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Overview
▷ Theory/algorithms

▶ Groups/Lie algebras SO(3), so(3); SE(3), se(3)
▶ Procruste problems – molecular distances
▶ Spectral clustering
▶ (Power diagrams and α-complexes)

▷ Protein science
▶ Comparing static molecular structures
▶ Rigid structural alignments (lRMSD )

https://sbl.inria.fr/doc/Molecular_distances-user-manual.html

https://sbl.inria.fr/doc/Molecular_distances_flexible-user-manual.html

▶ Flexible structural alignments (Kpax)
https://sbl.inria.fr/doc/Kpax-user-manual.html

▶ Identification of rigid domains in proteins (SPECTRALDOM)
https://sbl.inria.fr/doc/group__Spectral__domain__explorer-package.html

▶ (Molecular surfaces, volumes, interfaces) (Intervor)
https://sbl.inria.fr/doc/Space_filling_model_surface_volume-user-manual.html

https://sbl.inria.fr/doc/Space_filling_model_interface-user-manual.html

▶ (Cradle models)
https://sbl.inria.fr/doc/Molecular_cradle-user-manual.html

https://sbl.inria.fr/doc/Molecular_distances-user-manual.html
https://sbl.inria.fr/doc/Molecular_distances_flexible-user-manual.html
https://sbl.inria.fr/doc/Kpax-user-manual.html
https://sbl.inria.fr/doc/group__Spectral__domain__explorer-package.html
https://sbl.inria.fr/doc/Space_filling_model_surface_volume-user-manual.html
https://sbl.inria.fr/doc/Space_filling_model_interface-user-manual.html
https://sbl.inria.fr/doc/Molecular_cradle-user-manual.html
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The least Root Mean Square Deviation: lRMSD
– a geometric distance for two ordered point clouds

▷ Data: two point sets A = {ai}i=1,...,n,B = {bi}i=1,...,n + alignment i.e. 1-1
correspondence A = {ai ↔ bi}
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RMSD(A,B) =

√√√√ 1
n

n∑
i=1

∥ai − bi∥2

(1)

▷ least Root Mean Square Deviation:

lRMSD(A,B) = min
g∈SE(3)

RMSD(A, g · B). (2)

Importantly: the optimal rigid motion is obtained.

▷ Pros and cons:
▶ pro: easy to compute (quadratic problem, SVD)
▶ cons: medium range values for large structures tell nothing

▷Ref: Kabsch, Acta Crystallographica Section A, 1976
▷Ref: Umeyama, IEEE PAMI 1991



Combined RMSD : TBEV glycoprotein in two different
conformations pre and post fusion

▷ Classical analysis:

Statistics from Apurva:
▶ 370 a.a. aligned
▶ lRMSD: 11.1Å

▷ Our motifs:

Motif Alignment size lRMSD
Large 88 1.69
Small 40 0.38



Structural similarity measures
▷ Comparing conformations of:

(PB1) the same molecule: mapping between atoms known (identical atoms)
→ a geometric problem

(PB2) two related molecules (e.g. two polypeptide chains of different length)
→ a dual combinatorial (common contacts) + geometric problem (how similar?)

▷ (PB1) Comparing conformations:
▶ issue #1: for large structures, small numbers ∼ 1 are fine; medium / larger

number are often meaningless.
▶ issue #2 (related): a score does not give a mapping.

▷ (PB2) Comparing related molecules:
▶ focus on topology (e.g. contact map overlap) or geometry (isometric regions)
▶ in any case: the longer the alignment the worse the geometric measure

TBEV pre-fusion TBEV post-fusion



Contact map overlap with Apurva

▷ Contact map of a polypeptide chain

A graph stating when two amino-acids
(a.a.) are in close proximity (e.g.
distance between their Cα carbons).

▷ Contact map overlap (CMO):
▶ Find subsets of vertices I and J yielding the largest set of common edges in

their induced graphs
▶ Constraint: amino-acids are linearly ordered ⇒ matched vertices must be so

▷ Hardness: decision problem is NP-complete.
▷ Algorithm: integer programming model + branch-and-bound algorithm +
Lagrangian relaxation.
▷Ref: Papadimitriou et al, FOCS 1999
▷Ref: R. Andonov, N. Malod-Dognin, and N. Yanev, J. of Computational
Biology, 2011



Contact map overlap (CMO) as an Integer Linear Program

▶ Vertex sets: I = (i1, i2, . . . , is), i1 < i2 < · · · < is and
J = (j1, j2, . . . , js), j1 < j2 < · · · < js : arbitrary subsets of vertices from the first
and second contact maps, respectively.

▶ Alignment: in the mapping ik ↔ jk , k = 1, 2, . . . , s, the edge (k, l) is common if
and only if both edges (ik , il ) and (jk , jl ) exist in the two contact maps.

▶ CMO: find the sets I and J maximizing the number of common edges. Since
amino-acids are linearly ordered, crossings are not allowed.



Pairwise structural alignments: iterative methods a-la Kpax

▷ Goal: find a structural alignment between two molecules/conformations

▷ Matching vs rigid alignment:
▶ Finding the matching given the relative position: dynamic programming
▶ Finding the relative position given the matching: quadratic program

▷ Iterative alignments:

(1) Compute a seed alignment
(2) Iterate until some fixed point:

(3) Post-process the structures
(4) Compute the rigid superposition induced by the alignment (procruste)
(5) Perform Dynamic Programming to obtain a new alignment

▷Ref: Ritchie et al, Bioinformatics, 2012
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Orthogonal matrices
▷ Def:

▶ A matrix of Rd×d such that U satisfies UTU = Id .
▶ Premultiplying UUT = Id by U−1 yields UT = U−1.

▷ Preservation of the dot product, whence distances and angles

⟨Qu,Qv ,⟩ = uTQTQv = ⟨u, v⟩, (3)

⟨Qu,Qu,⟩ = uTQTQu = ∥u∥2 . (4)

Since they preserve distances, they define isometries.

▷ Orientation preservation: two cases
▶ det(U) = 1: orientation preserving – rotations.
▶ det(U) = −1: involves a reflection – mix of rotations and one reflection.
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Related (important) groups

▷ Def: A group is a non empty set G and a binary operation · : G × G → G :
▶ (i) Product is associative: (AB)C = A · (B · C)

▶ (ii) There exists an identity I such that I · A = A · I = A

▶ (iii) Each element has an inverse: A · A−1 = I

▷ Groups of interest related to orthogonal matrices:
▶ O(3): the orthogonal group
▶ SO(3): subgroup of O(3) with det(U) = 1: the special orthogonal group aka

rotation group

▷ Euclidean space Ed : rigid transformations vs rigid motions
▶ E(3): the Euclidean group, defining isometries or rigid transformations:

ϕ(v) = Uv + t, with UTU = I3 and t a translation. (5)

▶ SE(3) or E+(3): special Euclidean group, involving orthogonal matrices of det.
1. Define rigid motions.



Lie groups and associated algebras
▷ Groups which are also manifolds: Lie groups

▶ SO(3) and so(3): for rotations
▶ SE(3) and se(3): for rigid motions of E3

▷ Moving back and forth: the exp and log operators

SE(3)

se(3)

Lie algebra:

Lie group

M

(S, T )

tangent space

Figure: Lie group SE (3) and Lie algebra se(3): mapping back and
forth using the exponential map. Fig. adapted from Hagemann et al.



Rotations in E3 and change of coordinate system

▷ Rotation: of angle θ is an orthonormal basis B′ = (i , j , k) along the axis k

RotB′ (k, θ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 (6)

▷ In the reference coordinate system: denoting P the matrix of change of base from
B′ to the standard basis B, the equation of the rotation is the std basis B is therefore

R = Rot(k, θ) = PRotB′ (k, θ)P−1. (7)

▷ NB: applying Tr(AB) = Tr(BA) to Eq. (6): Tr(R) = 2 cos θ + 1.



Rodrigues’ formula for rotations in E3

Proposition. 1. (Geometric version) Consider now a unit vector s = (s0, s1, s2)
T,

and the associated The rotation about k by the angle θ satisfies Eq. 8

θ

v

v⊥

v//

v′
k

w = k × v

v ′ = v cos θ+(k×v) sin θ+k(⟨k, v⟩)(1−cos θ). (8)

NB: triple cross product formula
a × (b × c) = ⟨a, c⟩)b − ⟨a, b⟩c

Proposition. 2. (Linear algebra version) In matrix form, the rotation matrix is
given by Rodrigues’ formula:

R = I + sin θS + (1 − cos θ)S2. (9)

with S the skew symmetric matrix

S =

 0 −s2 s1
s2 0 −s0
−s1 s0 0

 (10)



Rotations: SO(3) ⇔ so(3)
▷ Consider S ∈ so(3) and R ∈ SO(3) with:

S =

 0 −s2 s1
s2 0 −s0
−s1 s0 0

 (11)

▷ Exponentiation of S yields R:

R = exp(S) =
∑
n≥0

Sn

n!
= I +

sin(θ)

θ
S +

1 − cos(θ)

θ2 S2. (12)

NB: the finite sum stems from the identity S3 = −θ2S .

▷ Logarithm of R yields S : subtracting Eq. 12 and its transpose yields

S =
θ(R − RT )

2sin(θ)
= logR. (13)

SO(3)

so(3)

Lie algebra:

Lie group

R

S

tangent space

Figure: Lie group SO(3) and Lie algebra so(3): mapping back and
forth using the exponential map. Fig. adapted from Hagemann et al
[?].



Interpolating rotations via SO(3) and so(3)

▷ Goal: interpolate between two rotations R0 and R1 – or I and R1R
−1
o

▷ From the theory of Lie groups/algebras:

F (t) = exp(t log(R1R
−1
0 ))R0, t ∈ [0, 1]. (14) SO(3)

so(3)

Lie algebra:

Lie group

R

S

tangent space

▷ Application to interpolate between two rotations:

1. Compute R = R1R
−1
0 = R1R0

T

2. Using Tr(R) = 1 + 2 cos θ and compute S = logR = θ
2 sin θ

(R − RT)

3. Change S → tS and θ → tθ, and take the exp

4. Multiply by R0, whence

F (t) =
[
I +

sin(tθ)

tθ
(tS) +

1 − cos(tθ)

(tθ)2
(tS)2

]
R0. (15)



Interpolating rigid motions via SE (3) and se(3)
▷ Rigid motion M ∈ SE(3), representation: with rotation matrix R and a 3x1
translation vector T , consider the matrix

M =

[
R T
0 1

]
(16)

The inverse matrix satisfies

M−1 =

[
RT −RTT
0 1

]
(17)

We write a rigid transformation M as an exponential:

M =

[
R T
0T 1

]
= exp

([
S U
0T 0

])
=

[
exp(S) V U

0T 1

]
(18)

where S is a skew-symmetric matrix and U is a 3x1 vector. We use the equations for
SO(3) logarithm to find S.
▷ Interpolation between two motions M0 and M1:

H(t) = exp(t log(M1M
−1
0 ))M0, t ∈ [0, 1] (19)



Rigid frames and point trajectories
▷ Change of coordinate system via translation and rotation: assume we are given two
frames, represented by orthogonal matrices, and a point x in the first frame. The
following linear transformation rewrites x into the second one:

x ′ = F2F1
T(x − c1) + c2. (20)

The calculation reads as follows:
▶ F1

T(x − c1) rewrites x in the base F1

▶ Multiplication by F2 rewrites the previous vector in F2

▶ Finally, we translate by c2

c1

F1 x

c2

F2

▷ Motion of a point in a moving frame: x expressed in F1, which is moved to F2 as a
rigid body. Using R(t) and T (t) the interpolated transformations between the two
rotations and the translation, the trajectory of point x is given by

x(t) = R(t)(x(c)− c1) + T (t). (21)

NB: R(0) = I,R(1) = F2F1
T;T (0) = c1,T (1) = c2
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Proc(r)uste

▶ Du grec ancien: “Celui qui martèle pour allonger”
▶ Wikipedia: ≪ Brigand de la mythologie grecque qui torturait ses victimes

ainsi: il les allongeait sur un lit et coupait leurs membres, ou les étirait, afin
qu’elles correspondissent exactement aux mensurations de celui-ci. ≫

https://fr.wikipedia.org/wiki/Procuste

https://fr.wikipedia.org/wiki/Procuste


Three optimization problems

Let P and Q be real d × n matrices – representing two point clouds of size n.

Problem 1. Find an orthogonal matrix U of size d × d

argmin
U

∑
i

∥Uqi − pi∥2 = argmin
U

∥UQ − P∥2
F (22)

Problem 2. (Constrained procruste) Solve Eq. (22), with U to be a rotation
matrix, that is det(U) = 1.

Problem 3. (Rigid motion) Let ϕ be an orientation rigid motion of Rd 7→ Rd , that
is phi(q) = Uq + t, with U an orthonormal matrix of determinant one, and t a
translation. Find ϕ minimizing

argmin
ϕ

∑
i

∥ϕ(qi )− pi∥2 (23)



Orthogonal versus constrained problem: comparison

A

B

C

D

a

b

c

d

(A) (B)

(C) (D)

Figure: Superimposition two 3D point clouds: (A,B) Q and P (C)
Via optimal procruste solution: translation + reflexion (D) Via optimal
rotation



Orthogonal procruste problem: solution
Using ∥A∥2

F = Tr(AAT) and Tr(AB) = Tr(BA) and Tr(A) = Tr(AT) we get:

∥UQ − P∥2
F = Tr((UQ − P)T(UQ − P)) (24)

= Tr((QTUT − PT)(UQ − P)) (25)

= Tr(QTQ) + Tr(PTP)− Tr(QTUTP)− Tr(PTUQ) (26)

= Tr(QTQ) + Tr(PTP)− Tr(PTUQ)− Tr(UQPT) (27)

= Tr(QTQ) + Tr(PTP)− 2Tr(UQPT). (28)

Assume we wish to maximize Tr(UQPT), and consider the SVD

QPT = VΣWT. (29)

We get

Tr(UQPT) = Tr(UVΣWT) = Tr(WTUVΣ) (30)

= Tr(ZΣ) with Z = WTUV . (31)

Note that Z is orthogonal since it is the product of orthogonal matrices.
Note the following upper bound: Tr(ZΣ) =

∑
i ziiσi ≤

∑
i σi .

On the other hand, taking U = WVT yields Tr(ZΣ) =
∑

i σi .

▷Ref: G. Golub and C.F. Van Loan, Matrix computations, 2012



Problem 3/rigid motions: centering the data

Lemma 4. With ϕ be a rigid motion form Rd , with ϕ(q) ̸= p, define the affine
function

τ : Rd 7→ Rd , τ(y) = ϕ(y)− q + p. (32)

If ϕ(q) ̸= p, then:
∆(τ) < ∆(ϕ). (33)

(Proof sketch)
With U a d × d orthonormal matrix and t ∈ Rd , assume that ϕ(q) = Uy + t. Then
τ(q) = Uq − Uq + p.

∥ϕ(qi )− pi∥2 − ∥τ(qi )− pi∥2 (34)

= (Uqi + t − pi )
T(Uqi + t − pi )− Uqi − Uq + p − pi

T(Uqi − Uq + p − pi ) (35)

= 2(Uqi − pi + t)T(Uq − p = t)− (Uqp + t)T(Uqp + t) (36)

Therefore

∆(ϕ)−∆(τ) =
∑
i

∥ϕ(qi )− pi∥2 − ∥τ(qi )− pi∥2 (37)

= . . . (38)

= n ∥Uq − p + t∥2 = n ∥ϕ(q)− p∥2 > 0. (39)



The Kbasch-Umeyama algorithm for centered data
1: procedure Kabsch-Umeyama(P: d × n matrix,Q: d × n matrix)
2: Compute the d × d matrix M = QPT

3: Compute the SVD M = VSWT

4: Set s1 = . . . , dd−1 = 1
5: Set sd = sign(|VW |)
6: Set S̃ = Diag((s1, . . . , sd ))
7: Return U = WS̃VT

8: end procedure

NB: Using the identity matrix Id instead of S̃ yields the optimal rigid transformation,
which may not be a rigid motion (involved a reflection)

a1 a2

a3
a4

a5

b1

b2

b3
b4

b5

▷Ref: J. Lawrence et al, J. of research of the National Institute of
Standards and Technology, 2019
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Conformational changes and rigid domains:
the example of fusion proteins

▷ Ex: TBEV glycoprotein (class II fusion): pre. versus post fusion

– Classical analysis:

Statistics from Apurva:
370 a.a. aligned; lRMSD = 11.1Å

– Our motifs:

pre-fusion post-fusion
Motif Alignment size lRMSD
Red 88 1.69

Purple 40 0.38



Rigid domains and flexible linkers: intuition

Definition 5. Given two sets of a.a. MA = {ai1 , . . . , ais } ⊂ SA and
MB = {bi1 , . . . , bis } ⊂ SB , and a one-to-one alignment {(aij ↔ bij )} between them,
we define the least RMSD ratio as follows:

rlRMSD(MA,MB) = lRMSD(MA,MB)/lRMSD(SA, SB). (40)

The sets MA and MB are called structural motifs provided that

|MA| = |MB | ≥ s0 and rlRMSD(MA,MB) ≤ r0,

for appropriate thresholds s0 and r0.
▷ Quasi-isometric deformation: (selected) distances (almost) preserved

d1

d2d3

d′1

d′3
d′2

d1 ∼ d′1
d2 ∼ d′2
d3 6= d′3



Flexible aligners in general
Illustration with Kpax

▷ Input: two polypeptide chains A and B, with n and m residues

Definition 6. Pose of A and B: a relative positioning of A and B.

▷ Goal: find two subsets of residues SA = {ai}i=1,...,r and SB = {bj}j=1,...,r of these
chains and a one-to-one-mapping between them, which we denote A = {(ai , bi )} so as
to maximize:

▶ The length r of the alignment,
▶ Some quality measure between the two subsets, e.g. the lRMSD .

NB: both objectives are contradicting.

▷ General strategy:
▶ Given fixed positions of the chains: used DP to find the alignment
▶ Given the alignment: find the best rigid motion
▶ Upon reaching some fixed point: stop



Kpax: pose dependent and independent scores

▷ Pose independent scores Kij : defined later

Definition 7. (K-score, pose independent) Assume Kij is a pose independent score
defined for two amino acids ai ∈ A and bj ∈ B. The K-score of an alignment A(A,B)
is the sum K =

∑
(i,j)∈A Kij .

▷ Pose dependent scores Gpose
ij

Definition 8. (G-score, pose dependent) Given a pose of the two chains, let Ri,j

be the distance between the Cα carbons of residue i on chain A and residue j on chain
B. The G-score of these residues is defined by The G-score of an alignment A is
defined by:

GAB =
∑

(i,j)∈A
Gpose
ij with Gpose

ij = exp(−R2
i,j/4σ

2
pose). (41)



Kpax: generic algorithm
procedure Kpax(Chains P and Q)

Compute the n × m local scores Kij – Eq. (45)
Use dynamic programming to obtain an initial alignment A0
i ← 0
Initialize the poses : A(i=0) ← A, B(i=0) ← B
while True do

Compute the opt rigid motion gAi

Compute the poses A(i+1) = gAi
(A) and B(i+1) = gAi

(B)

(Optional: prune long (say > 8Å) edges
Compute the n × m pose dependent scores G

pose
ij – Eq. 41

Use dynamic programming to obtain a new alignment Ai+1
if Combinatorial or Geometric criterion met then

Break
end if

end while
Return final statistics

end procedure

Ai

Ai+1Scores Kij + DPA = {ai}i=1,...,n

B = {bj}j=1,...,m

gAi
∈ SE(3)

• gAi
(A), gAi

(B)

• Scores Gposes
ij

DP

A0 = {(ai1, bi1)}i=1,...,r



Dynamic programming based on a score – Kij or G pose
ij

▶ Fill the DP table from top left to bottom right, using the equations

Di,j = max(


Di−1,j−1 + sij ,

Di,j−1 − PA
i ,

Di−1,j − PB
j ).

(42)

▶ Trace back a path from (n,m) to the origin (0, 0), following the arrow selected
during step 1.

A1 An

Bm

B1

Bj

0 −g −2g −ng

−g

−mg

Ai

Dn,m

Di,j

Di,j−1

Di−,j

Di−1,j−1

▷ Complexity (space and time): O(n +m)

▷ Importance of gaps: isolating independent/disconnected motifs



Canonized paths: definition
▷ Moving a.a. Ai or Bj into a canonical position

▶ Translation to locate the Cα at the origin
▶ Rotation to place the C along the negative z axis
▶ Rotation about the z axis to plant the N atom in the xz plane with positive x

coordinate

Definition 9. (Canonized n-path) Consider the i-th Cα carbon, and assume its
polypeptide chain has been transformed using K i . The canonized n-path associated of
this Cα is the set of ≤ 2n 3D points providing the coordinates of the Cα of index
k ∈ [−n,−(n − 1), . . . ,−1, 1, . . . , n − 1, n], when they exist.

The support of a canonized n-path is the subset of
[−n,−(n − 1), . . . ,−1, 1, . . . , n − 1, n] corresponding to existing Cα atoms.
Supports denoted IA[i ] and IB [j].

Figure: Kpax: canonical frame

Using the supports, define:

Ri+k,j+k =
∥∥∥CA

α;i+kC
B
α;j+k

∥∥∥ , k ∈ IA[i ]∩IB [j].
(43)



Canonized paths, pairwise distances and virtual atoms

Ri+3,j+3

Ri−2,j−2

▷ Pairwise distances: Ri+k,j+k

▷ Virtual atoms: given the center of mass of a chain – A or B:
▶ To account for the overall shape of the chain
▶ For each a.a.: atom place 2Å away from each Cα carbon in the direction of the

center of mass



Distribution of pairwise distances
▷ Distribution of Cα distances in the local frame
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Canonized paths: boundary conditions and weights µij

Definition 10. (Multiplicity of a pair) Consider
k ∈ [−n,−(n − 1), . . . ,−1, 1, . . . , n − 1, n]. The multiplicity ηk if{

ηk = 1 if k ∈ IA[i ] ∩ IB [j] and − k ∈ IA[i ] ∩ IB [j]

ηk = 0 otherwise.
(44)

The multiplicity of the pair of a.a. (i , j) is defined as µij =
2n∑
k ηk

.

▷ Intersection of supports, illustration for n = 3

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

∅
1
2

1
2

3

2 3 4

Protein A Protein B

(A-1)

(A-2)

(A-3)

(B-1)

(B-2)

(B-3)

▶ Each (A-*) and (B-*) entry:
Cα: empty square: its
neighborhood: black dots

▶ Weights on edges of the
bipartite graph: |IA[i ] ∩ IB [j]|

▶ Exple: (A− 1)× (B − 3):
residues of indices 1 and 2 are
common; since two common
residues are available, the
associated multiplicity is
µji = 6/2 = 3.



Pose independent score Kij

▷ Three components:
▶ Local score – based on distances Ri+k,j+k

▶ Spatial score – based on distances between virtual atoms
▶ Sequence similarity score

• Obtained by DP on sequences, with the proper substitution nmatrix

Kij = wlK
Loc.
ij + wsK

Spa.
ij + wbK

Blo.
ij , with wl + ws + wb = 1. (45)

Default values are wl = ws = 0.5;wb = 0.

▷ NB: if both proteins have more than 180 residues, the spatial score is turned off (D.
Ritchie, personal communication).



Local score K Loc.
ij and spatial score K Spa.

ij
Using the coefficients µij from cannonized paths (Def. 9), we define:

Definition 11. (Local score) Granted: hyper-parameters βk (= 1) and σk .

The local score KLoc.
ij of Ai and Bj via their canonized n-paths:

KLoc.
ij = exp

(
−µij

∑
k∈IA[i ]∩IB [j]

βkR
2
i+k,j+k/(4σ

2
k )
)
. (46)

▷ Coefficients σk : since the larger the index k, the larger the distance Ri+k,j+k .
Stdev of these distances.

▷ Spatial score: local score applied to virtual atoms

Definition 12. (Spatial score) The spatial score of two a.a. i (chain A) and j
(chain B) is defined from the pairwise distances of their virtual atoms as follows:

KSpa.
ij = exp

(
−µij

∑
k∈IA[i ]∩IB [j]

βkV
2
i+k,j+k/(4τ

2
k )

)
. (47)

where Vi+j,j+k is the distance between the two virtual atoms associated with residues
i + k on chain A and j + k on chain B.
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Spectral clustering for domain identification:
new insights

L =


2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2



1

2

3

4

Laplacian matrix:

F. Cazals, J. Herrmann, E. Sarti
Proteins, 2025 (in press)



Decomposing a biomolecule into rigid domains

▷ Rationale: find a segmentation of the chain / protein such that interactions
within domains are dense, while those across domains are not

▷ Unsupervised approaches: maximizing intra-domain interactions and
minimizing inter-domain interactions

▷ Demo. . .



K-means for a fixed value of k

▶ Rationale: to form homogeneous clusters, minimize ϕ ≡ the sum of
squared distances to the center of masses of the clusters

▶ Hardness: NP-hard, but provides the randomized ++ initialization
provides is such that

E [ϕ] /ϕOPT ≤ 8(log k + 2) (48)

▶ Cluster stability assessment: for a data point, compare the ratio of
distances to the first and second nearest neighbors

r12
k,n =< dNN1/dNN2 > (49)

▷Ref: k-means++, Arthur and Vassilvitskii, ACM SODA 2007
▷Ref: SPECTRUS, Ponzoni et al, Structure, 2015



Graphs clustering and cuts
▷ Input: a weighted graph G = (V ,E), with symmetric weights wij ≥ 0

▶ Generalized degree of node i : di =
∑

j ̸=i wij

▶ (Sub-)Graph volume for A ⊂ V :
∑

i∈A di

▷ Goal: partition G into disjoint sets A1, . . . ,Ak

cut(A, . . . ,Ak ) =
1
2

k∑
i=1

W (A,Ai ) with W (A,B) =
∑

i∈A,j∈B
wij (50)

▷ Avoiding trivial cuts via the minimization of:
▶ Ratio cut: uses the size of clusters

RatioCut[A, . . . ,Ak ] =
∑
i

W (Ai ,Ai )

|Ai |
. (51)

▶ Normalized cut: uses the volume (sum of degrees) of clusters

NCut[A, . . . ,Ak ] =
∑
i

W (A,Ai )

volAi
. (52)

▷ Hardness: NP-hard problems . . . for which efficient relaxations exist
▷Ref: von Luxburg, Stat. Computing, 2007



(Standard) Graph Laplacian: example and intuition

▷ Laplacian L = D −W

D =


2 0 0 0
0 3 0 0
0 0 3 0
0 0 0 2

W =


0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

 L =


2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2

1

2

3

4

Ajacency matrix: Degree matrix: Laplacian matrix:

NB: The unit vector 14 is an eingenvector associated with the eigenvalue 0.

▷ Intuition
a b

c

d e

fgh

wij large

wij small

Strong connection

Weak connection



Graph Laplacians: std, normalized, random walk
▷ Def:

▶ unnormalized graph Laplacian L = D −W

▶ normalized Laplacian Lsym. = D−1/2LD−1/2

▶ Random walk Laplacian: Lrw = D−1L = I − P–with P the random walk
transition matrix (NB: G can be directed)

▷ Several important properties of L:
▶ L yields a positive semi-definite quadratic form

For a vector f ∈ Rd : f TLf =
1
2

∑
i,j

wij(fi − fj)
2. (53)

▶ Eigenvalues are λn ≥ . . . λ1 = 0;
▶ The unit vector 1n is an eigenvector of λ1 = 0
▶ Eigenspace of the (multiple) eigenvalue 0: indicator vectors 1A1 , . . . , 1Ak

for the connected components of G

▷ NB:
▶ similar properties for Lsym. and Lrw

▶ Lrw: Perron-Frobenius and the Google page rank

▷Ref: von Luxburg, Stat. Computing, 2007



Spectral clustering using Lsym.

a b

c

d e

fgh

wij large

wij small

Strong connection

Weak connection

▷ Input:
▶ similarity matrix ∈ Rn×n

▶ k the num. of clusters

▷ Algorithm:
▶ Compute the Laplacian L = D −W
▶ Compute the normalized Laplacian Lsym. = D−1/2LD−1/2

▶ Compute the first (smallest) k eigenvectors of Lsym.
▶ Form U ∈ Rn×k by truncating the eigenvectors to k columns
▶ Form matrix T by normalizing the rows of U

NB: ideally: these are the indicator vectors of the clusters.
▶ Consider the n point T [i :]: points on the unit sphere Sk

▶ Perform k-means for these points

▷Ref: Ng et al, NIPS, 2002



Graph cuts, graph clustering, Laplacians

▷ Key points:
▶ graph cuts yield NP-hard discrete optimization problems
▶ spectral clustering corresponds to relaxations of these problems
▶ correspondences

• RatioCut: L
• NCut: Lsym. or Lrw

▷Ref: von Luxburg, Stat. Computing, 2007



SPECTRUS: from atomic fluctuations to similarities
▷ Rationale to identify rigid domains:

▶ split protein with spectral
clustering

▶ weight σij (or wij ): function of
the variation of relative distances

d1

d2d3

d′1

d′3
d′2

d1 ∼ d′1
d2 ∼ d′2
d3 6= d′3

▷ Distance fluctuation for each pair of a.a.:
▶ option 1: from crystal structures

fij =
√

< d2
ij > − < dij >2. (54)

▶ option 2: from theoretical model – atomic normal modes

▷ Similarity matrix/weight matrix from fluctuations–with suitable σ:

σij = exp(−fij/2σ2), (55)

▷ Rmk: distance threshold used to consider only pairs within rc = 10Å.

▷Ref: SPECTRUS, Ponzoni et al, Structure, 2015



SPECTRUS: spectral clustering, k-means, renormalization

▷ Spectral clustering: reduces to k-means on the sphere Sk .

▷ SPECTRUS score for one run of k-means++ at fixed value of k:
▶ r12

k,n: average ratio dNN1/dNN2 obtained from k-means++

▶ r12
k,n[Ref]: average average such ratio for n random points on Sk

▶ Associated SPECTRUS score:

Scorek,n =
r12
k,n

r12
k,n[Ref]

. (56)

▷ Repeats: best Scorek,n out of Nc = 10 repeats for a given k.

2 3 4 5 6 7 8 9 10
k

1.5

2.0

2.5

3.0

3.5

4.0
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rm

_a
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_r
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_d
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s_

NN
1_

NN
2

▷ Range for k: best k for
k ∈ [kmin, kmax ].

▷Ref: SPECTRUS, Ponzoni et al, Structure, 2015



SPECTRUS: workflow

▶ Convert fluctuations into weights
▶ Apply spectral clustering
▶ Normalize the k-means score for spectral clustering

▷Ref: SPECTRUS, Ponzoni et al, Structure, 2015



From SPECTRUS to SPECTRALDOM

▷ Fluctuation / stdev for residues i and j :

fij =
√

< d2
ij > − < dij >2. (57)

▷ SPECTRUS:
▶ fij from normal modes
▶ Convert fij into weights wij

▶ Apply spectral clustering using
the Laplacian L = D −W

▷Ref: Ponzoni et al, Structure,
2015

▷ In SPECTRALDOM: two options
▶ Diffusion Map mode: wij from

(non-)covalent contacts

wij = γij ∗exp(−
ln 2
2

| dij −d0 |).

▶ Multiple Sequence Alignment
mode: from atomic positions

▷Ref: Cazals et al, Proteins,
2025



SPECTRUS to SPECTRALDOM– details
▷ A diffusion map mode: “For these or even larger macromolecular assemblies,
which may be too onerous to simulate with atomistic MD, we further show that the
distance fluctuation matrix can be viably obtained from computationally effective
elastic network models using only a single reference structure as input.”

Pairwise Cα

distances

Structure i.e.
coordinates

Spectral clustering

ENM

Fluctuations
Weighted adjacency
matrix

Soft stiffnesses

▶ No more normal modes useless: local vibrations encoded by contacts

▷ A Multiple Sequence Alignment mode: homologous proteins
“SPECTRUS takes as input multiple structures with no mis- matched sets of missing
residues or a single conformation when used in the elastic network mode. . . ”

Sequence 1

Sequence 2

V V V VX X

VX X

Polypeptide chain 1

Polypeptide chain 2

V

X

Sequences

Structures

Alignment index 0 1 2 3 4 5 6

Chain/sequence index 1 2 3 4 5

Chain/sequence index

0

1 2 3 4 50

V VX

Resid in PDB

Resid in PDB

3

3

4

4

5

5

6

6

0 1 2 3 4

0 1 2

A D K K L V

A K E K VL

Valid indices–MSA only
(no gap tolerated here)

Valid indices–MSA+structures



SPECTRALDOM: Diffusion Map mode
▷ Intuition: identify domains from strong connexions

a b

c

d e

fgh

wij large

wij small

Strong connection

Weak connection

▷ Def: non covalent Cα neighbors: two non consecutive a.a. having heavy atoms
within distance threshold rc = (10Å)

▷ Consider the following stiffness constants–as in the harmonic model:
▶ covalent interactions: γCov

ij (= 10)

▶ non covalent interactions: resp. γNCov
ij (= 1)

▶ and possibly: hydrogen bonds: γHB
ij ; salt bridges: γSB

ij , etc.

▷ Direct def. of the similarity / weighted adjacency matrix:

wij = γij ∗ exp(−
ln 2
2

| dij − d0 |). (58)

with d0 = 5Å and σ = 1.



Chainsaw– combining RNN and community detection
▷ Stochastic block models for community detection: probability to obtain the
graph of domain connectivity

P [A] = Πi<j â
aij
ij (1 − âij)

(1−aij ). (59)

▷ Chainsaw: main steps
▶ Residual convolutional NN yields Cα adjacency matrix,
▶ Structure is converted into five feature channels (pairwise Cα distances,

and four channels for predicted SSE (helix vs strand, within vs boundary
of SSE))

▶ Features converted into a pairwise probability matrix using a deep
convolutional network
NB: learning minimized the cross entropy between the predicted soft
adjacency matrix and the one representing the probability of residue
co-occurrence in the same domain.

▶ Optimization problem solved

D∗ = argmax
{vk}

P [A] . (60)

▷ Claim: superior results over unsupervised methods
▷Ref: Chainsaw, Orengo et al, Bioinformatics, 2024



Reducing fragmentation
with the D-family matching algorithm

▷ Exple: chain split into 2 non contiguous domains for k = 2

C1,1 = s1,1;1 ∪ s1,1,2

C2,1 C2,2 C2,3 C2,4

k = 2

k = 4

C1,2 = s1,,2;,1 ∪ s1,2;2

D-family matching:

two meta-clusters

First decomposition C1:
two domains, each consist-
ing of two stretches along
the sequence

First decomposition C2:
four domains, each con-
tiguous along the sequence

▷ Fixing the fragmentation by combining two decompositions via D-Fam. maching:

k = 3 k = 6 k = 3 post-processed



Human serum transferrin: Chainsaw vs SPECTRUS vs SPECTRALDOM

▶ Two domains easily found
▶ Chainsaw and SPECTRUS: difficulties in terminal helix
▶ NB: PDBid 1a8e/A



Escherichia coli adenylate kinase: SPECTRALDOM MSA and DM

▶ (Row 1) MSA mode applied to chains A of 1ake and 4ake.
▶ (Row 2) DM mode for 1ake/A.
▶ (Row 3) DM mode for 4ake/A.
▶ (Row 4) Comparison with SPECTRUS and Chainsaw
▶ NB: crystal structures: closed: 1ake/A; open: 4ake/A.



Glutamine-binding protein – GlnBP

▶ (Top) MSA mode applied to chains A of 1ggg and 1wdn.
▶ (Middle) DM mode for 1ggg/A.
▶ (Bottom) DM mode for 1wdn/A.
▶ NB:Crystal structures: unbound: 1ggg/A; bound: 1wdn/A.



Yeast elongation factor eEF2 : SPECTRALDOM MSA mode

▶ Values of k of interest: k = 2, 4, 6 – local maxima with low score variance.
▶ (Top) Reference domains (crystallography) for the unbound (1n0v) and bound

structures (1n0u)
▶ (Middle) Domains of the unbound structure
▶ (Bottom) Domains of the bound structure
▶ NB: crystal structures: unbound: 1n0v/C; bound: 1n0u/A



Outlook

▶ SPECTRALDOM:
• distances suffices (no coordinates) to identify domains
• a simple and interpretable model

▶ Software in the Structural Bioinformatics Library
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Structural comparisons: beyond global comparisons
accounting for local features

▷ IDP: molecular recog. element
(MoRE) ⊂ C ter domain of the
measles nucleoprotein (Ntail)

▷Ref: M. Blackledge et all,
PNAS, 2011

▷ Globular protein: class II fusion
proteins before/after fusion

▷Ref: F. Rey et al, Cell, 2014



Comparing two molecules: the combined RMSD
▷ Rationale: use one rigid motion for each rigid/structurally conserved region

A1

A2

A3

A4

A5

A6

B1

B2

B3

B4

B5

M
(A)
1

M
(A)
2

M
(A)
3

M
(B)
1

M
(B)
2

M
(B)
3

Given two molecules A and B:
▶ Identify rigid motifs (SPECTRUS,

Kpax, etc)
▶ Define the motif intersection

graph

Definition 13. Consider two structures A and B for which non-overlapping
domains {C (A)

i ,C
(B)
i }i=1,...,m have been identified. Assume that a lRMSD has been

computed for each pair (C
(A)
i ,C

(B)
i ). Let wi be the weights associated with an

individual lRMSD . The combined RMSD is defined by

RMSDComb.(A,B) =

√√√√ m∑
i=1

wi∑
i wi

lRMSD2(C
(A)
i ,C

(B)
i ). (61)

▷ Rmk: comes into two guises, namely vertex weighted and edge weighted
▷Ref: Cazals and Tetley, Proteins, 2019



Upper and lower bounds

▷ Convexity inequalities:

Lemma 14. The combined RMSD satisfies the following upper and lower bounds:

RMSDComb.(A,B) ≥
m∑
i=1

wi∑
i wi

lRMSD(C
(A)
i ,C

(B)
i ). (62)

Let lmin = mini lRMSD(C
(A)
i ,C

(B)
i ) and lmax = maxi lRMSD(C

(A)
i ,C

(B)
i ). One has

RMSDComb.(A,B) ≤
m∑
i=1

wi∑
i wi

lRMSD(C
(A)
i ,C

(B)
i )+2

(√ lmin + lmax

2
−
√
lmin +

√
lmax

2

)
.

(63)

▷Ref: Cazals and Tetley, Proteins, 2019



Combined RMSD : TBEV glycoprotein in two different
conformations pre and post fusion

▷ Classical analysis:

Statistics from Apurva:
▶ 370 a.a. aligned
▶ lRMSD: 11.1Å

▷ Our motifs:

Motif Alignment size lRMSD
Large 88 1.69
Small 40 0.38



The lRMSD smoothes out local structural conservation

▷ Class II fusion proteins: SSE
conservation

DFV-Flavi. TBEV

HRV-Hanta. SFV-Alpha.

RVFV-Phlebo. RBV-Rubi.

▷ Class II fusion protein in soluble and
post-fusion conformation

Motif Alignment size lRMSD
Large 88 1.69
Small 40 0.38

▷ Motifs and RMSDComb.:
▶ Align-Identity-SFD: #a.a.:

152; RMSDComb.: 2.53 Å.
▶ Align-Identity-CD: #a.a.:

161; RMSDComb.: 1.26 Å.



RMSDComb. identifies novel quaternary structures for
hemoglobin

▷ Quaternary structure of
hemoglobin

α2α1

β1β2

Y

Z

▷ Conservation of SSE

▷ RMSDComb. on α1β1 identifies novel quaternary structures
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▷Ref: Shibayama et al, JACS, 2014
▷Ref: Cazals et al, Proteins, 2019
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RND proteins and drug efflux

▷ Resistance-nodulation-division (RND) proteins: mostly identified in Gram-negative
bacteria, bacterial efflux pumps located in the cytoplasmic membrane.
Nb: homologous proteins involved in cancer chemo-resistance.

▷ Particular case: AcrA-AcrB-TolC transporter, with the AcrB trimer
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AcrB involves 8 main subdomains and 12 linkers

▷ Data available for AcrB : wild-type structures with median resolution 3.32 Å; 81
monomers gathered in from 32 (trimers) + 11 (monomers) PDB files

▷Ref: Yamaguchi et al, Frontiers in microbiology, 2015



Export by AcrB: overview of the mechanism
▷ Active transport using the proton motive force (PMF): AcrB trades

▶ 1H+ flowing along the negative gradient – periplasm into the cytoplasm,
▶ 1 substrate molecule – cytoplasm/inner membrane to the outside of the cell

across AcrB - AcrA - TolC

▷ Mechanically: a peristaltic pump

▷ Three step rotating mechanism based on 3 states of monomers

– Three states: A/L: access/loose; B/T: bound/tight; E/O: extrusiOn/Open
A state: vestibule open on periplasm; binding pocket shrunk
B state: molecule binds into pocket; blocked channel (central helix) opens
E state: vestibule closed; exit open–central helix rotates

– Allostery: binding to AcrB → repacking AcrA → channel opening of TolC

▷Ref: Seeger et al., Science, 2006; Murakami et al, Nature 2006
▷Ref: Wang et al, eLife, 2017



Question 1: states for monomers and the trimer

▷ Questions: are A, B, and E the only states? What about trimers?

▷ Method: hierarchical clustering of individual monomers

A BE

▷ Findings
▶ labeling of unlabeled monomers as A, B or E (from the containing cluster)
▶ only observed state for asymetric trimers: ABE



Question 2: sub-domains and sub-states
▷ Question: which subdomains (out of 8) and linkers (out of 12) account for the A,
B and E states?

▷ Methods: combined lRMSD clustering of sub-domains

Monomer

TM

TM1-6

Aall
Ball Eall
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′

TM

A
′′
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BTM ETMA
′′′
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′

TM1-6

A
′′

TM1-6

A
′′′

TM1-6
BTM1-6

ETM1-6

TM7-12
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′
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A
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B
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TM7-12
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′
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′
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A
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Loop11

A
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Loop11
BLoop11

ELoop11
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′
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A
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TMcomb

B
′′

TMcomb
ETMcomb

B
′

TMcomb
A

′′′

TMcomb

lRMSD

RMSDcomb

▷ Findings:
▶ Subdomains compatible with the A, B, E clustering: Loop2, Loop8, Loop11, TM

▶ Novel substates identified: A → A′,A
′′
,A

′′
;B → B′,B

′′



Question 3: evolution of interfaces between sub-domains

▷ Question: identify subdomains whose relative positions change

▷ Method: using Voronoi interfaces between sub-domains
A

B E

∗Loop1-Loop5∗ ∗Loop8-PN1∗
∗PC2-TM∗

∗Loop7-PC2∗
∗Loop11-Loop7∗
∗Loop8-Loop5∗
∗PC1-PC2∗

Loop2-PN1
Loop2-PN2
Loop2-Loop1

Loop2-Loop3 Loop2-Loop5 ∗Loop11-TM∗
Loop10-PC1 ∗Loop8-PC1∗ PN2-TM
Loop8-PC2 Loop10-DC DC-PN2

∗Loop3-PC1∗ Loop3-DC Loop4-DC
Loop5-Loop7 Loop5-TM ∗Loop9-PC1∗
Loop1-Loop8 Loop4-PN2 Loop9-DC
Loop1-PN2 Loop10-PC2 Loop10-PN1
Loop5-PC1 Loop10-Loop9 Loop7-Loop8
∗PN1-PN2∗ Loop4-PC1 ∗DC-PN1∗
Loop11-PC2 Loop3-PN2 PC1-PN2
PC2-PN1 Loop1-TM Loop6-TM
Loop9-PC2 Loop1-PN1 TM-aHelix
Loop1-Loop7 Loop11-PN1 Loop7-PC1
Loop3-DN Loop3-Loop4 Loop7-TM
Loop4-DN PC1-PN1 DC-DN

∗Loop8-TM∗ PC1-TM Loop5-PN2
Loop11-Loop8∗ ∗Loop8-Loop2∗ Loop1-Loop11

∗DN-PN2∗ ∗PN1-TM∗ DC-DN
Loop3-PN2 ∗PC1-PN2∗ Loop6-TM
PC2-PN1 Loop7-PC1 Loop1-TM

Loop7-TM
TM-aHelix
Loop11-PC2

∗Loop2-PC1∗
∗Loop2-Loop3∗

Loop4-PN1

B E

PN1 - Loop3

A

• DN DN

• Loop9 DN

• ∗PN2 PC2∗

• Coil4 DN

• ∗DC PN1∗

• PC1 DN

• ∗DN PN1∗

• ∗PN2 PN1∗

• ∗TM TM∗

• ∗PN1 PN1∗

• DN DC

∗PC2 - DC∗
PN1 - Loop3∗PC2-DC∗

PN1 - Loop3

Interfaces: within monomer Interfaces: across monomers

▷ Findings:
▶ # of interfaces: 57 in A state, 68 in B state and 74 in E state
▶ Characterization of interfaces specific to individual states



Better understanding of the AcrB cycle

B

A

+drug

+H+

−drug
−H+

Loop 2 dynamic (++)
no interface, thus mobile subdomain

Loop 11 start to change to helix

TM : small global changes

TM : small global change (deprotonation)
Loop 2
Loop 11: helix to coil

reopening of the entrance
Loop 8

Decompression of PC1 and PC2
(-> reopening of drug binding pocket
and its entrance)

A’

A”A”’

B’

B”

• A→ B due to drug accommodation
• Reduction of interfaces between main
porter subdomains
• Opening of drug binding pocket
(DBP)
• 2 identified substates adopted by sub-
domains

• recognition of substrates at affin-
ity site
• loose state with least internal in-
terfaces between subdomains
• 3 identified substates adopted by
subdomains in a monomer

E

• TM: small global change (protona-
tion)
• Loop2
• Loop 11: helix -> closure of the en-
trance
• Loop 8
⇒ Compression of PC1 and PC2
triggers the closure of drug binding
pocket

• B → E due to protonation
• increase of interfaces between
main porter domain (such as PC1
and PC2)
• closure of entrance of drug bind-
ing pocket (DBP) and zip-like clo-
sure of DBP

▷Ref: Simsir et al, Proteins, 2021



Software: molecular craddle

▷ Rationale: model a complex molecular machine as a craddle of sub-domains
whose relative positions change

▷ Package in the Structural Bioinformatics Library:
https://sbl.inria.fr/doc/Molecular_cradle-user-manual.html

https://sbl.inria.fr/doc/Molecular_cradle-user-manual.html
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