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Overview

> Theory/algorithms
> Groups/Lie algebras SO(3),s0(3); SE(3),s¢(3)
» Procruste problems — molecular distances
> Spectral clustering
>

(Power diagrams and a-complexes)

> Protein science
» Comparing static molecular structures
> Rigid structural alignments (IRMSD )

https://sbl.inria.fr/doc/Molecular_distances-user-manual.html
https://sbl.inria.fr/doc/Molecular_distances_flexible-user-manual.html

» Flexible structural alignments (Kpax)
https://sbl.inria.fr/doc/Kpax-user-manual.html

> |dentification of rigid domains in proteins (SPECTRALDOM)
https://sbl.inria.fr/doc/group__Spectral__domain__explorer-package.html

» (Molecular surfaces, volumes, interfaces) (Intervor)
https://sbl.inria.fr/doc/Space_filling_model_surface_volume-user-manual.html
https://sbl.inria.fr/doc/Space_filling_model_interface-user-manual.html

»> (Cradle models)

https://sbl.inria.fr/doc/Molecular_cradle-user-manual.html


https://sbl.inria.fr/doc/Molecular_distances-user-manual.html
https://sbl.inria.fr/doc/Molecular_distances_flexible-user-manual.html
https://sbl.inria.fr/doc/Kpax-user-manual.html
https://sbl.inria.fr/doc/group__Spectral__domain__explorer-package.html
https://sbl.inria.fr/doc/Space_filling_model_surface_volume-user-manual.html
https://sbl.inria.fr/doc/Space_filling_model_interface-user-manual.html
https://sbl.inria.fr/doc/Molecular_cradle-user-manual.html

Structural alignments and analysis

Structural alignments and similarities



The least Root Mean Square Deviation: IRMSD

— a geometric distance for two ordered point clouds

> Data: two point sets A = {a;}j—1,...n, B = {bi}i=1,. n + alignment ie. 1-1
correspondence A = {a; +> b;}

a a as

1 n
RMSD(A, B) = | = i — b2
(AB) = | Dl b
(1)
> least Root Mean Square Deviation:
IRMSD(A, B) = in RMSD(A, g - B). 2
(A, B) o (Ag-B) (2)

Importantly: the optimal rigid motion is obtained.
> Pros and cons:
> pro: easy to compute (quadratic problem, SVD)
» cons: medium range values for large structures tell nothing

>Ref: Kabsch, Acta Crystallographica Section A, 1976
>Ref: Umeyama, IEEE PAMI 1991



Combined RMSD : TBEV glycoprotein in two different
conformations pre and post fusion

> Classical analysis: > Our motifs:

Motif | Alignment size IRMSD

Large 88 1.69

o ' 2 7
qé;’y%’v«' Small 40 0.38

Statistics from Apurva:
» 370 a.a. aligned
» IRMSD: 11.1A



Structural similarity measures

> Comparing conformations of:

(PB1) the same molecule: mapping between atoms known (identical atoms)
— a geometric problem
(PB2) two related molecules (e.g. two polypeptide chains of different length)
— a dual combinatorial (common contacts) + geometric problem (how similar?)
> (PB1) Comparing conformations:

> issue #1: for large structures, small numbers ~ 1 are fine; medium / larger
number are often meaningless.

> issue #2 (related): a score does not give a mapping.
> (PB2) Comparing related molecules:
> focus on topology (e.g. contact map overlap) or geometry (isometric regions)

» in any case: the longer the alignment the worse the geometric measure

TBEV pre-fusion TBEV post-fusion



Contact map overlap with Apurva

> Contact map of a polypeptide chain

A graph stating when two amino-acids

cM1 m cM1 m (a.a.) are in close proximity (e.g.
distance between their C, carbons).
1 2 3 4 1 2 3 4
A I e s
1 2 3 4 1 2 3 4
cM2 w cM2 W

A: Order MCES B: MCES

> Contact map overlap (CMO):

» Find subsets of vertices | and J yielding the largest set of common edges in
their induced graphs

> Constraint: amino-acids are linearly ordered = matched vertices must be so

> Hardness: decision problem is NP-complete.

> Algorithm: integer programming model 4+ branch-and-bound algorithm +
Lagrangian relaxation.

>Ref: Papadimitriou et al, FOCS 1999

>Ref: R. Andonov, N. Malod-Dognin, and N. Yanev, J. of Computational
Biology, 2011



Contact map overlap (CMO) as an Integer Linear Program

> Vertex sets: | = (i1, i2,...,0s),h < ia < -+ < s and
J=(1,42,--1Js) 1 <ja < -+ < Js: arbitrary subsets of vertices from the first
and second contact maps, respectively.

> Alignment: in the mapping ix <> jk, k =1,2,...,s, the edge (k, /) is common if
and only if both edges (ik, i) and (jk,Ji) exist in the two contact maps.

» CMO: find the sets | and J maximizing the number of common edges. Since
amino-acids are linearly ordered, crossings are not allowed.

1 2 3 4 1 2 3 4
Vo~ = g
1 2”3 4 1 27 3 &

A: Order MCES B: MCES



Pairwise structural alignments: iterative methods a-la Kpax

> Goal: find a structural alignment between two molecules/conformations

> Matching vs rigid alignment:
» Finding the matching given the relative position: dynamic programming
» Finding the relative position given the matching: quadratic program

> Iterative alignments:

(1) Compute a seed alignment

(2) Ilterate until some fixed point:
(3) Post-process the structures

(4) Compute the rigid superposition induced by the alignment (procruste)
(5) Perform Dynamic Programming to obtain a new alignment

D>Ref: Ritchie et al, Bioinformatics, 2012



Structural alignments and analysis

Geometric prerequisites



Orthogonal matrices

> Def:
» A matrix of R9%9 such that U satisfies UTU = I,.
> Premultiplying UUT =15 by U~ yields UT = U1,

> Preservation of the dot product, whence distances and angles
<Qu7 QV7> = UT QTQV = <u7 V>7 (3)
(Qu,Qu,) = u" QT Qu = ||uf]?. 4)
Since they preserve distances, they define isometries.

> Orientation preservation: two cases
> det(U) = 1: orientation preserving — rotations.

> det(U) = —1: involves a reflection — mix of rotations and one reflection.




Related (important) groups

> Def: A group is a non empty set G and a binary operation - : G X G — G:
» (i) Product is associative: (AB)C =A-(B-C)
» (ii) There exists an identity / such that | - A=A-1=A

> (iii) Each element has an inverse: A- A=l =/

> Groups of interest related to orthogonal matrices:
> O(3): the orthogonal group
» SO(3): subgroup of O(3) with det(U) = 1: the special orthogonal group aka
rotation group
> Euclidean space E9: rigid transformations vs rigid motions

> E(3): the Euclidean group, defining isometries or rigid transformations:
#(v) = Uv +t, with UTU = I3 and t a translation. (5)

> SE(3) or ET(3): special Euclidean group, involving orthogonal matrices of det.
1. Define rigid motions.



Lie groups and associated algebras

> Groups which are also manifolds: Lie groups
> SO(3) and so0(3): for rotations
> SE(3) and s¢(3): for rigid motions of E3

> Moving back and forth: the exp and log operators

Lie algebra:
tangent space

-+~ Lie group

Figure: Lie group SE(3) and Lie algebra se(3): mapping back and
forth using the exponential map. Fig. adapted from Hagemann et al.



Rotations in E3 and change of coordinate system

> Rotation: of angle 6 is an orthonormal basis B’ = (i, ], k) along the axis k

cosf —sinf 0
Rotpi(k,0) = | sin@  cos O (6)
0 0 1

> In the reference coordinate system: denoting P the matrix of change of base from
B’ to the standard basis B, the equation of the rotation is the std basis B is therefore

R = Rot(k,8) = PRotg: (k,0)P~ 1. (7)

> NB: applying Tr(AB) = Tr(BA) to Eq. (6): Tr(R) = 2cos6 + 1.



Rodrigues’ formula for rotations in [E3

Proposition. 1. (Geometric version) Consider now a unit vector s = (so,s1,52) ",
and the associated The rotation about k by the angle 6 satisfies Eq. 8

k

v/ = vcosO+(kxv)sin0+k({k,v))(1—cosh). (8)

NB: triple cross product formula
ax (bxc)={(ac))b— (a b)c

v

Proposition. 2. (Linear algebra version) In matrix form, the rotation matrix is
given by Rodrigues' formula:

R=1+sin0S + (1 — cos§)S>. (9)

with S the skew symmetric matrix

0 —sp s1
S = S 0 —5s0 (10)
—S1 S0 0



Rotations: SO(3) < s0(3)

> Consider S € s50(3) and R € SO(3) with:

0 —S s1
S = s 0 —S0 (11)
—s51 so 0

> Exponentiation of S yields R:

s in(0 1-— 0
R:exp(S):Z—:l—l—sm( )5+ cos( )52. (12)
n! 0 02
n>0
NB: the finite sum stems from the identity S3 = —628S.
> Logarithm of R yields S: subtracting Eq. 12 and its transpose yields
(R —RT)
== 7 —logR. 13
2sin(6) ¢ (13)

Lie algebra:
tangent space

Lie group



Interpolating rotations via SO(3) and s0(3)

> Goal: interpolate between two rotations Ry and R; —or | and Ry R;l

> From the theory of Lie groups/algebras:

F(t) = exp(tlog(RiRy *))Ro, t € [0,1]. (14)

> Application to interpolate between two rotations:
1. Compute R=RiR; ' = RiRo"
2. Using Tr(R) = 1+ 2cos@ and compute S = log R = ﬁ(R —RT)
3. Change S — tS and 6 — t6, and take the exp
4. Multiply by Ry, whence

sin(t6)
to

1 — cos(t6)

(t0)? (tS)z] Ro.

F(t)y=[I+ (tS) +



Interpolating rigid motions via SE(3) and se(3)

> Rigid motion M € SE(3), representation: with rotation matrix R and a 3x1
translation vector T, consider the matrix

R T
M = [0 1} (16)
The inverse matrix satisfies
_ RT —RTT
M1 = { 0 1 } (17)

We write a rigid transformation M as an exponential:

wef ewellE -1 oo

where S is a skew-symmetric matrix and U is a 3x1 vector. We use the equations for
S50(3) logarithm to find S.
> Interpolation between two motions My and Mj:

H(t) = exp(tlog(Mi Mg 1))Mo, t € [0,1] (19)



Rigid frames and point trajectories

> Change of coordinate system via translation and rotation: assume we are given two
frames, represented by orthogonal matrices, and a point x in the first frame. The
following linear transformation rewrites x into the second one:

X' =FaFi T (x —c) + . (20)

The calculation reads as follows:
> F1T(x — c1) rewrites x in the base F
» Multiplication by F» rewrites the previous vector in Fa
» Finally, we translate by ¢

F

> Motion of a point in a moving frame: x expressed in F1, which is moved to F> as a
rigid body. Using R(t) and T(t) the interpolated transformations between the two
rotations and the translation, the trajectory of point x is given by

x(t) = R(t)(x(c) — a1) + T(t). (21)

NB: R(0)=1,R(1)=FRAT;T(0)=c,T(l)=c



Structural alignments and analysis

Procruste problems and the IRMSD



Proc(r)uste

» Du grec ancien: " Celui qui martéle pour allonger’

> Wikipedia: < Brigand de la mythologie grecque qui torturait ses victimes
ainsi: il les allongeait sur un lit et coupait leurs membres, ou les étirait, afin
qu’elles correspondissent exactement aux mensurations de celui-ci. >

https://fr.wikipedia.org/wiki/Procuste


https://fr.wikipedia.org/wiki/Procuste

Three optimization problems
Let P and Q be real d x n matrices — representing two point clouds of size n.

Problem 1. Find an orthogonal matrix U of size d x d

argmin > ||Uq; — pil* = argmin | UQ — PlI} (22)
1

Problem 2. (Constrained procruste) Solve Eq. (22), with U to be a rotation
matrix, that is det(U) = 1.

Problem 3. (Rigid motion) Let ¢ be an orientation rigid motion of RY — RY, that
is phi(q) = Uq + t, with U an orthonormal matrix of determinant one, and t a
translation. Find ¢ minimizing

arg mdinZH@ﬁ(ql') - pill? (23)



Orthogonal versus constrained problem: comparison

d D
¢ a A C
b B
(A) (B)

N

(©) (D)

Figure: Superimposition two 3D point clouds: (A,B) Q and P (C)
Via optimal procruste solution: translation + reflexion (D) Via optimal
rotation



Orthogonal procruste problem: solution
Using ||AH$: = Tr(AAT) and Tr(AB) = Tr(BA) and Tr(A) = Tr(AT) we get:

IUQ =PIl = Tr(UQ = P)T(UQ — P))
=Tr((QTUT - PT)(UQ - P))
=Tr(QTQ)+ Tr(PTP) — TH(QTUTP) — Tr(PTUQ)
=Tr(QTQ) + Tr(PTP) — TH(PTUQ) — Tr(UQPT)
=Tr(QTQ) + Tr(PTP) — 2Tr(UQPT).

Assume we wish to maximize Tr(UQPT), and consider the SVD
QPT = vIwT.
We get

Tr(UQPT) = Tr(UVEWT) = T(WTUVE)
= Tr(ZX) with Z = WTUV.
Note that Z is orthogonal since it is the product of orthogonal matrices.

Note the following upper bound: Tr(ZX) = >, zjo; < >, 0.
On the other hand, taking U = WVT yields Tr(ZZ) = 3", 0.

>Ref: G. Golub and C.F. Van Loan, Matrix computations,.-2012

N
o1
~

N
<
~

(29)

(30)
(31)



Problem 3/rigid motions: centering the data

Lemma 4. with ¢ be a rigid motion form RY, with #(q) # P, define the affine
function
RIS RY 7(y) =6(y) —T+P. (32)

If $(§) # P, then:
A7) < A(9)- (33)

(Proof sketch)
With U a d x d orthonormal matrix and t € R?, assume that ¢(q) = Uy + t. Then

7(q) = Ug — UG+ p.

lé(ai) — pill* = llm(ai) — pill® (34)

= (Ugi+t—p;)"(Ugi +t—p;) — Ugi — UG +B—p;" (Ug; — UG+ P —p;) (35)

=2(Ugi —pi+1t) (Ug—P=1t) — (Ugp+ )" (Ugp + t) (36)
Therefore

A(P) — A7) = Z l¢(qi) — pill> = lI7(qi) — pill? (37)

_ (38)

n||Ug—B+t|? = nll¢(q) - Bl* > 0. (39)



The Kbasch-Umeyama algorithm for centered data

1: procedure Kabsch-Umeyama(P: d x n matrix,Q: d x n matrix)
2: Compute the d x d matrix M = QPT

3 Compute the SVD M = VSWT

4: Setsi =...,dyg_1=1

5: Set sg = sign(| VW)

6: Set § = Diag((s1,...,5q))

7:  Return U= WSVT

8: end procedure

NB: Using the identity matrix |4 instead of S yields the optimal rigid transformation,
which may not be a rigid motion (involved a reflection)

ai a as

b3

by
>Ref: J. Lawrence et al, J. of research of the National Institute of
Standards and Technology, 2019



Structural alignments and analysis

The Kpax flexible aligner



Conformational changes and rigid domains:

the example of fusion proteins

> Ex: TBEV glycoprotein (class Il fusion): pre. versus post fusion

— Classical analysis: — Our motifs:
”MVP B«‘k:";
=2l o 4
Statistics from Apurva: pre-fusion post-fusion
370 a.a. aligned; IRMSD = 11.1A Motif Alignment size  IRMSD
Red 88 1.69
Purple 40 0.38




Rigid domains and flexible linkers: intuition

Definition 5. Given two sets of a.a. Ma ={aj,,...,a;,} C Sa and
Mg = {bj,,..., b} C Sg, and a one-to-one alignment {(a; <> b;;)} between them,
we define the least RMSD ratio as follows:

nrmsp (Ma, Mg) = IRMSD(My, Mg)/IRMSD(S4, Sg). (40)
The sets My and Mg are called structural motifs provided that
[Ma| = |Mg| > sp and nrmsp(Ma, Mg) < ro,

for appropriate thresholds sp and rp.
> Quasi-isometric deformation: (selected) distances (almost) preserved

dl\\ dll\ dy ~ d}
' dy ~ d
d3 # db

R




Flexible aligners in general

Illustration with Kpax
> Input: two polypeptide chains A and B, with n and m residues

Definition 0. Pose of A and B: a relative positioning of A and B.

> Goal: find two subsets of residues Sp = {aj}i=1,...,r and Sg = {b;}j=1,... of these
chains and a one-to-one-mapping between them, which we denote A = {(a;, b;)} so as
to maximize:

» The length r of the alignment,
» Some quality measure between the two subsets, e.g. the IRMSD .
NB: both objectives are contradicting.
> General strategy:
> Given fixed positions of the chains: used DP to find the alignment
> Given the alignment: find the best rigid motion

» Upon reaching some fixed point: stop



Kpax: pose dependent and independent scores

> Pose independent scores Kjj: defined later

Definition 7. (K-score, pose independent) Assume Kj; is a pose independent score
defined for two amino acids a; € A and b; € B. The K-score of an alignment A(A, B)
is the sum K = Z(i,j)eA Kij;.

> Pose dependent scores Gg"se
Definition 8. (G-score, pose dependent) Given a pose of the two chains, let R;;
be the distance between the C, carbons of residue i on chain A and residue j on chain
B. The G-score of these residues is defined by The G-score of an alignment A is
defined by:
Gag = Y GF™ with GI™** = exp(—R?;/4055)- (41)
(iJ)eA



Kpax: generic algorithm

procedure Kpax(Chains P and Q)
Compute the n x m local scores Kj; — Eq. (45)
Use dynamic programming to obtain an initial alignment Ag
i+ 0 i .
Initialize the poses : A(i=0) « A B(i=0) . B
while True do
Compute the opt rigid motion 8A;
Compute the poses A1) = g4;(A) and Bli+1) — g4;(B)
(Optional: prune long (say > 8A) edges
Compute the n X m pose dependent scores G;OSE — Eq. 41
Use dynamic programming to obtain a new alignment A;
if Combinatorial or Geometric criterion met then
Break
end if
end while
Return final statistics
end procedure

DP

A= {al}i:l n Scores sz + DP -Ai+] hd QA,(A>~,9A,(B)
VVVVV - f poses
B={b}imtem Ao={(@,bi)tionr S 4, * Scores G

g4, € SE(3)



. . pose
Dynamic programming based on a score — Kj; or G,-j

» Fill the DP table from top left to bottom right, using the equations

Di_1j-1+sj,
D;’j = max( D,"J'_l — PIA, (42)
Di—1;— PP).

> Trace back a path from (n, m) to the origin (0, 0), following the arrow selected
during step 1.

\d
DDy

By | —mg Do

> Complexity (space and time): O(n+ m)

> Importance of gaps: isolating independent/disconnected motifs



Canonized paths: definition
> Moving a.a. A; or B; into a canonical position
> Translation to locate the C, at the origin
» Rotation to place the C along the negative z axis

> Rotation about the z axis to plant the N atom in the xz plane with positive x
coordinate

Definition 9. (Canonized n-path) Consider the i-th C, carbon, and assume its
polypeptide chain has been transformed using K;. The canonized n-path associated of
this C,, is the set of < 2n 3D points providing the coordinates of the C, of index

ke [-n—(n—1),...,—1,1,...,n—1,n], when they exist.

The support of a canonized n-path is the subset of
[-n,—(n—=1),...,—1,1,...,n— 1, n] corresponding to existing C, atoms.
Supports denoted [4[i] and Ig[j].

"_ W ‘1?"; . Using the supports, define:
s K ";u ’ ’ﬁ‘;;r. !
le My ot Ritk,jtk = HCQ‘;,-M Cf;J-MH sk € lalilnigj]-

(43)
Figure: Kpax: canonical frame



Canonized paths, pairwise distances and virtual atoms

> Pairwise distances: Rjy jtk

> Virtual atoms: given the center of mass of a chain — A or B:
» To account for the overall shape of the chain

» For each a.a.: atom place 2A away from each C,, carbon in the direction of the
center of mass



Distribution of pairwise distances

> Distribution of C,, distances in the local frame

Distances for k=—3

Distances for k=3
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Canonized paths: boundary conditions and weights p;;

Definition 10. (Multiplicity of a pair) Consider

ke[-n—(n—=1),...,—1,1,...,n—1,n]. The multiplicity ny if
n=1if k € /A[I] n IBL/] and — k € IA[I] N IB[J] (44)
nk = 0 otherwise.
The multiplicity of the pair of a.a. (i,) is defined as pj; = ﬁ
> Intersection of supports, illustration for n = 3
»> Each (A-*) and (B-*) entry:
C,: empty square: its
neighborhood: black dots
wy 0 T e > Weights on edges of the
it el ik i v Ranb it it . . . B B
g bipartite graph: |/a[i] N /s[j]]
3 > . J— — -
" - Exple: (A—1) x (B —3):

residues of indices 1 and 2 are
common; since two common
residues are available, the
associated multiplicity is

Wi =6/2=3.

321012 3 3210 12 3



Pose independent score Kj;

> Three components:
» Local score — based on distances Rk ji«k
» Spatial score — based on distances between virtual atoms
» Sequence similarity score
® Obtained by DP on sequences, with the proper substitution nmatrix

K = W/K,}‘“‘ + WsKi;c.'pa' + WbKi}slc", with wy + ws + wp, = 1. (45)
Default values are wy = ws = 0.5; w;, = 0.

> NB: if both proteins have more than 180 residues, the spatial score is turned off (D.
Ritchie, personal communication).



. Spa.
Local score K,-JL-OC' and spatial score K>

Using the coefficients p;; from cannonized paths (Def. 9), we define:

Definition 11. (Local score) Granted: hyper-parameters 8x(= 1) and o.

The local score K,.'Jf"c' of A; and B; via their canonized n-paths:

Kboc. = exp(—uij Z ﬂkRi2+k7j+k/(4o—i))' (46)
kelalilnigli]

> Coefficients oy: since the larger the index k, the larger the distance Rk ji«-
Stdev of these distances.

> Spatial score: local score applied to virtual atoms

Definition 12. (Spatial score) The spatial score of two a.a. i (chain A) and j
(chain B) is defined from the pairwise distances of their virtual atoms as follows:

KI_JS_Pa' = exp(—u,‘j Z Bk V,'2+/<,j+k/(47'/3))' (47)
kelalilNigli]

where Vi« is the distance between the two virtual atoms associated with residues
i + k on chain A and j + k on chain B.



Structural alignments and analysis

Domain identification with spectra clustering
Clustering: pre-requisites
From SPECTRUS to SPECTRALDOM
Gallery of results



Spectral clustering for domain identification:

new insights
()
o"c
®

Laplacian matrix:

F. Cazals, J. Herrmann, E. Sarti
Proteins, 2025 (in press)



Decomposing a biomolecule into rigid domains

> Rationale: find a segmentation of the chain / protein such that interactions

within domains are dense, while those across domains are not

> Unsupervised approaches: maximizing intra-domain interactions and
minimizing inter-domain interactions

> Demo. ..




K-means for a fixed value of k

>Ref:
D>Ref:

Rationale: to form homogeneous clusters, minimize ¢ = the sum of
squared distances to the center of masses of the clusters

Hardness: NP-hard, but provides the randomized ++ initialization
provides is such that
E [¢] /¢popr < 8(log k + 2) (48)
Cluster stability assessment: for a data point, compare the ratio of
distances to the first and second nearest neighbors
_12

Fion =< dnna/dunz > (49)

k-means++, Arthur and Vassilvitskii, ACM SODA 2007
SPECTRUS, Ponzoni et al, Structure, 2015



Graphs clustering and cuts
> Input: a weighted graph G = (V/, E), with symmetric weights w;; > 0
> Generalized degree of node i: d;j =37, ; wj
» (Sub-)Graph volume for A C V: Z,.GA d;

> Goal: partition G into disjoint sets Aj,...,Ax
1< —
cut(A, ..., A = 5 Z W(A A;) with W(A, B) = 4 Z wjj (50)
i=1 i€EA,JEB

> Avoiding trivial cuts via the minimization of:
> Ratio cut: uses the size of clusters
W(A;, A;
RatioCut[A ..., A=Y % (51)
i

i
> Normalized cut: uses the volume (sum of degrees) of clusters

W(A.A)

52
vol A; (52)

NCut[A ..., Al =)

> Hardness: NP-hard problems ... for which efficient relaxations exist
>Ref: von Luxburg, Stat. Computing, 2007



(Standard) Graph Laplacian: example and intuition

> Laplacian L=D — W

NB: The unit vector 14 is an eingenvector associated with the eigenvalue 0.

> Intuition




Graph Laplacians: std, normalized, random walk
> Def:
» unnormalized graph Laplacian L =D — W
» normalized Laplacian Leym = D~Y/2LD1/2

» Random walk Laplacian: Ln, = DL =/ — P-with P the random walk
transition matrix (NB: G can be directed)

> Several important properties of L:

» [ yields a positive semi-definite quadratic form

For a vector f € R? : fTLf = %Z wi(fi — £)°. (53)
ij
» Eigenvalues are A\, > ... A1 = 0;
» The unit vector 1, is an eigenvector of \; =0
> Eigenspace of the (multiple) eigenvalue 0: indicator vectors 1a,,...,1a,
for the connected components of G
> NB:
» similar properties for Leym. and Ly
» L.: Perron-Frobenius and the Google page rank
>Ref: von Luxburg, Stat. Computing, 2007



Spectral clustering using Leym,

> Input:

>
>

similarity matrix € R™*"

k the num. of clusters

> Algorithm:

>

vVVYyYVYY

vy

D>Ref:

Compute the Laplacian L=D — W

Compute the normalized Laplacian Lsym. = D~ Y21 D~
Compute the first (smallest) k eigenvectors of Lsym.
Form U € R™ ¥ by truncating the eigenvectors to k columns
Form matrix T by normalizing the rows of U

NB: ideally: these are the indicator vectors of the clusters.
Consider the n point T[i :]: points on the unit sphere S*
Perform k-means for these points

1/2

Ng et al, NIPS, 2002



Graph cuts, graph clustering, Laplacians

> Key points:
» graph cuts yield NP-hard discrete optimization problems
» spectral clustering corresponds to relaxations of these problems
> correspondences

® RatioCut: L
® NCut: Lsym. or Lrw

>Ref: von Luxburg, Stat. Computing, 2007



SPECTRUS: from atomic fluctuations to similarities

> Rationale to identify rigid domains:

7 s & -
> split protein with spectral ﬁl ~
clustering

> weight oj; (or wj): function of d:\w d/,\,,w' di ~dj

L o dy ~ df
the variation of relative distances di#d;;

> Distance fluctuation for each pair of a.a.:

» option 1: from crystal structures

fij = /< di>—<d;>2 (54)

» option 2: from theoretical model — atomic normal modes

> Similarity matrix/weight matrix from fluctuations—with suitable o

ojj = exp(ff,-j/202)7 (55)

> Rmk: distance threshold used to consider only pairs within ro = 10A.

>Ref: SPECTRUS, Ponzoni et al, Structure, 2015



SPECTRUS: spectral clustering, k-means, renormalization

> Spectral clustering: reduces to k-means on the sphere Sk.

> SPECTRUS score for one run of k-means++ at fixed value of k:

> Tizn: average ratio dyy1/dyn2 obtained from k-means++

> 712 [Ref]: average average such ratio for n random points on Sk

» Associated SPECTRUS score:

12

rk n
Scorey p = —5———- (56)
" ri,zn[Ref]

> Repeats: best Scorey , out of N = 10 repeats for a given k.

> Range for k: best k for
£ 14 . ke [kmin: kmaX]-

>Ref: SPECTRUS, Ponzoni et al, Structure, 2015



SPECTRUS: workflow

» Convert fluctuations into weights
» Apply spectral clustering

» Normalize the k-means score for spectral clustering

INPUT cycle on the number of domains Q OUTPUT
Conformers 5 Qu:;:‘Ir[:]'.’filsecmc
ensemble istance Similarit Spectral Clustering in a uality score
or = fluctuation Mt —# Laplacian < Qdimensianal Qasscsysmcm pi’;k
malrix rojection space
neg\a.stlck proy P subdivision(s)
m'“' 1oel with highast
score

D>Ref: SPECTRUS, Ponzoni et al, Structure, 2015



> Fluctuation / stdev for residues i and j:

From SPECTRUS to SPECTRALDOM

fij =/<df >—<dj>2 (57)

> SPECTRUS:
» f;; from normal modes
> Convert f; into weights w;;
» Apply spectral clustering using
the Laplacian L=D - W

>Ref: Ponzoni et al, Structure,
2015

> In SPECTRALDOM: two options

> Diffusion Map mode: w;; from
(non-)covalent contacts
In2 |
2

wij = ij x exp(— dij—do |).

» Multiple Sequence Alignment
mode: from atomic positions

>Ref: Cazals et al, Proteins,
2025



SPECTRUS to SPECTRALDOM- details

> A diffusion map mode: " For these or even larger macromolecular assemblies,
which may be too onerous to simulate with atomistic MD, we further show that the
distance fluctuation matrix can be viably obtained from computationally effective
elastic network models using only a single reference structure as input.”

Structure p.e.
coordinates

ENM l

s s Fluctuations ™ matrix

Soft stiffnesses

» No more normal modes useless: local vibrations encoded by contacts

Pairwise Co Weighted adjacency

——— Spectral clustering

> A Multiple Sequence Alignment mode: homologous proteins
“SPECTRUS takes-as -input-multiple structures with -no-mis--matched sets-of missing

Sequence 1 e, o) 6K = ok el @)

Clnseqence index. 1 7 3 T

Polypeptide chain 1 o ° (]
Ko PDB 3 A AR
Polypeptide chain 2 O o L) ] e 0
roB sS4 S5




SPECTRALDOM: Diffusion Map mode

> Intuition: identify domains from strong connexions

> Def: non covalent C, neighbors: two non consecutive a.a. having heavy atoms
within distance threshold r. = (10A)

> Consider the following stiffness constants—as in the harmonic model:

> covalent interactions: 'yijc.°"(: 10)
> non covalent interactions: resp. 'yI!J\.'C°"(: 1)

» and possibly: hydrogen bonds: 'yl!j*B; salt bridges: 'ygB, etc.
> Direct def. of the similarity / weighted adjacency matrix:
In2
wij = i * exp(——= | dj — do |). (58)

with do = 5A and o = 1.



Chainsaw— combining RNN and community detection
> Stochastic block models for community detection: probability to obtain the
graph of domain connectivity

PIA] = Mie;a (1 — a5)0 720, (59)

> Chainsaw: main steps

» Residual convolutional NN yields C, adjacency matrix,

» Structure is converted into five feature channels (pairwise C, distances,
and four channels for predicted SSE (helix vs strand, within vs boundary
of SSE))

» Features converted into a pairwise probability matrix using a deep
convolutional network
NB: learning minimized the cross entropy between the predicted soft
adjacency matrix and the one representing the probability of residue
co-occurrence in the same domain.

» Optimization problem solved

D" =arg rpai(IP’ [A]. (60)
vk

> Claim: superior results over unsupervised methods
>Ref: Chainsaw, Orengo et al, Bioinformatics, 2024



Reducing fragmentation

with the D-family matching algorithm
> Exple: chain split into 2 non contiguous domains for k = 2

First  decomposition  Cy

k=2 vz ~r v T two domains, each consist-
A PEaat K ing of two stretches along
AP Seell 4 the sequence
Cia=siiaUsiiz Cra=s1.0.1Us12

D-family matching:
two meta-clusters

First  decomposition  Cy:
four domains, each con-
tiguous along the sequence

Caa Caz Caa [on
1
Y

ba- - -

> Fixing the fragmentation by combining two decompositions via D-Fam.

maching:



H uman serum tra nsferri N. Chainsaw vs SPECTRUS vs SPECTRALDOM

» Two domains easily found
» Chainsaw and SPECTRUS: difficulties in terminal helix
> NB: PDBid 1a8e/A

SPECTRALDOM DM mode
Quality plot DM 1

Chainsaw
SPECTRUS



Escherichia coli adenylate kinase: specrrabon MsA and DM

(Row 1) MSA mode applied to chains A of lake and 4ake.
(Row 2) DM mode for lake/A.

(Row 3) DM mode for 4ake/A.

(Row 4) Comparison with SPECTRUS and Chainsaw

NB: crystal structures: closed: lake/A; open: 4ake/A.

vVvyVvYyVvyy




Glutamine-binding protein — GInBP

(Top) MSA mode applied to chains A of 1ggg and lwdn.
(Middle) DM mode for 1ggg/A.

(Bottom) DM mode for 1wdn/A.

NB:Crystal structures: unbound: 1ggg/A; bound: 1wdn/A.

vVvyVvyy

‘SPECTRALDOM MSA.

SPECTRALDOM DM

SPECTRALDOM DM

lggg/A



Yeast elongation factor eEF2 : SPECTRALDOM MSA mode

» Values of k of interest: k = 2,4,6 — local maxima with low score variance.

> (Top) Reference domains (crystallography) for the unbound (1n0Ov) and bound
structures (1nOu)

»> (Middle) Domains of the unbound structure

»> (Bottom) Domains of the bound structure

> NB: crystal structures: unbound: 1nOv/C; bound: 1nOu/A

H



Outlook

» SPECTRALDOM:

® distances suffices (no coordinates) to identify domains
® a simple and interpretable model

» Software in the Structural Bioinformatics Library



Structural alignments and analysis

The combined RMSD



Structural comparisons: beyond global comparisons

accounting for local features

> IDP: molecular recog. element

(MoRE) C C ter domain of the > Globular protein: class Il fusion
measles nucleoprotein (Najr) proteins before/after fusion
A
S491
A492 5488
D493 R497 Rasg
A494
Q499
5481 AB02 pese
H2:30% P4ss
H1:22 % H3:10 %
+H55QDPQDSRRSADALLRLQAMAGISE=**
SSQDPQDSRRSADALLRLQAMAGISE H1
SSQDPQDSRRSADALLRLQAMAGISE H2
506 SSQDPQDSRRSADALLRLOAMAGISE H3 Ab02
Unfolded: 25 % SSQDPQDSRRSADALLRLQAMAGISE H4 139
DRef: M. Blackledge et all, >Ref: F. Rey et al, Cell, 2014

PNAS, 2011



Comparing two molecules: the combined RMSD

> Rationale: use one rigid motion for each rigid/structurally conserved region

ﬂ M

Given two molecules A and B:

» Identify rigid motifs (SPECTRUS,

MY
Kpax, etc)

$ V”:w .

Definition 13. Consider two structures A and B for which non-overlapping
domains {CI.(A), C}B)};:l,”qm have been identified. Assume that a IRMSD has been

» Define the motif intersection
graph

computed for each pair (Cl.(A), CI.(B)). Let w; be the weights associated with an
individual IRMSD . The combined RMSD is defined by

m

RMSDcomb. (A, B) = \j > ZWi IRMSD2(CY, c(B)y. (61)

=1 2ai Wi

> Rmk: comes into two guises, namely vertex weighted and edge weighted
>Ref: Cazals and Tetley, Proteins, 2019



Upper and lower bounds

> Convexity inequalities:

Lemma 14. The combined RMSD satisfies the following upper and lower bounds:

m

RMSDcomp. (A, B) > Z

(C(A) C( )) (62)

Let fmin = min; IRMSD(C™, C!®) and fmax = max; IRMSD(CY, C®)). One has

RMSDcomb. (A B) < Z — IRMSD(C(A) C +2( Imin ‘; Imax vV Imin 42’ Y% /maX).
i=1 i
(63)

>Ref: Cazals and Tetley, Proteins, 2019



Combined RMSD : TBEV glycoprotein in two different
conformations pre and post fusion

> Classical analysis: > Our motifs:

Motif | Alignment size IRMSD

Large 88 1.69

o ' 2 7
qé;’y%’v«' Small 40 0.38

Statistics from Apurva:
» 370 a.a. aligned
» IRMSD: 11.1A



The IRMSD smoothes out local structural conservation

> Class Il fusion proteins: SSE
conservation

W Wi

¢
DFV-Flavi. TBEV
ﬂf’g “’;"'h
,’j/ Ny
N, ¢
HRV-Hanta. SFV-Alpha.
DR R 4
A bt
i *,
RVFV-Phlebo. RBV-Rubi.

0.467 2.087

> Class Il fusion protein in soluble and
post-fusion conformation

Motif | Alignment size IRMSD
Large 88 1.69
Small 40 0.38
> Motifs and RMSDcomp.:
> Align-Identity-SFD: #a.a.:
152; RMSDcomp.: 2.53 A.
> Align-Identity-CD: #a.a.:
161; RMSD¢omp.: 1.26 A.




RMSDcomb. identifies novel quaternary structures for
hemoglobin

> Quaternary structure of > Conservation of SSE
hemoglobin

\

RMSDem,
RMSDeom

Full chains

>Ref: Shibayama et al, JACS, 2014
DRef: Cazals et al, Proteins, 2019



Structural alignments and analysis

The AcrB efflux pump



RND proteins and drug efflux

> Resistance-nodulation-division (RND) proteins: mostly identified in Gram-negative
bacteria, bacterial efflux pumps located in the cytoplasmic membrane.
Nb: homologous proteins involved in cancer chemo-resistance.

> Particular case:  AcrA-AcrB-TolC transporter, with the AcrB trimer

- g ‘\
Funnel
% \ww
Loops %l&)(“\l <5y<swi Loops
~ Loopt u - .
/TN 7N N oz 77\
Porter = )
NG / @) /

(Pc2
an (e,

0 o
Periplasm

™ ™
8/
e - OIC g
aHelix
Cytoplasm e

AcrB involves 8 main subdomains and 12 linkers

> Data available for AcrB : wild-type structures with median resolution 3.32 A; 81
monomers gathered in from 32 (trimers) + 11 (monomers) PDB files

>Ref: Yamaguchi et al, Frontiers in microbiology, 2015



Export by AcrB: overview of the mechanism
> Active transport using the proton motive force (PMF): AcrB trades
» 1HT flowing along the negative gradient — periplasm into the cytoplasm,
» 1 substrate molecule — cytoplasm/inner membrane to the outside of the cell
across AcrB - AcrA - TolC
> Mechanically: a peristaltic pump

|

(«// 7 S\
N m i u® wON
A J
B. %
- A I
X n
T ﬁ”\d‘; o e )

> Three step rotating mechanism based on 3 states of monomers

— Three states: A/L: access/loose; B/T: bound/tight; E/O: extrusiOn/Open
A state: vestibule open on periplasm; binding pocket shrunk
B state: molecule binds into pocket; blocked channel (central helix) opens
E state: vestibule closed; exit open—central helix rotates

— Allostery: binding to AcrB — repacking AcrA — channel opening of TolC

P

>Ref: Seeger et al., Science, 2006; Murakami et al, Nature 2006
>Ref: Wang et al, eLife, 2017



Question 1: states for monomers and the trimer

> Questions: are A, B, and E the only states? What about trimers?

> Method: hierarchical clustering of individual monomers

IRMSD of distance matrix with average linkage

al
filisklha

> Findings
> labeling of unlabeled monomers as A, B or E (from the containing cluster)

» only observed state for asymetric trimers: ABE



Question 2: sub-domains and sub-states

> Question: which subdomains (out of 8) and linkers (out of 12) account for the A,

B and E states?

> Methods: combined IRMSD clustering of sub-domains

Monomer

RMSDc of distance matrix with average linkage ™

TM1-6

Loopll

TMT7-12

Briy

Ehonyy

TM1-6
TMT7-12

> Findings:

Ep,

» Subdomains compatible with the A, B, E clustering: Loop2, Loop8, Loopll, TM

> Novel substates identified: A — A/, A" A”":B — B',B



Question 3: evolution of interfaces between sub-domains
> Question:
> Method:

identify subdomains whose relative positions change

LooptPN1
4

using Voronoi interfaces between sub-domains

* DN DN
“Laopl-Loops+

Loop DN

® xPN2 PC2+¢

Interfaces: within monomer Interfaces: across monomers
> Findings:

» H# of interfaces: 57 in A state, 68 in B state and 74 in E state

» Characterization of interfaces specific to individual states



Better understanding of the AcrB cycle

 recognition of substrates at affin-
ity site

« loose state with least internal in-
terfaces between subdomains

3 identified substates adopted by
subdomains in a monomer

TM : small global change (deprotonation)
* Loop 2 dynamic (++)

1o interface, thus mobile subdomain
* Loop 11 start to change to helix

Loop

Logp 11: helix to coil
reopening of the entrance

P S

 TM : small global changes

Decompression of PC1 and PC2

(> reopening of drug binding pocke

and its entrance)

« 4~ B due to drug accommodation
« Reduction of interfaces between main
porter subdomains

 Opening of drug binding pocket

(DBP)

 TM: small global change (protona- « 2 identified substates adopted by sub-
tion) domains

o Loop2

o Loop 11: helix -> closure of the en-

trance

® Loop 8

= Compression of PCI and PC2
triggers the closure of drug binding
pocket

DRef: Simsir et al, Proteins, 2021



Software: molecular craddle

> Rationale: model a complex molecular machine as a craddle of sub-domains
whose relative positions change

> Package in the Structural Bioinformatics Library:
https://sbl.inria.fr/doc/Molecular_cradle-user-manual.html


https://sbl.inria.fr/doc/Molecular_cradle-user-manual.html
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