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Overview

> Algorithms
> Independent Component Analysis (ICA)
> time lagged ICA (tICA)

> Theoretical biophysics
» Harmonic oscillators in several guises

» Notions of statistical physics

> Molecular science
» Formation of clusters of hard spheres

» Slow modes in protein motions



Structural alignments and analysis
Normal modes
Intro
Vibrational normal modes
Elastic Network Models: pre-requisites
Gaussian Network Model
Anisotropic Network Model



Normal modes: movie
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Figure: NMA in Schrddinger


https://youtu.be/RvYr5Q7J3sI

Normal modes: overview

> Pros.

>

| 4
| 4
| 4

Based on physics, but coarse grain — much faster than molecular dynamics
Theory of normal modes: physics of vibrations, which exhibit correlated motions
At low temperature (< 250K do vibrate like solids
At room temperature, a number of biological mechanisms exploit low frequency
correlated motions

® opening closing of enzymes

® functioning of the ribosome

® functioning of hemoglobin, etc

> Cons.

» Harmonic models are local

» No anharmonic effects

» On the other hand: mechanisms can exploit harmonic effects at early stages,

and then proceed with the energy provided/released



Normal modes and correlations

> Goal: study covariances between atomic displacements

C(i,J) =<({AX;,AXj) >,
1y 5J

> Two types of models
> Vibrational normal modes
> Energetic normal modes / elastic network models:

® (GNM) Gaussian network model: correlation using whole fluctuations
vector AX;

® (ANM) Anisotropic network model: understanding directional preferences
along the three coordinate axis, via the decomposition
AXi = Axi+ Ayi + Az



Vibrational normal modes: generalized eigenproblem

> Kinetic energy: With M the diagonal matrix of individual masses

1
K= EL',"'/\/IL', (2)

> Potential energy: locally given by a quadratic form

1 . 82v
V = —u Hu,t with Hj = —— (3)
2 Ou;du; _ i—
J [ {uj}=0,{d;}=0
> The Lagrangian of the system:
1r . 1T
L=—d Mi— —u Hu. (4)
2 2
The Euler-Lagrange equations gives
Mii + Hu = 0. (5
With A = (a1,...,ap)7 — the a; are amplitudes, we seek a solution of the form u(t) = Aexp(iwt):
u(t) = Aexp(iwt),
a(t) = iwu(t), 6)
ii(t) = —w2u(t).
Plugging into Eq. 5 yields the following generalized eigenvalue problem:
HA = w2 MA, (7

= the vector A is solution of a generalized eigenproblem.



Solving the generalized eigenproblem

The previous equation can be rewritten as
HA — w?MA = (H — w>M)A = 0. (8)
This is a system of n homogeneous linear equations, so that we aim at solving
det(H — w?M) = 0. (9)

Expanding yields a n-th order polynomial in w?.
> Remark. Eq. 5: Newton's equations of motion in the form

Mg=F =-VV. (10)
Assume the potential energy is invariant by rigid motion. By Newton’s equations —

Eq. 10, no forces are applied to the system: there are actually exactly six null
frequencies / eigenvalues.



Normal modes, example: the triatomic molecule
> Model

my

> Potential
my

k
V=

2 k 2
= —(x2—x1 —b) "+ —(x3 —x2 — b)°. (11)
2 2
We introduce coordinates wrt equilibrium positions. With x3 o — x2,0 = x2,0 — X1,0 = b:

Vi =X — Xj0 (12)
Then
k -k 0 m 0 0
= (-« 2« —k|,Mm=[0 mm o (13)
0 —k k 0 0 my
k — w2my —k 0
det(V — w?M) = det( —k 2k — w2my —k ) (14)
] —k k — w2m1
Solving
wz(k — wzml)(k(mz +2my) — w2m1m2) =0 (15)
with the following solutions

2my
w1 =0,wz2 =4/ —,wz3=4/—(1+—). (16)
my my m2
NB: wy = 0 is expected, see previous Remark on null eigenvalues.



Mass weighted coordinates (1)

> Eigenproblem revisited: A — e;, and wiz — A

He,- = /\,-Me,-. (17)

Proposition. 1. The normal mode vectors solutions of the generalized
eigenproblem are M-orthogonal:

e,-TI\/IeJ- = (S,J (18)

Hint: from He; = \jMe;, transposing and multiplying by ¢; ...

Proposition. 2. Using normal mode coordinates {qi}, the potential satisfies

1
H=2 Xdg? 19
ZZ q; (19)

S . 1T .
Hint: manipulate H = Su" Hu using u =3, gie;



Mass weighted coordinates (I1)

Normal mode vectors are also solutions of a std eigenproblem with modified
vector/matrices, yielding mass weighted coordinates:

> Let f; = M1/2¢
We have

He; = \jMe;
SHMY2MY2¢; = X\ MY2 MY/ 2
SHM™Y2f = \;MY2f,
SMY2HM Y2 = £,
SHf = X\f, with A= M~Y2HM1/2,

N
=
—

N
w
~



Intermezzo: the equipartition theorem

> Canonical NVT ensemble: Boltzmann's distribution applies

» NB: in the microcanonical NVE ensemble: the system has a fixed total energy,
there is no Boltzmann's factor, and there is a uniform probability for
conformations.

> Equipartition theorem: the average energy associated with each quadratic degree of
freedom (dof) is

1
< E; >= EkBT
> For one dof of the the harmonic oscillator: in the NM basis:

1

Ei = ~)\ig?, (25)
2
and we get
1 1 )
<E,'>:§kBT: 5)\,-<q,- >, (26)
and therefore T
< q?>= i (27)
i

> NB: the stiffer the spring/larger A;, the smaller < q,-2 >



> Goal:

Pairwise correlations

compute C,p using the NM basis {e;}

PI’OpOSItIOﬂ. 3. The pairwise correlations are given by

Cap =< Uaup >= kBTZ

€ ael b

Proof. Rewrite an original displacement vector in the basis of NM

u= Z qgje;.
7

For two original coordinates u; and up: u; = >, giej 5, up = > qgjej p- Whence

i

Cap =< uatpy >= Y < qiqj > € 1€, p-
But since NM coordinates are uncorrelated, that is < g;q; >= 0 if i # j, we get

2
<uatp >=Y < a7 > e e
i
expectation

E[qf] =< af >=
whence Eq. 3. [

kg T

But each g; is an independent harmonic oscillator, the equipartition theorem gives the following

i

(28)

(29)

(30)

(31)

(32)




Application: atomic fluctuations

> Atom /: three Cartesian coordinates, whence
AX? = Ax? + Ay? + Az, (33)
Denote J = {j1,j2,/j3} the indices of these coordinates, the linearity of expectation

gives
e e
< AR? >= kBTZZ%\"’J. (34)
i jed !

Should be compared to the experimentally measured B-factor, defined by

B; = 8% < u,-2 > (35)



Elastic Network Models

> Goal: depart from full atom models and (complicated) atomic force fields

Figure: Elastic network models GNM/ANM: example. In both cases,
one attaches a spring to residues within a distance threshold.



Graph Laplacian: pre-requisites (I)

Consider the standard Laplacian L = D — W of the graph, with wj; = 1 iff the nodes i
and j are connected, and D the generalized degree defined by d; = Zj wjj.

Lemma 1. For any vector F = (fi ... fn)T € RY, the Laplacian satisfies

FTLF = % Z wii(fi — £)2. (36)
Proof.
FT(D— W)F = 3" dif? =3 wifi (37)
%(Z_(Zwy R SEUASIOBD I
- 7ZWU(fff)2 (39)
0

> Question: positive definite or semi-definite ?



Graph Laplacian: pre-requisites (Il)

Proposition. 4. Consider a connected graph. The eigenvalues of its Laplacian
satisfy 1 > -+ > pip—1 > pip = 0.
Moreover, the pseudo-inverse satisfies of I satisfies:

n—1 1
M=>" —uu’, (40)
k=1 Fk
or
n—1 1
My =" — it (41)
=1 Mk

> NB: one null eigenvalue: the previous quadratic form is positive semi-definite.

> Remark. The pseudo-inverse can also be obtained using the SVD of L, that is L = USVT. If the
inverse exists, it satisfies L=1 = vs—1yT. Butsince L is symmetric, we get L—1 = ys—1yT. Now,
since the graph is connected, it has a single null eigenvalue, so that the pseudo-inverse is given by Eq.
40.



Gaussian Network Model: geometric model

> Focus: C, carbons and their displacements AX; with respect to the equilibrium
positions

> Vector equality: for C_.; and Ca_j

Si+AX; — 55 — AX; =0 = 57 — S = AX; — AX. (42)

o
We also use the following notations for distances: dj; = ||s,-j||, dj = Hg”H



GNM: potential

> Pairwise potential:

W,'j o 2
Vi=3 HSU_SU

wijj
= |ax; - ax|?

> wlog, using wj = :
y
Venm = > (AX; - AX)T(AX; — AX)).
ij
> Laplacian as a quadratic form:

V= gAXTFAX.

Using this potential, one typically uses a unit matrix M for masses, to that the
generalized eigenproblem of Eq. 7 become a standard eigenproblem:

HA=XMA = TA=)J)A

That is, the eigenvectors are those of the Laplacian.

(43)

(44)

(45)

(46)

(47)



Fluctuations

Assume now that a given conformation is given by Boltzmann's distribution.
We derive the fluctuations using the pseudo-inverse of the Laplacian:

1 VGN/\/](X) 1 Y T
PIX] = — _ MV ————AX'TAX). 48
M=z oot )= 2, T ) (49)
The atomic fluctuations, akin to covariances, are given by

Cij =< (AX;, AX;) > =E [(AX;, AX;)] (49)

1 V(X)
= — [ (AX;, AX; — dAX 50
o [ ax.ax) en(-7 ) (50)

1
Z/(AX,-,AXj)exp(ka’yTAXTFAX)dAX (51)

B
=1y (52)
n—1 1
= Z —u,—kujk. (53)
r=1 Mk

The penultimate line comes from the definition of the covariance for a multivariate
Gaussian, and the last one is the expression of the pseudo-inverse of the Laplacian —
Eq. 40.

Using the previous, we can define a theoretical B-factors as [?]:
2
,< AXZ >

B; = 8=
3

(54)



The Anisotropic Network Model

> Rationale: the GNM does not treat coordinates individually yielding isotropic
motions = use a model coordinate-based

> Two potentials: GNM versus ANM

1
Venm = 3 Zkij | ax; — AX,-||2,
i
(55)
1 o
Vanm = 5 > " kij(dj —di)?. (56)
ij

Equal distances but different
displacement vectors.

> Approximating Vanpn: Eq. 56 is not quadratic in the individual atomic coordinates.
However, it can be checked that the initial positions {X; = X?} define a local
minimum, so that a second order Taylor expansion yields

1 o
Vanm = > ki(dy — dy)? (57)

1
= S(X - Xo)THo(X — Xo) + higher order terms. (58)



Hessian Hy: expression

> Goal: for N atoms, find out the 3N X 3N Hessian matrix

> Overall:

Hii  Hiz... Hyy
Hz1 Han
Hni Hyw -

> Off-diagonal blocks: The calculation yields:

kij (Xj - X:)z
Hj = ——3 ( ;(Xj xi)

z)(5 — xi)

> Off-diagonal blocks:

(5 = xi)yj — vi)
v — vi)?
(z7 = z)(yj — i)

XpXi XYy XjZj
YiXi  YYi YiZj
ZiXij  ZiYy  ZjZj

(xj = xi)(zj — z)
(vj — yi)(Z,: ; z)

) X0 x.—x0
Xi=XP Xj=Xf

(59)

(60)

(61)

(62)



Fluctuations

> Use V in a Gaussian model:

1 Vv, X 1 1
n B n B

> Compute a pseudo-inverse: using the N — 6 eigenvalues/vectors {\;} and {u;} of
Ho
V-6 4
Hof = —ujuiT. 64

This pseudo-inverse is also organized in 3 x 3 blocks HiJTl, and the cross-correlation of

Eq. 1 reads as:

Tr(H; )

Cj =< (DX}, AX)) >= ——tee. (65)
Tr(H; H)Tr(H; )

This is an alternative to the expression of Eq. 53 obtained for the Gaussian network
model.



Exercise: calculations

> Distance between atoms X; and X;:

dj = (g — )% + (o — ) + (5 — 2)*)2, (66)

M o o
dij = di|(X; = X7, Xj = X}7). (67)

> Selected calculations to obtain Hg:

adj; 1

Ul
=(x; — xj)— 68
o (xi J)dy (68)
AV d:
axl_j = kil — )1 — 5= (69)
i d
U
82V o 3 o
Bx_z’f = ki + (xj — x)dj/dy — dij/di) (70)
i

(71)



Using normal modes

» Vibrational NM: fluctuations from eigen decomposition of the Hessian of the
potential energy. Uses 3n — 6 modes.
® Depend on the force filed, require diagonalizing the Hessian
® Tend to be too local
> Elastic network models: GNM / ANM
® GNM: fluctuations from eigen decomposition of the Laplacian, which acts
as a quadratic form / Hessian. Uses n — 1 modes.
® GNM: fluctuations from the eigen decomposition of a Taylor expansion of

the potential.
® May significantly distort internal coordinates / create steric clashes

> NM: resources

Table 1. The most commonly used NMA web services.

Service url Reference
EiNemo hitp:/ /wiww.sciences.univ-nantes fr/elnemo/ [20,68]
AD-ENM https://enm.lobos nih.gov/index.html [104-106]
NOMAD-Ref http://lorentz.immstr.pasteur.fr/ nomad-ref. php [107]
oGNM https: // dyn.life nthu.edu.tw /0GNM/oGNM.php [108]
iGNM http:// gnm.csb.pitt.edu/index.php [109,110]
DynOmics  http://gnm.csb.pitt.edu/index.php [111]
ANM 2.1 http://anm.csb.pitt.edu/ [112,113]
HingeProt http:/ /www.pre.boun.edu.tr/appserv /pre/hingeprot /hingeprothtml  [1 14]
MolMovDB  http://molmovdb.org/ [115,116]
iMODS hitp://imods.chaconlab.org/ [117,118]
WEBnm@ http: / /apps.cbu.uib.no/webnma /home [n\]

>Ref: Bauer et al, Normal Mode Analysis as a Routine Part of a
Structural Investigation, Molecules, 24, 2019



Structural alignments and analysis

A primer in statistical physics
Notations
The (canonical) Boltzmann distribution
The classical 1D harmonic oscillator
Polyatomic molecules: the rigid-rotor harmonic oscillator
approximation
Application: free energy landscape of hard spheres



Main points

Main points:
» Canonical distribution in the NVT ensemble
» Associated average internal energy, specific heat, entropy, Helmoltz
free energy
» Study of the classical 1D harmonic oscillator

» Application to the free energy landscape of hard spheres



Notations and goal

> We consider a physical system with state space 2, and an energy E(s) or Es
for s € Q.

> For the sake of notational convenience, we use notations associated with a
discrete system. For example, evaluating a function f(-) over all states yields

2seaf(s):

> The number of particles is denoted N. For example, if the system consists of
N atoms moving independently, since each atom has three cartesian
coordinates Q = R3".

> Main goal: understand the importance of the partition function Z



Perfect gases

> Consider a perfect gas whose number of particles and moles satisfy N = n/\/,
with NV the Avogadro number.
> The law of perfect gases satisfies

pV = nRT = Nkg T, with kg = % (72)
> We let 5 =1/(ksT), with kg the Boltzmann constant, and note that
LU (73)

OT ~  keT?



Molecular potential energy

> Molecule with N atoms: 3N Cartesian coordinates, and 3N — 6 degrees of freedom

i-th amino-acid

di\g

Figure: Internal coordinates

> The potential energy is a non linear function whose general equation satisfies
Vtotal = Vbond + Vangle + (VPropel’ + Vimproper) + (Vvdw + Velectro) (74)
> Instantiating such an equation requires:

» types for atoms and bonds » non covalent: pairwise distances

» covalent: bond lengths, angles > solvent model
> Force field: hundreds/thousands of parameters
> : AMBER, CHARMM, MARTINI etc



Boltzmann's distribution
> Internal energy in the sequel: E =V (or E = U + K)
> Our system: exchanges energy with a heat bath; constant temperature T

> We take for granted the Boltzmann distribution, with assigns to each state i

a probability
—BE;
P[i] = e? with Z = 3" e 775 (75)

The normalization constant Z is called the partition function.

> Microscopic versus macroscopic
» Eq. 75 refers to a microscopic configuration.

» Averaging using Eq. 75 yields macroscopic quantities, also called
observables.

> Low energy states are not in general the most populated

Probability




Average internal energy

Nb: 87
5= > Ee o (76)

Averaging the energy E; over all states yields

_ : o Y Ee P 197 flogZ
<E>_ZE,]P>[:]_ 7 ="Z95= o4

(77)



Specific heat per particle

> Heat capacity: energy needed to increase the temperature by one unit.
> For our system with N particles, using Eq. 77 for the last equality:

O0<E> O<E>08 1 O0<E>
NCV = = _ = — P 78
oT o oOT ke T2 0p (78)
1 8%logZ
- L Tz (79)
> Intuition
CP
» Condensed phase: C, related 4
to the potential energy <‘7
» Opposite: C, related to the g Untolded
kinetic energy Folded
» In-between: C, is higher >

C, as a function of T: intuition



Entropy

> Using the counting based formulae

Or equivalently

:—kBZIP’[]IogIP’[]——kBZ

:_kBZe

i

:k5ﬂ< E>+kB|OgZ:

7 (—BE—

<E>

e PEi
|
Z %72
log Z)
<E> | kologZ.
+ kg log Z.

(80)

(81)

(82)

(83)



Helmoltz free energy — denoted A or F

> From Eq. 83, one defines the so-called Helmoltz free energy:

A(T,N, V)% —ksTlogZ =< E > —TS. (84)

== Constant volume!

> From the previous equation, one also get the following interesting parallel:

» Boltzman factor for a microscopic state

exp( =

. 85
) (85)
» Macroscopic analogous based on the Helmoltz free energy:

exp(— ) = Z(= 3 e ") (86)

i



Classical 1D harmonic oscillator

> 1D Harmonic oscillator: spring

Y
\ '
Y I
Y I
\ J
\ I/
\ /
E = Lk(z — 29)? \\ ,/
En e

Figure: 1D harmonic oscillator

> Associated potential energy

. 1
E(x) = Eo 4 = (x — x0)° or equivalently E(u) = Eo + §ku2
> NB: k is the stiffness; geometrically, this the curvature of paraboloid
representing the energy.

(87)



1D harmonic oscillator: partition function and free energy

> Partition function: using Gaussian integrals, we get

z-= /exp(—BE(u))du - exp(—gEo)/exp(—ﬁ%“Z)du (88)

- exp(—ﬁm\/;z; . (89)

> Helmoltz free energy. Using the previously found partition function, we get:

F=—kpTlogZ = Eo — kgrlog(;—z)”? (90)



1D harmonic oscillator: average internal energy and entropy

> Average internal energy. One gets

ku? ke T
<Es= L [@+ Koo sm =6 KT o
> Entropy. One gets
<E> Eo | k
S= +kologZ = 2 + 7 + ks(— ﬂEo+Iog( Y 02)
_ ke o t/2
kg log . 93
> + ks 5/( (93)

It should be noticed that when the curvature k decreases, the entropy
increases: there is indeed more uncertainty on the position of the oscillator.



Rigid-rotor harmonic oscillator

> Assumptions: for an isolated rigid molecule, the energy can be decoupled as
» translation
> rotation
» vibrational
>

electrostatic

E = Etrans + Erot + Evip + Eclec
Z = Ztrans * Zrot * Zvib * Zelec (94)
S= Strans + Srot + Svib + Selec

> Caveat: does not apply to floppy (soft bending) molecules



Rotational degrees of freedom

> Mass and moment of inertia:
> mass: determines the force needed to obtain a given acceleration

» moment of inertia: determines the torque needed to produce an angular
acceleration

® torque/moment/force moment: vector representing the ability of a force

to produce a rotational movement

> Tensor of inertia of a polyatomic molecule:

> mi(y? + 27) =22 mixiyi — 2l XiZi
I = — > mixiyi > mi(x? + 22) — > miyizi (95)
— > mixizi =>imivizi 3 mi(x? + y?)

Eigenvalues/vectors: moments of inertia / principal axis of inertia
> Approximation of the partition function — with o the rotational symmetry number:

8r2kT
Zrot = ?(”7)3/2\//1/2/3. (96)

>Ref: Jensen, Introduction to computational chemistry, Wiley
>Ref: Arnold, Math. methods of classical mechanics, Springer



Polyatomic molecule and vibrations: quantum partition
function

> Generalization of the harmonic model for a diatomic molecule:

E,ir, = Z (n,- =+ 1/2)/77/,‘ (97)
i=1,....3N—6
—hv;/2kT
e
Ziw= Il ——wmr (98)
i=1,...,3N—6

>Ref: Jensen, Introduction to computational chemistry, Wiley



Polyatomic molecules and vibrations: classical
multi-dimensional harmonic oscillator

> Physical model. Consider a set of N atoms, whence 3N cartesian
coordinates, whose potential energy is quadratic.
> The Hessian of the potential energy is the 3N x 3N matrix defined by

~_ PE
! Oxi0x;

(99)

> Three types of models:
» Force field based: 3N — 6 eigenvalues
» Gaussian Network Model: N — 1 eigenvalues

» Anisotropic Network Model: 3N — 6 eigenvalues

> Vibrational partition function: from frequencies of normal modes

Ziw o< [T/ ;Z (100)




Experiment and goal
> Setup: one places small polystyrene (PS) balls into a well.
> Question: most likely geometries for clusters of N balls?

> Experiment: how. The PS balls are placed in cylindrical micro-wells filled with an
appropriate chemical (irrelevant here). The walls of the cylinders are treated to avoid
interactions with the balls.

> Counting: using a microscope, one takes images, and consider the geometry of the
clusters obtained.

Figure: Conformations of hard spheres: experiment. From [?].
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Physical model

> Model. The coating of the balls is such that interactions are very local, so
that the potential energy of a collection of N balls is given by the number C of
pairs in contact.

> Potential energy approximation
V =CVy, (101)

with V,, the depth of the interaction potential.



Experiments: observations for N = 6
> The observations are as follows:
> Two clusters are observed: polytetra(hedron) and octahedron.
> Their respective percentages are ~ 96% and ~ 4%, whence the ratio 96/4 = 24.

» This is so, even though the two clusters exhibit the same number of contacts
(m = 12), so that the potential energy is the same by Eq. 101

-~ N=6 oy
100 tetrahedron

w@
[=1

@D
o

Palytetrahedron Octahadron

Probability (%)
-y
o

N
=]

cctahedron

oy
A
r

\[”

& Cyy,

Figure: Configurations for N=6 balls. From [?]. (Left) Clusters (B)
Population statistics. Note that the polytetrahedron is ~ 24 times-more



Statistical model: macroscopic states

> States. Let a cluster be called a state: a number of microscopic
configurations populate this state. Using Eq. 84, using the partition function

Zs for this state to define the macroscopic analogous of Boltzmann's weight
(Eq. 86), one has:

As
As = —kg T log Zs or equivalently exp(—ﬁ = 7. (102)

Therefore, the relative abundance of state s is given by

ps = Sz (103)



Statistical model: microscopic states
> The partition function Zs of a state has three components:
Zs = Zs,t s,rot. £s,vib. (104)

with
» Z, .: translational. This term depends on the free volume within a

cylindrical well. Assuming that the volume of all clusters (at fixed N) is
the same, Z; ; is the same for all clusters.

» Z .. the rotational partition function depends on the number of
orientations and particle permutations in a cluster. With | the inertia
tensor, and o the rotational symmetry number (based on point group), it
can be shown that

faeteminant(1) (105)

Zs,rotA X
o
» Z, ib.: the vibrational partition function given by Eq. (100):

3N—-6

Zyip H ﬁk




Calculations for the two configurations
> The calculation yields, see Fig. 48:

» polytetra(hedron) : Zs rot. Zs vip. ~ 1.6 * 0.061 = 0.0976

» octahedron: Zs rot. Zs vip. ~ 0.12 x 0.034 = 0.00408
Taking the ratio, we get 0.0976,/0.00408 ~ 23.9, which is highly consistent with the
observed frequencies since 96/4 = 24.

Conformations of hard spheres: why is

the polytetrahedron more abundant?
12 12
2 24
32 Moment of inertia 28
1.6 Z, (rotational) 012
0.061 Z, (vibrational) 0.034
96.0% Predicted P 4.0%
95.7% Observed P

> Conclusion:

the cluster geometry favored is that which is less symmetric, and
the main source for this is not the interaction energy, but the-rotational entropy.



A didactical view
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Figure: Entropy driven association: didactical explanation. From [?]



Structural alignments and analysis

Independent component analysis



Independent component analysis: the cocktail party problem

> The cocktail party problem: disentangling voice and music sources

music original signals. recorded

3y \ e -
& RgcEe ")
voice a
T b 4§ 2
o @ Myl §
I

cocktall party problem

> Model: recorded data x and the signals S yield

x1\ _ (a1 az s1) _ (a1s1 + az2s2

(X2> - (b1 bz) <52> - (b151 +b252) (106)
In more compact form : X = AS
e Assumption: The sources are statistically independent in the following sense:

f(v) = fi(sn)- (107)

1

Consequently, the covariance matrix reads as E [SST] =ly

Problem 2. under the previous assumption, and assuming that the linear operator
A is invertible, find the inverse A~1 providing the signal from the mixed measurements:

S=A"1x (108)

NB: in the sequel: we assume centered data.
pRef: J. Shlens, A tutorial on ICA, preprint, 2014



Datasets with linear mixing: examples

wt indapendant direction of

raw data componants largest variance
";)ék{ ,,,,,,,,,,,,,,,,,,
O

Pl N S

» Individual models > Blue, red: tICA vectors

» Merged dataset » Green: PCA

>Ref: J. Shlens, A tutorial on ICA, preprint, 2014



ICA: overview of the two steps

1. Step 1: whitening - via PCA

2. Step 2: find an orthogonal matrix V associated with a mutual information
minimization problem



Step 1: whitening (1)

> Problem formulation using the SVD of A: with A = usvT
s=A"'x=vz tuTx (109)
> Correlation matrix C: direct calculation
c=e[xxT]. (110)
By the spectral decomposition theorem, we can decompose C as follows:

C=EDET. (111)

> Correlation matrix C: using the data model ie X = AS, and the SVD of A

C=E [(AS)AST] (112)
=E [U)ZVTSST vzuT] (113)
= usvTE [ssT|veuT (114)
=uz2uT. (115)

NB: we have used E [SST} = lq.

Comparing Eqs. 111 and 115 makes it possible to choose U = E and ¥ = DY/2. With these, Eq. 109
rewrites as
S=A"'x=vD 2ETx (116)
The operator D~1/2ET s a so-called whitening or sphereing operation [?] — Fig. 8. Our problem
rewrites as
S = VX, with X, = D~Y/2ET x. (117)

We are left with the problem of identifying the optimal rotation V.



Step 1: whitening (I1)

> Inversion problem re-written:

S = VXy, with X, = D™Y2ET X, (118)

Figure: ICA: whitening. The input data are transformed by a rotation
then a scaling, yielding the whitened data X,, = D~Y/2ET X.

= We are left with the problem of identifying the optimal rotation V.



Step 2: finding the orthogonal matrix V

Problem 3. Find an orthogonal matrix V such that S = VX,, and E [SST]

=1y

> Model: consider a random vector S with joint density f(y) = []; fi(y;) — cf our

assumption

> Mutual information: Kullback-Leibler divergence between the joint density and the

product of marginals

f(y)

A0

1(5) = [ f1og

Following the assumption f(y) = []; fi(y;), we aim at minimizing:

=Y H(S;) - H(S
Assuming estimators from the data:
=D H((VXw)i) = H(VXw)

= 2 HI(VXw)i) = (H(Xw) + loga(det(V))) ZHWM

Since H(X,, ) does not depend on V, we end up with the minimization problem:

arg rn‘/in Z H((VXw)i)

Difficulties to solve this problem:
» Eq. 123 is non convex in general — local minima.
P Estimating the individual entropies is non trivial per se.

(119)

(120)

(121)

(122)

(123)



ICA and its limitations
> ICA is under-constrained: several degrees of freedom yield alternative solutions
» Permutation of labels
> Flip of independent components

> Rescaling the ICA vectors. The rescaling can compensated in the assumption
E [SST] = ly. See the derivation of Eq. 116.

original

ermutation
L T
T -

rescaling

Figure: ICA: ambiguities. Left: permuation of the lables; Middle: flip of
the ICA; Right: rescaling of the ICA. From [?].

>Ref: J. Shlens, A tutorial on ICA, preprint, 2014



Structural alignments and analysis

tICA
Method
Application: one example



Time lagged ICA (tICA): goals

> Assumption: consider a dynamical system at equilibrium, given by a vector valued
time series X(t)

> Two goals:

1. Project the dynamics onto a lower dimensional space whose coordinates are
uncorrelated — that is cross-covariances are null auto-covariances are maximal.
2. Identify fast and slow motions.

NB: spirit analogous to ICA, but a single source, and exploitation of temporal
coherence

System with

TR
]lltnh\ii I mmmM uﬂmmur\

P> two meta-stable states, with rare
transitions.

T

» red vector: first principal
component by PCA.

» black vector: first tICA
e I component.

> NB: with a proper lag time 7, tICA identifies the slow directions, x here.
>Ref: Noe et al, J. of Nonlinear science, 2018



tICA: the generalized eigenproblem

Definition 4. The time lagged covariance matrix at lag time 7 is defined by:

C' () = (cf(7)), with () = E¢ [X¢,iXesrj] - (124)

> Central def.: motivated by the theory of transfer operators

Definition 5. The time-lagged independent components are defined as the
solution of the following eigenvalue problem:

C-fi = N Gofyy (125)
or equivalently, using the pseudo-inverse Cot of Cp, of
Mricafi = Mfi, with Mrica = GoT C;. (126)

The time scale of the mode / is the quantity

T

t = (127)

B log A/~



tICA: time scales

Proposition. 5. The Aj values of Eq. 126 are < 1.

The proof is based on the Cauchy-Schwarz inequality for expected covariances in time
series:
Proof. Multiplying the generalized eigen pb. equation C.f; = \;Cof; by £T yields

fiTC f
A= 7. (128)
fi' Cof;

Covariance matrices satisfy the Cauchy-Schwarz inequality for expectations C; < Cp,
that is, for any vector v, one has vIiCrv = vT Cyv. One conclude from the preceding
equation. [J

> Important comments:
> Correlations between states decay as a function of time. Thus, A\;(< 1) captures
how much correlation remains at the time lag 7.
» Eigenvalues close to 1 indicate modes with long time persistence. These are the
modes of interest.
» tICA modes are assessed by sorting the time scales of Eq. 127 by decreasing
value.



tICA vectors: (Cp orthogonality

Proposition. 6. Consider the eigenvectors {f;} of the generalized eigenproblem of
Eq. 126. These vectors are Cp orthogonal, that is

f:T Cof; = 0;. (129)

Proof. Consider two eigenvector f; and f;, that is

{onyar 50
Taking the transpose of the first eq. and multiplying by f; yields
£TCf = \ET Cof. (131)
Likewise, for the second equation, we get
T Crf; = Nifi T Cof. (132)
But since Cr is symmetric, we have
NfiTCofi = N7 Gofi = (N — \j)fi T Gof; = 0. (133)

Then \; # A; implies fT Cof; = 0, that is, the eigenvectors f; and f; are Co-orthogonal.
Finally, assuming that Cp is positive definite, we can normalize the eigenvectors so that

7 Cofr = 3. (134)
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Using tICA

> Using tICA:
procedure Enjoy-tICA(X, Y)
Compute the covariance matrices Cg and C-
Solve the generalized eigenvalue problem e.g. using AMUSE
Threshold the eigenvalues using the time scales — Eq. 127 > Assume k get selected
Assemble the d x k transformation matrix W = [f1, ..., fil
Project onto tICA coordinates with to obtain Z(t) = WT X(t) b Shape is d x 1 = (k X d) X (d x 1)
end procedure

> Covariance matrices: with datasets X = [xg...Xm—1], Y = [%r ... Xr4m—1],

compute
1 T 1 T
Co=—-XX",C=—XY'. (135)
m—1 m—1
> Projection onto the tICA vectors selected:
Z(t) = WTX(t). (136)

> NB: if we denote g; = Cof;, Because of the Cy orthogonality between the f;s — Eq.
129, the projection onto the tICA vectors amounts to rewriting the time series in the
{g} basis, that is

Z(t) = (" X(t))ai- (137)

1



Computing tICA with AMUSE

> Computing tICA when n > d:

PI’OpOSitiOﬂ. 7. Algorithm ?? computes the solutions of Eq. 126.

procedure AMUSE(X, Y)
Compute a reduced SVD of X, i.e. X = USVT
Whiten the dataas X = ¥ " *UT X and ¥ = 20Ty
Compute Mrica = xvT B
Solve the eigenvalue problem Myicaw) = \jw;
Obtain the tICA coordinates as fi = UX 1w,

end procedure



Algorithm AMUSE: proof of correctness

Proof. We also introduce the following linear transformation:
fi=UL 1w, (138)

Note the following expression of the pseudo-inverse of (XXT)Jf obtained from the SVD
of X:

xxT)' = uz—2uT. (139)

Note also s
XYT =x-1uTxyuz—1. (140)

Starting from Eq. 126, we make Mt ca appear:

Mricafi = GoT € fi = (XXT) XY T (141)
= Uz iz tuTXxYTus 1w, (142)
= U XY Tw, (143)
= A\ UStw; — w; eigenvector of Mrica (144)
= \f. (145)
O
o - = =



Lysine Arginine Ornithine (LAO) protein

> LAO: member of the PBP family; transports low molecular weight ligands from the outer to the inner
membrane in the ABC transport mechanism of Gram-negative bacteria

> LAO protein and its two domains:

00 400 G0 00 1000
Time [ns]

» The LAO protein, 238 a.a., is composed of 2 domains, large (blue) and small (red). Molecular
dynamics simulation of 1us in the NVE ensemble.

» RMSD wrt the crystal structure, overall and per domain.
»>  MD simulation: 1us

> Setup: tICA analysis with time lag 7 = 1ns
> Five modes selected: all with time scales > 7

TABLE I. Summary of the properties of IC modes.

Pmlen ies IC1 c2 Ic3 1C4 IC5
Time scale (ns) 280 134 10.7 6.6 4.5
Contribution ratio (%) 56 11.9 26 16 0.6
Remarkably mobile C,, atoms R218,Q219, D220 — Al5 P16 G24 K186
Ratio of interdomain motion (%) 60.6 92.1 65.7 76.7 49.0

>Ref: Naritomi et al, J. Chem. Physics, 2013



LAQ: slowest mode IC1

Displacement [A]

! i
50 100 150 200
Residue number

> (a) Mode vectors of IC1 restricted to each C,, carbon, with remarkable vectors
in purple.

» (b) Displacements of C, accounted for by IC1. Remarkable C, marked by
magenta diamonds.



LAO: IC1 and local motion of the backbone

0
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FIG. 4. Local motion of the backbone of LAO detected by IC1: Trajectories of (a) IC1. (b) D220y (c) G221, (d) R2IBO-G221N, and (¢) D2200-Y223N.
(i) the trajectory along IC1 (panel (a)),

(ii) two dihedral angles v, ¢ working in tandem (compensating one another) in a
so-called crankshaft move (panels (b,c)),

(iii) distance between 2 atoms: aspartic acid D220-O — tyrosine Y223-N.



LAQ: stability of tICA vectors as a function of 7

e

Inner product
£

—s ICl

0.2 .
= IC2
IC3
0 —e 1C4
1C5
10 4 |+—=IC6

I
1 5 10 50 100
Lag-time parameter t, [ns]

NB: from a twin paper in which 7 is renamed tg
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