Algorithms and Learning for Protein Science

Molecular kinematics, inverse problems, loop sampling

Frederic.Cazals@inria.fr

Overview

▷ Theory/algorithms

Exploring high dimensional spaces: RRT and HAR

Loop closure

Protein science

- Tripeptide/Triaxial loop closure
- Loop sampling

Loop sampling

Exploring high dimensional spaces: two methods

Exploring Potential Energy Landscapes:

transition based rapidly exploring random trees (T-RRT)

- Goal: sample basins and transitions, avoiding trapping
- ▷ Algorithm growing a random tree favoring yet unexplored regions
 - node to be extended selection: Voronoi bias
 - node extension: interpolation + Metropolis criterion (+temperature tuning)
- Limitations: oblivious to local minima; not a Markov chain

Random walk: hit-and-run

 \triangleright Goal: sample point in K according to a prescribed density f in a polytope K

 \triangleright (Random-direction) hit-and-run: random point x_W after W steps

▶ Iteratively:

- pick a random vector
- ► move to random point on the chord *I* ∩ *K*, chosen from the distribution induced by *f* on *I*

▶ Comments:

- risk of being trapped near a vertex
- large W helps forgetting the origin x₀

 \triangleright Thm (Berbee et al) The limit distribution induced by HR is uniform in K.

 \triangleright Thm (Vempala et al) HR can be modified to sample an isotropic Gaussian (restricted to K).

▷ Thm (Lovász) Let r and R denote the radii of the largest inscribed and circumscribed balls for K. One sample generation: $O^*(d^3)$.

▷Ref: Berbee et al, Math. Prog., 1987

- ▷Ref: Lovász, Math. Prog. Ser. A, 1999
- ▷Ref: Lovász, Vempala, SIAM J Comp., 2006

Loop sampling

Exploring high dimensional spaces: two methods

Tripeptide Loop Closure: background TLC: background Biological context TLC: specification

Open problems

Tripeptide Loop Closure - TLC

▷ TLC: for 3 amino acids, fix all internal coordinates BUT the $(\phi_i, \psi_i)_{i=1,2,3}$ angles

⇒ Find all possible values of the six angles $(\phi_i, \psi_i)_{i=1,2,3}$ compatible with the remaining fixed internal coordinates (bond lengths, valence angles, ω_i)

 \triangleright Theorem: at most 16 solutions \leftrightarrow real roots of a degree 16 polynomial

The three amino acids may not be consecutive

3 consecutive a.a.

3 a.a. sandwiching SSE-CDRs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- ▷Ref: Go and Scheraga, Macromolecules, 1970
- ▷Ref: Coutsias et al, J. Comp. Chem., 2004

Loops: biological relevance and dynamics

Loops in biological processes

Action modes

- (Structure) Global dynamics: global motions of domains
- (Thermodynamics) Localized dynamics of CDR in antibodies (binding affinity)
- (Mix) IDP and more generally highly flexible regions
- ▷ Open problems: accurate predictions for structure / thermodynamics / kinetics

Geometric models: Cartesian and internal coordinates

- ▷ Cartesian versus internal coordinates: $\{x_i y_i z_i\}_i$ versus $\{d_{ij}, \theta_{ijk}, \sigma_{ijkl}\}$

Bond length and valence angle

Ramachandran diagram, per a.a. type:

bivariate distribution for (ϕ, ψ)

Side chain: 20 natural amino acids Exple: Lysine, 4 dihedral angles

Softness of Internal coordinates --force constants from CHARMM 36

Bonds: $\delta d_{ij} \sim .2$ Å : $\Delta V \sim 20$ kcal/mol

Torsion angles: $\Delta V \sim 3 - 4kcal/mol$

Valence angles: $\delta heta_{ij} \sim 10^\circ$: $\Delta V \sim 20$ kcal/mol

Dihedral angles:

- are indeed soft coordinates, but...
- Iong range steric clashes,
- yield complicated inverse problems. for loop closure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

The Ramachandran diagrams

Ramachandran diagrams and populated regions

- Main regions: $\alpha L, \alpha R, \beta S, \beta P$
- Three prototypical diagrams
 - Glycine no side chain/chiral C_{α}
 - Proline side chain cycles on N
 - Others with C_{β} and chiral C_{α}

Distance constraints and the Ramachandran tetrahedron

 $\begin{array}{ll} C1:C_{\pmb\beta}-O_{i-1} & C2:C_{\beta}-O+C_{\beta}N_{i+1}\\ & C3:O_{i-1}-O+O_{i-1}N_{i+1} \end{array}$

▷Ref: Stereochemistry of polypeptide chain configurations, JMB, 1963; Ramachandran et al

▷Ref: Revisiting the Ramachandran plot, Protein Science, 2003; Ho et al

Challenge Dynamics of proteins: specification

- Input: structure(s) of biomolecules + potential energy model
- Output
 - Thermodynamics: meta-stable states and observables
 - Kinetics: transition rates, Markov state models
- Time-scales
 - Biological time-scale > millisecond
 - Integration time step in molecular dynamics: $\Delta t \sim 10^{-15} s$

- 162 amino acids, > 2000 atoms
- 5.058ms of simulation time
- ~ 230 GPU years on NVIDIA GeForce GTX 980 processor

э

Chodera et al, eLife, 2019; Youtube link () () () ()

Tripeptide Loop Closure - TLC

▷ TLC: for 3 amino acids, fix all internal coordinates BUT the $(\phi_i, \psi_i)_{i=1,2,3}$ angles

⇒ Find all possible values of the six angles $(\phi_i, \psi_i)_{i=1,2,3}$ compatible with the remaining fixed internal coordinates (bond lengths, valence angles, ω_i)

 \triangleright Theorem: at most 16 solutions \leftrightarrow real roots of a degree 16 polynomial

The three amino acids may not be consecutive

3 consecutive a.a.

3 a.a. sandwiching SSE-CDRs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- ▷Ref: Go and Scheraga, Macromolecules, 1970
- ▷Ref: Coutsias et al, J. Comp. Chem., 2004

The peptide bond and peptide rigid bodies

▷ The peptide bond defines a rigid body:

▷ The C_{α} triangle is rigid

Internal coordinates fixed

- Bond lengths
- Valence angles
- ω angle

- C_{α;2} belongs to the intersection of two spheres centered at C_{α;i} C_{α;i+2} ⇒ C_α triangle has fixed geometry
- Legs fixed + C_α triangle rigid: rotate the three (colored) rigid bodies,

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ つ へ つ

▷ Observations: • one solves for six rotation angles $\{(\tau_i, \sigma_i)\}_{i=1,2,3}$ • TLC parameterized in an angular space of dim. 12

- ▷Ref: Coutsias et al, J. Comp. Chem., 2004
- ▷Ref: Cazals et al, Proteins, 2022

TLC model: from six to three angles

▶ Key ingredients of TLC:

- Initially: six dihedral angles $\{(\phi, \psi)\}_{\{i=1,2,3\}}$
- Then: three pairs $\{\delta_i, \tau_i\}$
- Finally: three angles τ_i

▷ The valence angle constraints: the θ_i angles at the $C_{\alpha;i}$ s must remain constant.

 \Rightarrow It is the coupling introduced by the θ_i angles onto the rotation angles τ_i yields a degree 16 polynomial.

▶Ref: Coutsias et al, 2004

The three local frames

- Local frames and individual rotations:
 - Defining invidividual rotations

 $\hat{\mathbf{r}}_{\mathbf{i}}^{\sigma}; \, \hat{\mathbf{r}}_{\mathbf{i}}^{\tau}$

• Orthonormal local frames:

$$\begin{split} \mathrm{Nb:} \ & \hat{Z}_i = \mathrm{Unit} \ \mathrm{vector} \ \mathrm{along} \ C_{\alpha;i}C_{\alpha;i+1} \\ & \hat{Y}_i \equiv \hat{Z}_{i-1} \times \hat{Z}_i \qquad \mathrm{Nb:} \ & \hat{Y}_i = \hat{Y} \\ & \hat{X}_i = \hat{Y}_i \times \hat{Z}_i = (\hat{Z}_i \cdot \hat{Z}_{i+2})\hat{Z}_i - \hat{Z}_{i+2} \end{split}$$

▷ Angular description of the tripeptide: $4 \times 3 = 12$ angles

$$\begin{cases} \alpha_{i} = \angle \hat{\mathbf{2}}_{i} \hat{\mathbf{2}}_{i-1} \\ \xi_{i} = \angle - \hat{\mathbf{2}}_{i} \beta_{i}^{\sigma} \\ \eta_{i} = \angle \hat{\mathbf{2}}_{i} \hat{\mathbf{1}}_{i}^{\tau} \\ \delta_{i} = \angle \mathsf{Plane}(C_{\alpha;i} C_{\alpha;i+1} C_{i}), \mathsf{Plane}(C_{\alpha;i} C_{\alpha;i+1} N_{i+1}) \end{cases}$$
(2)

▷ Four tuple of angles for $\underline{C}_{\alpha;i}$ of tripeptide T_k : $A_{k,i} = \{\alpha_{k,i}, \eta_{k,i}, \xi_{k,i-1}, \delta_{k,i-1}\}$

Rotations and dot product

Vectors in local frames; dot product in global frame

 \triangleright Rotations of C_i and N_i : the two cones problem

▷ Expressions of rotation vectors in local frames: In frame: $(\hat{X}_{i-1}, \hat{Y}, \hat{Z}_{i-1})$: $\hat{r}_{i-1}^{\sigma} = -\cos \xi_{i-1} \hat{Z}_{i-1} + \sin \xi_{i-1} (\cos \sigma_{i-1} \hat{X}_{i-1} + \sin \sigma_{i-1} \hat{Y})$ (3)

In frame(
$$\hat{X}_i, \hat{Y}, \hat{Z}_i$$
): $\hat{r}_i^{\tau} = \cos \eta_i \hat{Z}_i + \sin \eta_i (\cos \tau_i \hat{X}_i + \sin \tau_i \hat{Y})$ (4)

 \triangleright Valence angle constraint equation: θ_i kept constant

$$\langle \mathbf{f}_{i-1}^{\sigma}, \mathbf{f}_{i}^{\tau} \rangle = -\cos \xi_{i-1} \cos \eta_{i} \cos \alpha_{i}$$

$$(5)$$

$$-\cos \xi_{i-1} \sin \eta_{i} \cos \tau_{i} \sin \alpha_{i}$$

$$-\cos \eta_{i} \sin \xi_{i-1} \cos \sigma_{i-1} \sin \alpha_{i}$$

$$+\sin \xi_{i-1} \sin \eta_{i} (\cos \sigma_{i-1} \cos \tau_{i} \cos \alpha_{i} + \sin \sigma_{i-1} \sin \tau_{i})$$

$$= \cos \theta_{i}.$$

$$(6)$$

Algebra: the degree TLC solutions via the 16 polynomial

Change of variables:

$$u_i = \tan(\tau_i/2), w_i = \tan(\sigma_i/2). \tag{7}$$

▶ Re-write the valence angle constraint – see also Eq. 21:

$$A_{i}w_{i-1}^{2}u_{i}^{2} + B_{i}w_{i-1}^{2} + C_{i}w_{i-1}u_{i} + D_{i}u_{i}^{2} + E_{i} = 0,$$
(8)

where the coefficients A_i, B_i, C_i, D_i, E_i depend on the angles $\theta_i, \alpha_i, \eta_i, \xi_{i-1}$.

▷ Perform another round of elimination for the w_{i-1} – coupling via δ_i : yields three three biquadratic polynomials in three variables, namely $P_1(u_3, u_1), P_2(u_1, u_2), P_3(u_2, u_3)$

By the Bernshtein-Kusnirenko-Khovanskii theorem, at most 16 solutions.

The bound is tight.

Using resultants: degree 16 polynomial in 1 variable

▶ Nb: the bound it tight.

 \triangleright Robust solutions: requires some care since π is involved

▷Ref: Cox,Little,O'Shea, Using algebraic geometry, 2005 https://en.wikipedia.org/wiki/Bernstein%E2%80%93Kushnirenko_theorem

Loop sampling

Exploring high dimensional spaces: two methods

Tripeptide Loop Closure: background TLC: background Biological context TLC: specification

TLC: on the quality of solutions

Necessary condition on TLC TLC steric constraints Obtaining Initial Validity Intervals Loop sampling Introduction - perspective Loop model, frames, and algorithm overview Results Outlook

Open problems

TLC: number of solutions and atomic displacements

 \triangleright Dataset: \sim 2.6 million tripeptides in *loops* from high-resolution non redundant PDB structures

▶ # of solutions: function of span

Atomic displacements

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ ̄豆 _ のへで

Interpolatory properties of TLC reconstructions

in the Ramachandran domains of the 3 amino acids

- ▶ Method: for the 3 Ramachandran domains (since 3 peptides):
 - compare the distribution of data versus reconstructions
 - distinguish on a per-class amino acid basis
- Ramachandran distributions

▶ NB: transient regions discovered – absent from crystals. □ → () → (

Loop sampling

Exploring high dimensional spaces: two methods

Tripeptide Loop Closure: backgroun TLC: background Biological context

TLC: specification

TLC: on the quality of solutions

Necessary condition on TLC TLC steric constraints Obtaining Initial Validity Intervals

Loop sampling

Loop sampling Introduction - perspective Loop model, frames, and algorithm overview Results Outlook

Open problems

TLC with moving legs and embeddable tripeptides

Geometric model:

- ► Tripeptide such that : left leg $N_i C_{\alpha;i}$ fixed, right leg $C_{\alpha;i+2} C_{i+2}$ free to move
- Six dihdedral angles $\{\phi_i, \psi_i\}$ free

▷ Question: provide necessary conditions on the position of the first and last segment—the legs, for the Tripeptide Loop Closure (TLC) algorithm to hold solutions. ▷ Nb: the relative position of legs suffices; in that case, position + orientation of $C_{\alpha;i+2}C_{i+2}$ yields a 5-dim search space.

Embedding tripeptides: recap

▷ 1. From the position of legs: compute $\{\alpha_{k,i}, \eta_{k,i}, \xi_{k,i-1}, \delta_{k,i-1}\}_{i \in \{1,2,3\}}$ ▷ 2. TLC: find the (σ, τ) angles such that:

$$\langle \mathbf{\hat{r}}_{i-1}^{\sigma}, \mathbf{\hat{r}}_{i}^{\tau} \rangle = \cos \theta_{i}.$$
(9)

▷ Our goal:

- Conditioning of the solutions wrt the $\{\alpha, \xi, \eta, \delta\}$ via necessary conditions
- Ability to sample uniformly solutions given the necessary conditions

Sampling strategy based on validity intervals: overview

Angular representations:

- $C_{\alpha;i}$ from tripeptide T_k : four tuple of angles $A_{k,i} = \{\alpha_{k,i}, \eta_{k,i}, \xi_{k,i-1}, \delta_{k,i-1}\}$ with $i \in \{1, 2, 3\}$
- Tripeptide T_k , 12-dim angular space: $A_k = \{A_{k,1}, A_{k,2}, A_{k,3}\}$.

Strategy:

- Assume we have necessary conditions for the angles, as a finite set of validity intervals I = {[a_i, b_i]}
- Assume each bound a_i or b_i is defined by an implicit equation in the 12 angular variables
- By the implicit function theorem (assuming it applies): each equation corresponds to a hyper-surface
- Domain enclosed by these hyper-surfaces: domain within which TLC solution lie

Validity Intervals and Depth One Validity Intervals (DOVI)

 \triangleright Validity intervals: for each angle $\tau_{k,i}$, one can compute 2+2 intervals on S^1 , representing (stringent) necessary conditions for TLC to admit solutions:

$$(\text{Initial})\mathcal{I}_{\tau_{k,i}} = \{I_{\tau_{k,i}}\} \text{ with } I_{\tau_{k,i}} = [I_{\tau}^{\min}(\mathsf{A}_{k,i}), I_{\tau}^{\max}(\mathsf{A}_{k,i})]$$
(10)

$$(\mathsf{Rotated})\mathcal{I}_{\tau_{k,i}|\delta} = \{I_{\tau_{k,i}|\delta}\} \text{ with } I_{\tau_{k,i}|\delta} = [I_{\tau|\delta}^{\min}(\mathsf{A}_{k,i+1}), I_{\tau|\delta}^{\max}(\mathsf{A}_{k,i+1})]$$
(11)

Indeed:

- I_{τ_{k,i}} : obtained from the invariance of θ_i at C_{α;i}
- $I_{\tau_{k,i}|\delta}$: obtained from $I_{\sigma_{k,i}}$ via the relation $\sigma_i = \tau_i + \delta_i$
- NB: 2 initial and 2 rotated: intervals bounds in $[0, \pi]$ + symmetry wrt C_{α} plane

Intersection of validity intervals: necessary conditions expressed as intervals

$$I_{\tau_{k,i}} \cap I_{\tau_{k,i}|\delta}$$

Limit case: implicit equation in the 12 dimensional space A_k .

Limit case: $I_{\tau}^{\max}(\mathbf{A}_{k,i}) = I_{\tau|\delta}^{\min}(\mathbf{A}_{k,i+1})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Validity domain for tripeptide T_k :

intersecting two initial and two rotated intervals

▷ Rigid body / of tripeptide T_k : angles tuples \rightarrow Depth One Validity Intervals

$$\mathsf{DOVI}_{\tau_{k,i}}(\cdot): \mathcal{A}_k \mapsto \emptyset + (\mathcal{I}_{\tau_{k,i}} \cap \mathcal{I}_{\tau_{k,i}|\delta})^4.$$
(12)

▷ The angular validity domain \mathcal{V}_k for T_k :

For the angle $au_{k,i}$: the domain $\mathcal{V}_k \subset \mathcal{A}_k$ such that

$$\forall k, \forall i, \forall a \in \mathcal{V}_k : \mathsf{DOVI}_{\tau_{k,i}}(a) \neq \emptyset.$$

▷ Non empty intersection for 2 intervals $I_{\tau_{k,i}} \in \mathcal{I}_{\tau_{k,i}}$ and $I_{\tau_{k,i}|\delta} \in \mathcal{I}_{\tau_{k,i}|\delta}$: conditions

$$\begin{cases} I_{\tau}^{\max}(\mathsf{A}_{k,i}) = I_{\tau|\delta}^{\min}(\mathsf{A}_{k,i+1}) \\ \text{or } I_{\tau}^{\min}(\mathsf{A}_{k,i}) = I_{\tau|\delta}^{\max}(\mathsf{A}_{k,i+1}) \end{cases}$$

 \Rightarrow **two implicit equations in** \mathcal{A}_k : two sub-manifolds \mathcal{V}_k

Validity intervals: deep i.e. iterated VI

- Two types of constraints:
 - Coherence along each edge of the C_{α} triangle via ω angle
 - Constraint on θ_i at each C_{α}
- > A sequential and iterative construction: interval types used
 - Initial VI
 - Rotated VI
 - Deep VI and Restricted Deep VI

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Stringency of necessary conditions: assessment

- Reminder: the search space is 5D
- Evaluation of the stringency of validity intervals:
 - Take random instances of peptides in the 5D space
 - Identify positives (P) and negatives (N)
 - Given that N = True Negative + False Positives

Strigency of necessary condition $c : \frac{FP(c)}{N}$ (13)

▷ Nb: projecting the 5D points into 3D: coordinates of $C_{\alpha;i+2}$

Stringency of necessary conditions: results

▷ Nb: FP reduced significantly...but beware of the bias due to the 3D projection!

Stringency of deep validity intervals

Stringency: initial validity intervals + deep validity intervals

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

- Observation: the % of FP decreases
- Conjecture: the intervals converge towards the solutions of TLC

Initial Validity Intervals: bounds

▷ Obs: limit cases for the dot product $\langle P_{i-1}^{\sigma}, \hat{Z}_i \rangle = \cos(\theta_i \pm \eta_i)$. Proof: Viète's law of cosines for the spherical triangle *ABC*:

$$\cos x = \cos \theta_i \cos \eta_i + \sin \theta_i \sin \eta_i \cos \gamma. \tag{14}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ つ へ つ

Extreme values for $\gamma = 0, \pi: \cos(\theta_i \pm \eta_i)$

▶ Final step:

- ▶ plug the extreme values into the dot product $\langle \hat{\mathbf{r}}_{i-1}^{\sigma}, \hat{\mathbf{r}}_{i}^{\tau} \rangle$
- ▶ \Rightarrow polynomial in cos, sin of the 12 angles + the 3 σ s

Valence angle constraint: the case of σ_{i-1} (II)

 $\triangleright \sigma_{i-1;-}$: first limit case start with the dot product

$$\langle \mathbf{f}_{i-1}^{\sigma}, \mathbf{\hat{Z}}_{i} \rangle = -\cos \sigma_{i-1} \sin \xi_{i-1} \sin \alpha_{i} - \cos \xi_{i-1} \cos \alpha_{i}.$$
(15)

$$\langle \mathbf{f}_{i-1;-}^{\sigma}, \mathbf{\hat{Z}}_{i} \rangle = \cos(\theta_{i} + \eta_{i})$$
(16)

from which we obtain

$$\begin{cases} S^{-} = \frac{+\cos\left(\theta_{i} - \eta_{i}\right) + \cos\left\{\xi_{i-1} \cos \alpha_{i}\right\}}{\sin\left\{\xi_{i-1} \sin \alpha_{i}\right\}} \\ \sigma_{i-1;-} = \arccos S^{-} \end{cases}$$
(17)

When $S^- \rightarrow 1^-, \sigma_{i-1;-} \rightarrow 0^+$. Therefore,

$$S^{-} > 1,$$
 (18)

we set $\sigma_{i-1;-} = 0$, so that any value $\sigma_{i-1} \leq \sigma_{i-1;+}$ is valid.

 $\triangleright \sigma_{i-1;+}$: mutatis mutandis

▷ Result: validity interval $I_{\sigma_{i-1}} = [\sigma_{i-1;-}, \sigma_{i-1;+}] \subset [0, \pi]$

C_{α} valence constraints

Definition 1. (C_{α} valence constraints) The C_{α} valence constraints are the necessary validity conditions defined by :

- Angle $\sigma_{i-1;-}$: the condition $\sigma_{i;-} < \sigma_{i;+}$ requires $S^- \ge -1$.
- Angle $\sigma_{i-1;+}$: the condition $\sigma_{i;-} < \sigma_{i;+}$ requires $S^+ \leq 1$.
- Angle $\tau_{i;-}$: the condition $\tau_{i;-} < \tau_{i;+}$ requires $T^- \ge -1$.
- Angle $\tau_{i;+}$: the condition $\tau_{i;-} < \tau_{i;+}$ requires $T^+ \leq 1$.

For the constraint to be verified all these conditions must be valid for all three $\{(\sigma_{i-1}, \tau_i)\}$ pairs.

▷ Application: pick a tripeptide geometry $\{\alpha_i, \xi_i, \eta_i, \delta_i\}$, and check whether the four previous conditions are fulfilled.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Validity Intervals: Initial and Symmetric Pairs of Validity Intervals

▷ Angle σ_{i-1} :

- Validity interval $I_{\sigma_{i-1}} = [\sigma_{i-1;-}, \sigma_{i-1;+}] \subset [0, \pi]$
- Symmetric interval with respect to the plane $C_{\alpha;i}C_{\alpha;i+1}C_{\alpha;i+2}$:

$$I_{\sigma_{i-1}}^{'} = [\sigma_{i-1;-}^{'}, \sigma_{i-1;+}^{'}] \stackrel{\text{Def}}{=} [2\pi - \sigma_{i-1;-}, 2\pi - \sigma_{i-1;+}].$$

Nb: values in $(\pi, 2\pi]$.

 \triangleright Angle τ_i : mutatis mutandis

Definition 2. (Initial validity intervals) The *initial validity interval* for σ_{i-1} are defined by:

$$\mathcal{I}_{\sigma_{i-1}} = I_{\sigma_{i-1}} \cup I_{\sigma_{i-1}}^{\prime}$$
(19)

Likewise, the *initial validity interval* for τ_i are defined by:

$$\mathcal{I}_{\tau_i} = I_{\tau_{i-1}} \cup I_{\tau_i}'. \tag{20}$$

Extreme angles: visualization

Dot product surface:

$$f(\sigma_{i-1}, \tau_i) = \langle \mathfrak{f}_{i-1}^{\sigma}, \mathfrak{f}_i^{\tau} \rangle$$
(21)
$$= -\cos \xi_{i-1} \cos \eta_i \cos \alpha_i$$
(22)
$$-\cos \xi_{i-1} \sin \eta_i \cos \tau_i \sin \alpha_i$$
(22)
$$-\cos \eta_i \sin \xi_{i-1} \cos \sigma_{i-1} \sin \alpha_i$$
(23)
$$= \cos \theta_i$$
(23)

angles σ_{i-1;-} and σ_{i-1;+} correspond to planes orthogonal to the σ_{i-1}; dito for τ_{i;-} and τ_{i;+}

▷ Dot product surface and extreme angles $\sigma_{i-1;-}, \sigma_{i-1;+}, \tau_{i-1;-}, \tau_{i-1;+}$

Nb: $\alpha_i = 100, \chi_{i-1} = 50, \eta_i = 50$ (A) Whole surface (B) With horizontal plane $\cos \theta_i = \cos 9^\circ$. Intersection curve: 1 c.c. (C) With horizontal plane $\cos \theta_i = \cos 35^\circ$. Intersection curve: 2 c.c.

Dot surfaces and their classification

Definition 3. (Signature at C_{α}) Consider the endpoints of the validity intervals, in this order $\sigma_{i-1;-}, \sigma_{i-1;+}, \tau_{i;-}, \tau_{i;+}$. The *signature* of a TLC problem is a string in $\{N, P, Z\}^4$ -one letter for each each extreme angle, with the following convention:

- ▶ letter N for cos(endpoint) < −1,</p>
- letter P for cos(endpoint) > 1,
- ▶ letter Z for −1 < cos(endpoint) < 1.</p>

Dot surfaces and validity intervals for the dataset of random TLC instances. (A) The 7 signatures (Def. 3) in terms of extreme angles for the data set of random TLC instances. In all cases, the green plane corresponds to $\cos \theta_i = \cos 111.6^\circ$. A signature reads as follows: N:negative ie dot product < -1; Z: zero ie dot product $\in [-1, 1]$; P: positive ie dot product > 1. (B) Validity intervals.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへで

Rotated validity intervals (I)

▷ Along C_{α} edge:

$$\sigma_i = \tau_i + \delta_i. \tag{24}$$

▷ Rotated interval for an angle: obtained from the value of its twin angle (from τ_i for σ_i , and vice-versa)

Rotated validity intervals (II)

Definition 4. (Rotated validity intervals) The rotated validity intervals for the angles and τ_i are defined by:

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ ̄豆 _ のへで

Deep Validity Intervals: depth 1

Intervals obtained so far:

- The conditions on σ_{i-1} and τ_i inherent to the conservation of the valence angles (Eq. (26)).
- The conditions exploiting rotated validity intervals, stemming from Eq. (24)

▷ Combination: intervals combined as follows $(I_{i-1}, I'_{i-1}) \times (I_{i-1|\delta}, I'_{i-1|\delta})$, which yields *depth one validity intervals*:

Definition 5. (Depth one validity intervals) The depth 1 inter-angular interval set $\mathcal{J}_{\sigma_{i-1}}^{(1)}$ for σ_{i-1} :

$$\mathcal{J}_{\sigma_{i-1}}^{(1)} = (I_{\sigma_{i-1}} \cap I_{\sigma_{i-1}|\delta}) \cup (I_{\sigma_{i-1}} \cap I_{\sigma_{i-1}|\delta}') \cup (I_{\sigma_{i-1}}^{'} \cap I_{\sigma_{i-1}|\delta}) \cup (I_{\sigma_{i-1}}^{'} \cap I_{\sigma_{i-1}|\delta}')$$
(25)

depth 1 inter-angular interval set $\mathcal{J}_{\tau_i}^{(1)}$ for τ_i : dito.

Definition 6. (Depth 1 inter-angular constraint) The depth 1 inter-angular constraint for σ_{i-1} is $\mathcal{J}_{\sigma_{i-1}}^{(1)} \neq \emptyset$.

The depth 1 inter-angular constraint for τ_i is: $\mathcal{J}_{\tau_i}^{(1)} \neq \emptyset$. For the constraint to be verified all these conditions must be valid for all three $\{(\tau_i, \sigma_{i-1})\}$ pairs.

Depth-n validity constraints: outline

Depth 1 validity intervals:

Initialization via the limit conditions – from Viète law of cosines:

$$\begin{cases} \langle \mathtt{P}_{\mathsf{i}-1;-}^{\sigma}, \hat{\mathtt{Z}}_{\mathsf{i}} \rangle = \cos(\theta_{\mathsf{i}} + \eta_{\mathsf{i}}), \\ \langle \mathtt{P}_{\mathsf{i}-1;+}^{\sigma}, \hat{\mathtt{Z}}_{\mathsf{i}} \rangle = \cos(\theta_{\mathsf{i}} - \eta_{\mathsf{i}}) \end{cases}$$

Then refinement thanks to intersections with Rotated validity intervals

Depth-n validity intervals:

• Given a DVI of depth j (initially, j = 1), apply the valence angle constraint to obtain the twin interval on τ_i from σ_{i-1} and vice-versa, using

$$\langle \mathbf{\hat{r}}_{i-1}^{\sigma}, \mathbf{\hat{r}}_{i}^{\tau} \rangle = \cos \theta_{i}.$$
⁽²⁶⁾

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Iterate

Loop sampling

Loop sampling Loop sampling Introduction - perspective Loop model, frames, and algorithm overview Results Outlook

Open problems

Metaphor: two problems with global+local components

Paris / San Francisco / Stanford: 30' + 30' minutes

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Biomolecules: identifying stable states and their probabilities

- First leg:
 - Paris to San Francisco airport (SFO): ???
 - Biomolecules, finding large amplitude conformational changes between states: my methods based on inverse problems
- Second leg:
 - SFO to Stanford: shuttle, cab
 - Biomolecules: studying equilibria with molecular dynamics
- \Rightarrow our methods vs classical methods: complementary

Next gen sampling: scientific punchline, originality and risks

▷ Three classes of techniques to study the dynamics of biomolecules:

- Direct problems: molecular dynamics
- Inverse problems of the loop closure type using internal coordinates
- (Deep learning based: no massive data at hand-at this stage)

Molecular dynamics, time-steps of 10^{-15} s: Ir $\|\Delta x_i\| \sim 1/100 \text{\AA}$

Inverse problems, typical changes: $\|\Delta x_i\| \sim 1 - 10 \text{\AA}$

Using internal coordinates: originality

Fast methods to predict large amplitude conformational changes

• NB: geometric proxy/priors for classical methods such as MD

Using internal coordinates: caveats

- Risks: model accuracy (solvent, side chains), statistical biases
- Gains: unmatched diversity and speed

Protein Loop Sampling: main approaches

- Classical approaches:
 - Molecular dynamics: cost + handling loop closure
 - Non rigid geometry-but solution space is continuous (manifold)
 - Data driven/combinatorial greedy methods + inverse kinematics
 - Dihedral angles only/rigid geometry + inverse kinematics (TLC)

Open questions:

- Global loop parameterization amenable to sampling: all a.a. on equal footing
- Uniform sampling in $\{(\phi, \psi)\}$ angle space,
- Connection with thermodynamics,
- Complexity: how hard are these problems?

▷Ref: Dod et al 1983; Cortés and Siméon, 2004; Levitt, Guibas et al, 2005; Snoeyink et al, 2005; Latombe et al, 2005; Cortés et al 2019, etc ▷Ref: Cazals et al; 2022

Loop sampling: difficulties and main approaches

Main difficulties

- Space of solutions: a continuous space if #dihedral angles > 6
- Walking on this constrained manifold: geometrically/numerically difficult
- Incremental construction based on tripeptides: combinatorial explosion

A mixed discrete - continuous approach

- Rosetta KIC for a chain with n amino acids: perturb the dihedral angles of n-3 a.a.; then close the chain on the last 3 with TLC
- Concatenation of solutions yielded by tripeptides: grow chains from left and right; close with TLC

> The problem remains difficult:

- Practice: orphan loops in databases / IDPs
- Theory: no global parametric solution
- ▷Ref: Kolodny, Guibas, Levitt, Koehl, 2005
- ▷Ref: Kortemme et al, Nat. Methods, 2009
- ▷Ref: Cortes et al, Bioinformatics, 2018
- >Ref: Deane et al, Bioinormatics, 2018
- >Ref: Cazals, O'Donnell; Submitted

TLC teleportation, rigid motions, and frames

Loop decomposition into tripeptides and connecting peptide bodies

- Tripeptide: 9 atoms, 5 moving via teleportation
- Peptide body connecting two tripeptides: rigid ... whence rigid motions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Consequence: two classes of citizens
 - peptide bodies within tripeptides
 - peptide bodies connecting tripeptides
- \Rightarrow corrected via frame shifting

Frames involved in whole loop sampling

Definition 7. Subset of the loop to which individual TLC are applied.

Frame shifting:

- frame 1 starting at the first a.a. always contains n tripeptides regardless of N;
- Frame 2 at the second peptide contains n-1 tripeptides if N mod 3 = 0 and n;

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

Frame 3 at the third peptide contains n if N mod 3 = 2 and n - 1 otherwise.

Global geometric model

▷ Loop studied *L*: $M = 3 \times m$ amino, *m* tripeptides: $L = T_1, \ldots, T_m$

Loop decomposition: rigid peptide bodies and their complements

$$L = P_0 T'_1 P_1 \dots P_{k-1} T'_k P_k \dots P_{m-1} T'_m P_m.$$
(27)

Parametric space:

- For one peptide body: $SE(3) = SO(3) \times \mathbb{R}^3$
- For one tripeptide: solution space of TLC...except that
 - The angular parameterization of TLC {α, ξ, η, δ}: depends on SE(3) × SE(3) since the left and right legs come from P_{i-1} and P_{i-1}

Sampling one frame: spaces involved and main idea

Loop decomposition into: rigid peptide bodies and tripeptides cores

$$L = P_0 T'_1 P_1 \dots$$
$$P_k T'_{k+1} P_{k+1} \dots$$
$$P_{m-1} T'_m P_m.$$

▶ Random sampling of loop conformations using Hit-and-Run:

- Aim: perform rejection sampling in a region V containing all valid loop geometries.
- How: with Hit-and-Run in a domain characterizing necessary conditions – cf validity intervals

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Sampling one frame: spaces involved and solution sketch

▷ Global parameterization of the conformational space of the loop: based on rigid bodies associated with peptide bonds

- \mathcal{M} : motion space for the m-1 peptide bodies, essentially $(SE(3))^{m-1}$
- A: 12m-dimensional angular space coding the geometry of tripeptides
- V: domain bounded by 24 hyper-surfaces in A, corresponding to Validity Constraints Necessary Constraints for TLC to admit solutions
- S: the fertile space, where TLC admits one solution for each tripeptide
- \mathcal{F} : clash free solutions in \mathcal{S} for $\{N, C_{\alpha}, C, O, C_{\beta}\}$ pairs

▷ Number of solutions: \prod_i (num solutions tripeptide *i*)

Angular representations: tripeptide and loop

 \triangleright Angular representation of a tripeptide: the 2 \times 4 angles

Definition 8. Let $A_{k,i} = \{\alpha_{k,i}, \eta_{k,i}, \xi_{k,i-1}, \delta_{k,i-1}\}$ be the set of angles associated with $C_{\alpha;i}$ in the k-th tripeptide T_k . The angular representation of a tripeptide T_k is the 12-tuple $A_k = \{A_{k,1}, A_{k,2}, A_{k,3}\}$. The corresponding 12-dimensional space is denoted A_k .

Definition 9. (Angular conformational space A) The angular conformational space of the loop L is the 12*m* dimensional space defined by the product of the *m* angular space of the individual tripeptides:

$$\mathcal{A} \stackrel{Def}{=} \prod_{k=1}^{m} \mathcal{A}_k.$$
⁽²⁸⁾

Validity domain for the whole chain L with m tripeptides

- ▷ Angles τ : 3*m* angles τ (3 for each tripeptide)
- $\triangleright \mathsf{Recap} \mathsf{ per angle } \tau:$
 - For one angle: at most 4 Depth One Validity Intervals (DOVI)
 - For each DOVI: 2 sub-manifolds of A_k defined by limit cases; yields (at most) 8 sub-manifolds in A_k.

▷ For one tripeptide: 3τ angles $\Rightarrow 24$ constraint surfaces in the 12 dimensional angular space A_k .

Enumerating constraints:

- One tripeptide: 24
- Whole loop: 24m

Motion space for peptide bodies

Moving peptide bodies with rigid motions

Configuration spaces for motions:

- ▶ One peptide body: \mathcal{R} : $(S^2 \times [0, A)) \times (S^2 \times [0, 2\pi)) \subset SE(3)$
- ▶ The m-1 peptide bodies in the loop *L*: $\mathcal{M} = \mathcal{R}^{m-1}$

 \triangleright Peptide body motions: sample m-1 independent screw motions (translation+rotation)

▷ Overall linear interpolation $r \in M$: between the identity and the rigid motion corresponding to r:

$$\operatorname{Ray}(V) = \{\gamma(t) = Id + tV, \text{ with } \gamma(0) = Id\}.$$
(29)

Restriction to each peptide body: defines a rigid transformation

$$\gamma_k: [0,1] \mapsto SE(3), \gamma_k(0) = Id, \tag{30}$$

▷ Position of the k-th peptide body $P_k(t)$ at time t:

$$P_k(t) = \gamma_k(t) P_k(0). \tag{31}$$

Algorithm overview \triangleright For a given angle τ :

t determines the positions of peptide bodies whence tripeptide legs (32)

- \rightsquigarrow kinetic angular representation $A_i(t)$ of T_k (33)
- \rightsquigarrow kinetic validity intervals $I_{\tau_{k,i}}(t), I_{\tau_{k,i}|\delta}(t)$ (34)

Example condition for kinetic depth 1 validity interval to be $\neq \emptyset$:

$$I_{\tau}^{\max}(\mathsf{A}_{k,i}(t)) = I_{\tau|\delta}^{\min}(\mathsf{A}_{k,i+1}(t))$$
(35)

▶ Algorithm overview:

- For each angle τ_{k,i}: find the closest intersection with the 24 hyper-surfaces, along the 1D curve defined by the rigid motion interpolation.
- Let t_{max} be the corresponding value of t: draw t_s ← Uniform(0, t_{max})
- Apply the rigid transforms defined by t_s to the m - 1 peptide bodies
- Solve the *m* individual TLC problems (→ (≥) (

Sampling algorithm for one frame: pseudo-code

- 1: Input: p_i : point from which the move is made; corresponds to t = 0
- 2: Output: a point $\in S$
- 3: Var t_{max} : initialized using the smallest value of t > 0 breaking triangular inequality in a given tripeptide
- 4: V: Random direction (Eq. 29) 5: for $i \in \{1, ..., m\}$ do 6: for $l \in \{1, 2, 3\}$ do 7: // Angle $\tau_{k,i}$: process the (at most) 24 equations 8: $S = \{t_{max}\}$ 9: // Process all interval pairs 10: for $I_{\tau_{k,i}}(t) \in \mathcal{I}_{\tau_{k,i}}(t)$ do 11: for $I_{\tau_{k,i}|\delta}(t) \in \mathcal{I}_{\tau_{k,i}|\delta}(t)$ do 12: $S_{tmp} \leftarrow$ numerical solutions for Eq. ?? and ?? $t \in [t_{min}, t_{max}]$ 13: $S = S \cup S_{tmn}$ 14: end for 15: end for 16: Sort S by ascending order 17: Let t_k be the *k*-th element of *S* $u_k := \frac{t_k + t_{k+1}}{2}$ 18: 19: k = 120: // Stop when no validity interval can be defined for $\tau_{k,i}$ 21: while $\text{DOVI}_{\tau_{k,i}}(u_k) \neq \emptyset$ do

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- 22: 23:
- 24: end while 25. and for

 $t_{max} = t_k$

k = k + 1

Algorithms and parameters

▷ Unmixed loop sampler ULS^{*N*_V;*N*_{OR}_{One|All;*N*_{FS}}[*p*₀]:}

- One|All a flag indicating how many solutions are retained at each embedding step,
- ► *N_{ES}* the number of embedding steps,
- \triangleright N_V the number of random trajectories followed in motion space,
- N_{OR} the output rate (the number of steps in-between the ones where conformations get harvested),
- *p*₀: the starting configuration.

▷ Mixed loop sampler $\mathbb{MLS}_{One|All;N_{ES}}^{N_V;N_{OR}}[p_0]$: every other step, the loop is shifted by 1 or 2 units to also sample the peptide bodies.

VMD demo

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Loops sampling: ϕ, ψ and ω

\triangleright Typical values of the torsion angle ω :

- SSE?
- loops?

Loops sampling: ϕ,ψ and ω

 \triangleright Typical values of the torsion angle ω :

SSE?
$$\pi \pm 2 - 3^{\circ}$$

 \blacktriangleright loops? $\pi \pm 15^{\circ}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Illustration: CDR-H3-HIV, 30 amino acids

▷ System:

- The loop is a complementarity-determining region (CDR-H3) from PG16, an antibody with neutralization effect on HIV-1.
- pdbid: 3mme, chain A; residues: 93-100, 100A-100T, 101, 102.

Conformations generated by algorithm $\mathbb{MLS}_{One;250}^{1;1}$. (A) Variable domain (red) and the 30 a.a. long CDR3. (B,C) Side/top view of 250 conformations.

 \triangleright Generation speed: \sim 10 conformations per second

Results: sampling and study of fluctuations

Figure: Backbone RMSF (36 atoms) for the 12 amino acid long loop PTPN9-MEG2.

ъ

Results: sampling and study of fluctuations

Backbone RMSF (36 atoms) for the 12 amino acid long loop PTPN9-MEG2.

|▲■▶|▲■▶||▲■▶|||■|||のQ@

Outlook

▶ Key features:

- First global parametric model of protein loops amenable to effective sampling strategies a-la Hit-and-Run
- Results: on par or better with state-of-the-art methods
 - Atomic fluctuations along the loop
 - Mutual reachability for existing conformations
- Insights on the intrinsic difficulty of the problem-via random walks and curved polytopes

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の < ○

Open problems:

- Uniformity of sampling (Theorem)
- Connexion to micro-canonical ensembles and densities of states
- Sampling with side chains

Loop sampling

Open problems

Open problems

- Tightness of the Depth-N Validity Constraints
- Uniformity of the sampling in solution space
- Mixing dihedral angles and the remaining internal coordinates

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Bibliography

A. Chevallier, F. Cazals, and P. Fearnhead.

Efficient computation of the the volume of a polytope in high-dimensions using piecewise deterministic markov processes.

In AISTATS, 2022.

A. Chevallier, S. Pion, and F. Cazals.

Improved polytope volume calculations based on Hamiltonian Monte Carlo with boundary reflections and sweet arithmetics.

J. of Computational Geometry, NA(NA), 2022.

T. O'Donnell, C.H. Robert, and F. Cazals.

Tripeptide loop closure: a detailed study of reconstructions based on Ramachandran distributions.

Proteins: structure, function, and bioinformatics, 90(3):858-868, 2022.

T. O'Donnell and F. Cazals.

Geometric constraints within tripeptides and the existence of tripeptide reconstructions.

Technical report, 2022.

T. O'Donnell and F. Cazals.

Protein loops sampling based on a global parameterization of the backbone conformational space.

Technical report, 2022.