
1
Zn

exp(−
VANM(X )

kBT
) =

1
Zn

exp(−
1

2kBT
∆XTH0∆X ). (63)

▷ Compute a pseudo-inverse: using the N − 6 eigenvalues/vectors {λi} and {ui} of
H0

H0
† =

3N−6∑
k=1

1
λi

uiui
T. (64)

This pseudo-inverse is also organized in 3 × 3 blocks H−1
ij , and the cross-correlation of

Eq. 1 reads as:

Cij =< ⟨∆Xi ,∆Xj ⟩ >=
Tr(H−1

ij )√
Tr(H−1

ii )Tr(H−1
jj )

. (65)

This is an alternative to the expression of Eq. 53 obtained for the Gaussian network
model.



Exercise: calculations

▷ Distance between atoms Xi and Xj :

dij = ((xj − xi )
2 + (yj − yi )

2 + (zj − zi )
2)1/2

, (66)

◦
d ij = dij |(Xi = X0

i , Xj = X0
j ). (67)

▷ Selected calculations to obtain H0:

∂dij

∂xi
= (xi − xj )

1

dij
(68)

∂Vij

∂xi
= kij (xi − xj )(1 −

dij
◦
d ij

) (69)

∂2Vij

∂x2
i

= kij (1 + (xj − xi )
◦
d ij/d

3
ij −

◦
d ij/dij ) (70)

. . . (71)



Using normal modes
▶ Vibrational NM: fluctuations from eigen decomposition of the Hessian of the

potential energy. Uses 3n − 6 modes.
• Depend on the force filed, require diagonalizing the Hessian
• Tend to be too local

▶ Elastic network models: GNM / ANM
• GNM: fluctuations from eigen decomposition of the Laplacian, which acts

as a quadratic form / Hessian. Uses n − 1 modes.
• GNM: fluctuations from the eigen decomposition of a Taylor expansion of

the potential.
• May significantly distort internal coordinates / create steric clashes

▷ NM: resources

▷Ref: Bauer et al, Normal Mode Analysis as a Routine Part of a
Structural Investigation, Molecules, 24, 2019
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Main points

Main points:
▶ Canonical distribution in the NVT ensemble
▶ Associated average internal energy, specific heat, entropy, Helmoltz

free energy
▶ Study of the classical 1D harmonic oscillator
▶ Application to the free energy landscape of hard spheres



Notations and goal

▷ We consider a physical system with state space Ω, and an energy E(s) or ES

for s ∈ Ω.

▷ For the sake of notational convenience, we use notations associated with a
discrete system. For example, evaluating a function f (·) over all states yields∑

s∈Ω f (s).

▷ The number of particles is denoted N. For example, if the system consists of
N atoms moving independently, since each atom has three cartesian
coordinates Ω = R3N .

▷ Main goal: understand the importance of the partition function Z



Perfect gases

▷ Consider a perfect gas whose number of particles and moles satisfy N = nN ,
with N the Avogadro number.
▷ The law of perfect gases satisfies

pV = nRT = NkBT , with kB =
R

N . (72)

▷ We let β = 1/(kBT ), with kB the Boltzmann constant, and note that

∂β

∂T
= − 1

kBT 2 . (73)



Molecular potential energy

▷ Molecule with N atoms: 3N Cartesian coordinates, and 3N − 6 degrees of freedom

d θ

Figure: Internal coordinates

Cαi−1

Cαi
Cαi+1

Ci−1

Ci

Ni

Ni+1

Oi

Oi−1

φ

ψ
ω

H

i-th amino-acid

Ri

Ri−1

Ri+1

▷ The potential energy is a non linear function whose general equation satisfies

Vtotal = Vbond + Vangle + (Vproper + Vimproper) + (Vvdw + Velectro) (74)

▷ Instantiating such an equation requires:

▶ types for atoms and bonds
▶ covalent: bond lengths, angles

▶ non covalent: pairwise distances
▶ solvent model

▷ Force field: hundreds/thousands of parameters
▷ : AMBER, CHARMM, MARTINI etc



Boltzmann’s distribution
▷ Internal energy in the sequel: E = V (or E = U + K)

▷ Our system: exchanges energy with a heat bath; constant temperature T

▷ We take for granted the Boltzmann distribution, with assigns to each state i
a probability

P [i ] =
e−βEi

Z
, with Z =

∑
i

e−βEi . (75)

The normalization constant Z is called the partition function.

▷ Microscopic versus macroscopic
▶ Eq. 75 refers to a microscopic configuration.
▶ Averaging using Eq. 75 yields macroscopic quantities, also called

observables.

▷ Low energy states are not in general the most populated

Energy E

Probability



Average internal energy

Nb:
∂Z

∂β
= −

∑
i

Eie
−βEi (76)

Averaging the energy Ei over all states yields

< E >=
∑
i

EiP [i ] =

∑
i Eie

−βEi

Z
= − 1

Z

∂Z

∂β
= −∂ logZ

∂β
. (77)



Specific heat per particle

▷ Heat capacity: energy needed to increase the temperature by one unit.
▷ For our system with N particles, using Eq. 77 for the last equality:

NCv =
∂ < E >

∂T
=

∂ < E >

∂β

∂β

∂T
= − 1

kBT 2
∂ < E >

∂β
(78)

=
1

kBT 2
∂2 logZ

∂β2 . (79)

▷ Intuition
▶ Condensed phase: Cv related

to the potential energy
▶ Opposite: Cv related to the

kinetic energy
▶ In-between: Cv is higher

Folded

Unfolded

Cp

Cv as a function of T : intuition



Entropy

▷ Using the counting based formulae

S = −kB
∑
i

P [i ] log P [i ] = −kB
∑
i

e−βEi

Z
log

e−βEi

Z
(80)

= −kB
∑
i

e−βEi

Z
(−βEi − logZ) (81)

= kBβ < E > +kB logZ =
< E >

T
+ kB logZ . (82)

Or equivalently

S =
< E >

T
+ kB logZ . (83)



Helmoltz free energy – denoted A or F

▷ From Eq. 83, one defines the so-called Helmoltz free energy:

A(T ,N,V )
Def
= −kBT logZ =< E > −TS . (84)

ýConstant volume!

▷ From the previous equation, one also get the following interesting parallel:
▶ Boltzman factor for a microscopic state

exp(
−Ei

kbT
) (85)

▶ Macroscopic analogous based on the Helmoltz free energy:

exp(− A

kbT
) = Z(=

∑
i

e−βEi ) (86)



Classical 1D harmonic oscillator

▷ 1D Harmonic oscillator: spring

E = 1
2k(x− x0)

2

E

x0
x

E0

Figure: 1D harmonic oscillator

▷ Associated potential energy

E(x) = E0 +
k

2
(x − x0)

2 or equivalently E(u) = E0 +
1
2
ku2. (87)

▷ NB: k is the stiffness; geometrically, this the curvature of paraboloid
representing the energy.



1D harmonic oscillator: partition function and free energy

▷ Partition function: using Gaussian integrals, we get

Z =

∫
exp(−βE(u))du = exp(−βE0)

∫
exp(−β

ku2

2
)du (88)

= exp(−βE0)

√
2π
βk

. (89)

▷ Helmoltz free energy. Using the previously found partition function, we get:

F = −kBT logZ = E0 − kBT log(
2π
βk

)1/2. (90)



1D harmonic oscillator: average internal energy and entropy

▷ Average internal energy. One gets

< E >=
1
Z

∫
(E0 +

ku2

2
) exp(−βE0

βku2

2
)du = E0 +

kBT

2
. (91)

▷ Entropy. One gets

S =
< E >

T
+ kB logZ =

E0

T
+

kB
2

+ kB(−βE0 + log(
2π
βk

)1/2 (92)

=
kB
2

+ kB log
2π
βk

1/2
. (93)

It should be noticed that when the curvature k decreases, the entropy
increases: there is indeed more uncertainty on the position of the oscillator.



Rigid-rotor harmonic oscillator

▷ Assumptions: for an isolated rigid molecule, the energy can be decoupled as
▶ translation
▶ rotation
▶ vibrational
▶ electrostatic


E = Etrans + Erot + Evib + Eelec

Z = Ztrans ∗ Zrot ∗ Zvib ∗ Zelec

S = Strans + Srot + Svib + Selec

(94)

▷ Caveat: does not apply to floppy (soft bending) molecules



Rotational degrees of freedom

▷ Mass and moment of inertia:
▶ mass: determines the force needed to obtain a given acceleration
▶ moment of inertia: determines the torque needed to produce an angular

acceleration
• torque/moment/force moment: vector representing the ability of a force

to produce a rotational movement

▷ Tensor of inertia of a polyatomic molecule:

I =

∑
i mi (y

2
i + z2

i ) −
∑

i mixiyi −
∑

i xizi
−

∑
i mixiyi

∑
i mi (x

2
i + z2

i ) −
∑

i miyizi
−

∑
i mixizi −

∑
i miyizi

∑
i mi (x

2
i + y2

i )

 (95)

Eigenvalues/vectors: moments of inertia / principal axis of inertia

▷ Approximation of the partition function – with σ the rotational symmetry number:

Zrot =

√
π

σ
(
8π2kT

h2 )3/2
√

I1I2I3. (96)

▷Ref: Jensen, Introduction to computational chemistry, Wiley
▷Ref: Arnold, Math. methods of classical mechanics, Springer



Polyatomic molecule and vibrations: quantum partition
function

▷ Generalization of the harmonic model for a diatomic molecule:

Evib =
∑

i=1,...,3N−6

(ni + 1/2)hνi (97)

Zvib =
∏

i=1,...,3N−6

e−hνi/2kT

1 − e−hνi/2kT . (98)

▷Ref: Jensen, Introduction to computational chemistry, Wiley



Polyatomic molecules and vibrations: classical
multi-dimensional harmonic oscillator

▷ Physical model. Consider a set of N atoms, whence 3N cartesian
coordinates, whose potential energy is quadratic.
▷ The Hessian of the potential energy is the 3N × 3N matrix defined by

Hij =
∂2E

∂xi∂xj
(99)

▷ Three types of models:
▶ Force field based: 3N − 6 eigenvalues
▶ Gaussian Network Model: N − 1 eigenvalues
▶ Anisotropic Network Model: 3N − 6 eigenvalues

▷ Vibrational partition function: from frequencies of normal modes

Zvib ∝
∏
i

√
2π
βki

. (100)



Experiment and goal
▷ Setup: one places small polystyrene (PS) balls into a well.
▷ Question: most likely geometries for clusters of N balls?
▷ Experiment: how. The PS balls are placed in cylindrical micro-wells filled with an
appropriate chemical (irrelevant here). The walls of the cylinders are treated to avoid
interactions with the balls.
▷ Counting: using a microscope, one takes images, and consider the geometry of the
clusters obtained.

Figure: Conformations of hard spheres: experiment. From [?].



Physical model

▷ Model. The coating of the balls is such that interactions are very local, so
that the potential energy of a collection of N balls is given by the number C of
pairs in contact.

▷ Potential energy approximation

V = CVm, (101)

with Vm the depth of the interaction potential.



Experiments: observations for N = 6
▷ The observations are as follows:

▶ Two clusters are observed: polytetra(hedron) and octahedron.
▶ Their respective percentages are ∼ 96% and ∼ 4%, whence the ratio 96/4 = 24.
▶ This is so, even though the two clusters exhibit the same number of contacts

(m = 12), so that the potential energy is the same by Eq. 101

Figure: Configurations for N=6 balls. From [?]. (Left) Clusters (B)
Population statistics. Note that the polytetrahedron is ∼ 24 times more
abundant, even though the number of interacting pairs (whence the
potential energy) are identical.



Statistical model: macroscopic states

▷ States. Let a cluster be called a state: a number of microscopic
configurations populate this state. Using Eq. 84, using the partition function
Zs for this state to define the macroscopic analogous of Boltzmann’s weight
(Eq. 86), one has:

As = −kBT logZs or equivalently exp(− As

kbT
) = Zs . (102)

Therefore, the relative abundance of state s is given by

ps =
Zs∑
Zs

. (103)



Statistical model: microscopic states
▷ The partition function Zs of a state has three components:

Zs = Zs,tZs,rot.Zs,vib. (104)

with
▶ Zs,t : translational. This term depends on the free volume within a

cylindrical well. Assuming that the volume of all clusters (at fixed N) is
the same, Zs,t is the same for all clusters.

▶ Zs,rot.: the rotational partition function depends on the number of
orientations and particle permutations in a cluster. With I the inertia
tensor, and σ the rotational symmetry number (based on point group), it
can be shown that

Zs,rot. ∝
√

determinant(I )
σ

. (105)

▶ Zs,vib.: the vibrational partition function given by Eq. (100):

Zvib ∝
3N−6∏
i=1

√
2π
βki

.



Calculations for the two configurations
▷ The calculation yields, see Fig. 48:

▶ polytetra(hedron) : Zs,rot.Zs,vib. ∼ 1.6 ∗ 0.061 = 0.0976
▶ octahedron: Zs,rot.Zs,vib. ∼ 0.12 ∗ 0.034 = 0.00408

Taking the ratio, we get 0.0976/0.00408 ∼ 23.9, which is highly consistent with the
observed frequencies since 96/4 = 24.

Conformations of hard spheres: why is
the polytetrahedron more abundant?

▷ Conclusion: the cluster geometry favored is that which is less symmetric, and
the main source for this is not the interaction energy, but the rotational entropy.



A didactical view

Figure: Entropy driven association: didactical explanation. From [?]
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Independent component analysis: the cocktail party problem
▷ The cocktail party problem: disentangling voice and music sources

▷ Model: recorded data x and the signals S yield(
x1
x2

)
=

(
a1 a2
b1 b2

)(
s1
s2

)
=

(
a1s1 + a2s2
b1s1 + b2s2

)
(106)

In more compact form : X = AS
•Assumption: The sources are statistically independent in the following sense:

f (y) =
∏
i

fi (si ). (107)

Consequently, the covariance matrix reads as E
[
SST] = Id

Problem 2. Under the previous assumption, and assuming that the linear operator
A is invertible, find the inverse A−1 providing the signal from the mixed measurements:

S = A−1X . (108)

NB: in the sequel: we assume centered data.
▷Ref: J. Shlens, A tutorial on ICA, preprint, 2014



Datasets with linear mixing: examples

▶ Individual models
▶ Merged dataset

▶ Blue, red: tICA vectors
▶ Green: PCA

▷Ref: J. Shlens, A tutorial on ICA, preprint, 2014



ICA: overview of the two steps

1. Step 1: whitening - via PCA

2. Step 2: find an orthogonal matrix V associated with a mutual information
minimization problem



Step 1: whitening (I)
▷ Problem formulation using the SVD of A: with A = UΣVT

S = A−1X = VΣ−1UTX . (109)

▷ Correlation matrix C : direct calculation

C = E
[
XXT

]
. (110)

By the spectral decomposition theorem, we can decompose C as follows:

C = EDET
. (111)

▷ Correlation matrix C : using the data model ie X = AS, and the SVD of A

C = E
[
(AS)AST

]
(112)

= E
[
UΣVTSSTVΣUT

]
(113)

= UΣVTE
[
SST

]
VΣUT (114)

= UΣ2UT
. (115)

NB: we have used E
[
SST

]
= Id .

Comparing Eqs. 111 and 115 makes it possible to choose U = E and Σ = D1/2. With these, Eq. 109
rewrites as

S = A−1X = VD−1/2ETX (116)

The operator D−1/2ET is a so-called whitening or sphereing operation [?] – Fig. 8. Our problem
rewrites as

S = VXw , with Xw = D−1/2ETX . (117)

We are left with the problem of identifying the optimal rotation V .



Step 1: whitening (II)

▷ Inversion problem re-written:

S = VXw , with Xw = D−1/2ETX . (118)

decorrelation (PCA) via ET normalization via D−1/2

Figure: ICA: whitening. The input data are transformed by a rotation
then a scaling, yielding the whitened data Xw = D−1/2ETX .

⇒ We are left with the problem of identifying the optimal rotation V .



Step 2: finding the orthogonal matrix V

Problem 3. Find an orthogonal matrix V such that S = VXw and E
[
SST] = Id .

▷ Model: consider a random vector S with joint density f (y) =
∏

i fi (yi ) – cf our
assumption
▷ Mutual information: Kullback-Leibler divergence between the joint density and the
product of marginals

I (S) =

∫
f (y) log

f (y)∏
i fi (yi )

dy . (119)

Following the assumption f (y) =
∏

i fi (yi ), we aim at minimizing:

I (S) =
∑
i

H(Si )− H(S). (120)

Assuming estimators from the data:

I (Ŝ) =
∑
i

H((VXw )i ) − H(VXw ) (121)

=
∑
i

H((VXw )i ) − (H(Xw ) + log2(det(V ))) =
∑
i

H((VXw )i ) − H(Xw ) (122)

Since H(Xw ) does not depend on V , we end up with the minimization problem:

arg min
V

∑
i

H((VXw )i ) (123)

Difficulties to solve this problem:
▶ Eq. 123 is non convex in general – local minima.
▶ Estimating the individual entropies is non trivial per se.



ICA and its limitations
▷ ICA is under-constrained: several degrees of freedom yield alternative solutions

▶ Permutation of labels
▶ Flip of independent components
▶ Rescaling the ICA vectors. The rescaling can compensated in the assumption

E
[
SST] = Id . See the derivation of Eq. 116.

Figure: ICA: ambiguities. Left: permuation of the lables; Middle: flip of
the ICA; Right: rescaling of the ICA. From [?].

▷Ref: J. Shlens, A tutorial on ICA, preprint, 2014
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Time lagged ICA (tICA): goals

▷ Assumption: consider a dynamical system at equilibrium, given by a vector valued
time series X (t)

▷ Two goals:

1. Project the dynamics onto a lower dimensional space whose coordinates are
uncorrelated – that is cross-covariances are null auto-covariances are maximal.

2. Identify fast and slow motions.

NB: spirit analogous to ICA, but a single source, and exploitation of temporal
coherence

System with
▶ two meta-stable states, with rare

transitions.
▶ red vector: first principal

component by PCA.
▶ black vector: first tICA

component.

▷ NB: with a proper lag time τ , tICA identifies the slow directions, x here.
▷Ref: Noe et al, J. of Nonlinear science, 2018



tICA: the generalized eigenproblem

Definition 4. The time lagged covariance matrix at lag time τ is defined by:

C r (τ) =
(
c rij (τ)

)
,with c rij (τ) = Et

[
Xt,iXt+τ,j

]
. (124)

▷ Central def.: motivated by the theory of transfer operators

Definition 5. The time-lagged independent components are defined as the
solution of the following eigenvalue problem:

Cτ fl = λlC0fl , (125)

or equivalently, using the pseudo-inverse C0
† of C0, of

MTICAfl = λl fl , with MTICA = C0
†Cτ . (126)

The time scale of the mode l is the quantity

tl = −
τ

log λl
. (127)



tICA: time scales

Proposition. 5. The λi values of Eq. 126 are ≤ 1.

The proof is based on the Cauchy-Schwarz inequality for expected covariances in time
series:
Proof. Multiplying the generalized eigen pb. equation Cτ fi = λiC0fi by fi

T yields

λi =
fi

TCτ fi

fi
TC0fi

. (128)

Covariance matrices satisfy the Cauchy-Schwarz inequality for expectations Cτ ⪯ C0,
that is, for any vector v , one has vTCτ v ⪯ vTC0v . One conclude from the preceding
equation. □

▷ Important comments:
▶ Correlations between states decay as a function of time. Thus, λi (≤ 1) captures

how much correlation remains at the time lag τ .
▶ Eigenvalues close to 1 indicate modes with long time persistence. These are the

modes of interest.
▶ tICA modes are assessed by sorting the time scales of Eq. 127 by decreasing

value.



tICA vectors: C0 orthogonality

Proposition. 6. Consider the eigenvectors {fi} of the generalized eigenproblem of
Eq. 126. These vectors are C0 orthogonal, that is

fi
TC0fj = δij . (129)

Proof. Consider two eigenvector fi and fj , that is{
Cτ fi = λiC0fi
Cτ fj = λiC0fj

(130)

Taking the transpose of the first eq. and multiplying by fj yields

fi
TCτ fj = λi fi

TC0fj . (131)

Likewise, for the second equation, we get

fj
TCτ fi = λj fj

TC0fi . (132)

But since Cτ is symmetric, we have

λi fi
TC0fj = λj fj

TC0fi ⇒ (λi − λj )fi
TC0fj = 0. (133)

Then λi ̸= λj implies fi
TC0fj = 0, that is, the eigenvectors fi and fj are C0-orthogonal.

Finally, assuming that C0 is positive definite, we can normalize the eigenvectors so that

fi
TC0fi = δij . (134)

□



Using tICA
▷ Using tICA:

procedure Enjoy-tICA(X , Y )
Compute the covariance matrices C0 and Cτ
Solve the generalized eigenvalue problem e.g. using AMUSE
Threshold the eigenvalues using the time scales – Eq. 127 ▷ Assume k get selected
Assemble the d × k transformation matrix W = [f1, . . . , fk ]

Project onto tICA coordinates with to obtain Z(t) = WTX (t) ▷ Shape is d × 1 = (k × d)× (d × 1)
end procedure

▷ Covariance matrices: with datasets X = [x0 . . . xm−1],Y = [xτ . . . xτ+m−1],
compute

C0 =
1

m − 1
XXT,Cτ =

1
m − 1

XYT. (135)

▷ Projection onto the tICA vectors selected:

Z(t) = WTX (t). (136)

▷ NB: if we denote gi = C0fi , Because of the C0 orthogonality between the fi s – Eq.
129, the projection onto the tICA vectors amounts to rewriting the time series in the
{gi} basis, that is

Z(t) =
∑
i

(fi
TX (t))gi . (137)



Computing tICA with AMUSE

▷ Computing tICA when n ≫ d :

Proposition. 7. Algorithm ?? computes the solutions of Eq. 126.

procedure AMUSE(X , Y )
Compute a reduced SVD of X , i.e. X = UΣVT

Whiten the data as X̃ = Σ−1UTX and Ỹ = Σ−1UTY
Compute M̄TICA = X̃ ỸT

Solve the eigenvalue problem M̄TICAwl = λlwl

Obtain the tICA coordinates as fl = UΣ−1wl
end procedure



Algorithm AMUSE: proof of correctness
Proof. We also introduce the following linear transformation:

fl = UΣ−1wl . (138)

Note the following expression of the pseudo-inverse of (XXT)
† obtained from the SVD

of X :
(XXT)

†
= UΣ−2UT. (139)

Note also
X̃ ỸT = Σ−1UTXYUΣ−1. (140)

Starting from Eq. 126, we make M̄TICA appear:

MTICAfl = C0
†Cτ fl = (XXT)

†
XYTfl (141)

= UΣ−1Σ−1UTXYTUΣ−1wl (142)

= UΣ−1X̃ ỸTwl (143)

= λlUΣ−1wl − wl eigenvector of M̄TICA (144)

= λl fl . (145)

□



Lysine Arginine Ornithine (LAO) protein
▷ LAO: member of the PBP family; transports low molecular weight ligands from the outer to the inner
membrane in the ABC transport mechanism of Gram-negative bacteria

▷ LAO protein and its two domains:

▶ The LAO protein, 238 a.a., is composed of 2 domains, large (blue) and small (red). Molecular
dynamics simulation of 1µs in the NVE ensemble.

▶ RMSD wrt the crystal structure, overall and per domain.
▶ MD simulation: 1µs

▷ Setup: tICA analysis with time lag τ = 1ns

▷ Five modes selected: all with time scales ≫ τ

▷Ref: Naritomi et al, J. Chem. Physics, 2013



LAO: slowest mode IC1

▶ (a) Mode vectors of IC1 restricted to each Cα carbon, with remarkable vectors
in purple.

▶ (b) Displacements of Cα accounted for by IC1. Remarkable Cα marked by
magenta diamonds.



LAO: IC1 and local motion of the backbone

▶ (i) the trajectory along IC1 (panel (a)),
▶ (ii) two dihedral angles ψ, ϕ working in tandem (compensating one another) in a

so-called crankshaft move (panels (b,c)),
▶ (iii) distance between 2 atoms: aspartic acid D220-O – tyrosine Y223-N.



LAO: stability of tICA vectors as a function of τ

NB: from a twin paper in which τ is renamed t0
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