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Overview

> Theory/algorithms
» Exploring high dimensional spaces: RRT and HAR

» Loop closure

> Protein science
> Tripeptide/Triaxial loop closure
» Loop sampling



Loop sampling

Exploring high dimensional spaces: two methods



Exploring Potential Energy Landscapes:

transition based rapidly exploring random trees (T-RRT)

> Goal: sample basins and transitions, avoiding trapping
> Algorithm growing a random tree favoring yet unexplored regions

— node to be extended selection: Voronoi bias

— node extension: interpolation + Metropolis criterion (+temperature tuning)
> Limitations: oblivious to local minima; not a Markov chain

DRef: LaValle, Kuffner, IEEE ICRA 2000
>Ref: Jaillet, Corcho, Pérez, Cortés, J. Comp. Chem, r%011 .
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Random walk: hit-and-run
> Goal: sample point in K according to a prescribed density f in a polytope K

> (Random-direction) hit-and-run: random point xw after W steps

K > lteratively:
» pick a random vector
% > move to random point on the chord
I'N K, chosen from the distribution
— . induced by f on /
V > Comments:
» risk of being trapped near a vertex
» large W helps forgetting the origin xo
> Thm (Berbee et al) The limit distribution induced by HR is uniform in K.

> Thm (Vempala et al) HR can be modified to sample an isotropic Gaussian
(restricted to K).

> Thm (Lovasz) Let r and R denote the radii of the largest inscribed and
circumscribed balls for K. One sample generation: 0*(d?).

>Ref: Berbee et al, Math. Prog., 1987
>Ref: Lovasz, Math. Prog. Ser. A, 1999
>DRef: Lovasz, Vempala, SIAM J Comp., 2006



Loop sampling

Tripeptide Loop Closure: background
TLC: background
Biological context
TLC: specification



Tripeptide Loop Closure — TLC

> TLC: for 3 amino acids, fix all internal coordinates BUT the (¢, %i)i=1,2,3 angles

= Find all possible values of the six
angles (¢;,%j)i=1,2,3 compatible with
the remaining fixed internal
coordinates (bond lengths, valence
angles, wj)

Left leg Five moving atoms ~ Right leg

> Theorem: at most 16 solutions <> real roots of a degree 16 polynomial
> The three amino acids may not be consecutive

3 consecutive a.a. 3 a.a. sandwiching SSE-CDRs

>Ref: Go and Scheraga, Macromolecules, 1970
>Ref: Coutsias et al, J. Comp. Chem., 2004



Loops: biological relevance and dynamics

> Loops in biological processes
A It

V/ariable heavy domain

__CDR2

T 2454 NMR ensemble //
AcrB/RND CDRs IDP (2k5d/NMR)

> Action modes
> (Structure) Global dynamics: global motions of domains
» (Thermodynamics) Localized dynamics of CDR in antibodies (binding affinity)
»> (Mix) IDP and more generally highly flexible regions

> Open problems: accurate predictions for structure / thermodynamics / kinetics



Geometric models: Cartesian and internal coordinates

> Cartesian versus internal coordinates:

> Bond length and valence angle

Ramachandran diagram, per a.a. type:

> bivariate distribution for (¢, )

{xiyizi}i versus {dj, Ok, ojjia }

> Dihedral angles

(A)

> Side chain:

20 natural amino acids

Exple: Lysine, 4 dihedral angles
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Softness of Internal coordinates —force constants from CHARMM 36

Potantial anoray variatin for bonds Potential anargy variation for valenc anglos.

38 o)

Bonds: ddj ~ .2A : AV ~ 20kcal/mol  Valence angles: §6;; ~ 10° : AV ~ 20kcal/mol

Dihedral angles:

» are indeed soft coordinates,
but. ..

0 Gesmote

» long range steric clashes,

» vyield complicated inverse
T problems. for loop closure

Torsion angles:AV ~ 3 — 4kcal /mol

M



The Ramachandran diagrams

> Ramachandran diagrams and populated regions

» Main regions: aL,aR,3S,5P
» Three prototypical diagrams

® Glycine — no side chain/chiral C,
® Proline — side chain cycles on N
¢ Others — with Cj and chiral C,

> Distance constraints and the Ramachandran tetrahedron
Cl:C—0i_1 C2:C5—0+CsNis
C3:0,1—0+0;_Nipy

>Ref: Stereochemistry of polypeptide chain configurations, JMB, 1963;
Ramachandran et al
>Ref: Revisiting the Ramachandran plot, Protein Science, 2003; Ho et al



Challenge Dynamics of proteins: specification
> Input: structure(s) of biomolecules + potential energy model

> Output
» Thermodynamics: meta-stable states and observables

» Kinetics: transition rates, Markov state models

> Time-scales
» Biological time-scale > millisecond

» Integration time step in molecular dynamics: At ~ 107 %s

» 162 amino
acids, > 2000
atoms

P> 5.058ms of
simulation time

> ~ 230 GPU
years on

- & NVIDIA
e o0 GeForce GTX

980 processor

D>DRef: Chodera et al, eLife, 2019; Youtube link


https://www.youtube.com/watch?v=IDLEi-M8Aow

Tripeptide Loop Closure — TLC

> TLC: for 3 amino acids, fix all internal coordinates BUT the (¢, %i)i=1,2,3 angles

= Find all possible values of the six
angles (¢;,%j)i=1,2,3 compatible with
the remaining fixed internal
coordinates (bond lengths, valence
angles, wj)

Left leg Five moving atoms ~ Right leg

> Theorem: at most 16 solutions <> real roots of a degree 16 polynomial
> The three amino acids may not be consecutive

3 consecutive a.a. 3 a.a. sandwiching SSE-CDRs

>Ref: Go and Scheraga, Macromolecules, 1970
>Ref: Coutsias et al, J. Comp. Chem., 2004



The peptide bond and peptide rigid bodies

> The peptide bond defines a rigid body:

Internal coordinates fixed

» Bond lengths
» Valence angles
> w angle

[[Case — Cas1]| = Const

> The C, triangle is rigid
Caz

» C,.» belongs to the intersection of
two spheres centered at C,.; C,.iyn
= C, triangle has fixed geometry

» Legs fixed + C, triangle rigid:
rotate the three (colored) rigid bodies,

> Observations: e one solves for six rotation angles {(7i,07)}i=1,2,3
e TLC parameterized in an angular space of dim. 12

>Ref: Coutsias et al, J. Comp. Chem., 2004
DRef: Cazals et al, Proteins, 2022



TLC model: from six to three angles

> Motions of the 3 rigid bodies: 6 angles > .. which are actually three

(A)

Cap

oi =T + 9 (1)

Nb: indices mod(3), e, 7 = 03

8; = ZPlane(Cy;iCoi41Ci), Plane(Co i Cois1 Nig1)
> Key ingredients of TLC:
» Initially: six dihedral angles {(#,%)}{i=1,2,3}
» Then: three pairs {d,7i}
» Finally: three angles 7;

> The valence angle constraints: the §; angles at the C,.;s must remain
constant.

= It is the coupling introduced by the ; angles onto the rotation angles ;
yields a degree 16 polynomial.

DRef: Coutsias et al, 2004



The three local frames

> Local frames and individual rotations:

o Defining invidividual rotations

§0. BT
RERSt

e

e Orthonormal local frames:

Nb: Z; = Unit vector along Cu:iCaiit1
Zi1 < Zs

X
Yi><Zi:(Zi'Zi\2>Zi*Zi\z

Nb: Y; =Y

o b

> Angular description of the tripeptide: 4 x 3 = 12 angles

o =222,

& =421 @)
ni = LT

di = £Plane(C,.;C,.;,1Ci), Plane(C,.;C i\ 1 Nit1)

> Four tuple of angles for C_; of tripeptide Ty: Ay ; = {ow,i, Mk,i» Ek,i—15Ok,i—1}



Rotations and dot product

Vectors in local frames; dot product in global frame
> Rotations of C; and N;: the two cones problem

> N;, angle o;:
vector ?7_; about Zi_1

> C;, angle 7;: o
vector ?7 about Z;

13775 = 0,
> Expressions of rotation vectors in local frames:

In frame:(X;_1,V,Zi_1) : = cos&_12i_1 +sin&_1(cosai_1Xi_1 +sinoi_1Y)

(3)

In frame(X;, Y, Z;) : ?7 = cos niZi + sinni(cos i X; + siniY) (4)
> Valence angle constraint equation: 6; kept constant

(P71, ) = — cos &_1 cosm; cos o (5)

— cos&;_1 sinm; cos 7; sin o

— cosmjsin&;_1cosoj_1sinq;

+ sin&;_1 sinn;(cos oj_1 cos T cos aj + sinoj_q sin 7;)

= cos6;. (6)



Algebra: the degree TLC solutions via the 16 polynomial

> Change of variables:
uj = tan(T,-/2), w; = tan(a,-/2). (7)

> Re-write the valence angle constraint — see also Eq. 21:
- 2 o . 2 L
Aiwi_qui + Biw?™_ | + Gwi_qu; + Diu7 + E; =0, (8)
where the coefficients A;, B;, C;, D;, E; depend on the angles 6;, o, m;, &i—1-
> Perform another round of elimination for the w;_; — coupling via §;: yields three

three biquadratic polynomials in three variables, namely
P1(us, u1), Pa(u1, u2), P3(u2, us)

» By the Bernshtein-Kusnirenko-Khovanskii theorem, at most 16 solutions.

» The bound is tight.

> Using resultants: degree 16 polynomial in 1 variable
> Nb: the bound it tight.

> Robust solutions: requires some care since 7 is involved

>Ref: Cox,Little,0’Shea, Using algebraic geometry, 2005
https://en.wikipedia.org/wiki/Bernstein¥E2%80%93Kushnirenko_theorem


https://en.wikipedia.org/wiki/Bernstein%E2%80%93Kushnirenko_theorem

Loop sampling

TLC: on the quality of solutions



TLC: number of solutions and atomic displacements

> Dataset: ~ 2.6 million tripeptides in loops from high-resolution non
redundant PDB structures

> # of solutions: function of span > Atomic displacements
Number of solutions per loop depending on span Distrbution of diglacement fr each mpacted atom

Using data internals

- span: 6-

Atom diplacementid)

2 18 16



Interpolatory properties of TLC reconstructions

in the Ramachandran domains of the 3 amino acids

> Method: for the 3 Ramachandran domains (since 3 peptides):
» compare the distribution of data versus reconstructions
» distinguish on a per-class amino acid basis

> Ramachandran distributions

ASP

20803%

20000%

GLY

Data: Rp,; Reconstructions \ data: R3 ,

> NB: transient regions discovered — absent from crystals



Loop sampling

Necessary condition on TLC
TLC steric constraints
Obtaining Initial Validity Intervals



TLC with moving legs and embeddable tripeptides

> Geometric model:
> Tripeptide such that : left leg N;C,; fixed, right leg C,.;,,Ci;> free to move
> Six dihdedral angles {¢;,;} free

> Question: provide necessary conditions on the position of the first and last
segment—the legs, for the Tripeptide Loop Closure (TLC) algorithm to hold solutions.
> Nb: the relative position of legs suffices; in that case, position + orientation of
C,.i42Cit2 yields a 5-dim search space.

P .o
b2 = 2010~ ol <

Coordinates
* Coa(0,0,0)
® Ni(=|Cat = N1].0,0)



Embedding tripeptides: recap

 Defining invidividual rotations

 Orthonormal local frames:

2.5

> 1. From the position of legs: compute {a i, M,is §k,i—15Ok,i—1}ic{1,2,3}
> 2. TLC: find the (o, 7) angles such that:

(P74, P ) = cosb;. 9)

> Our goal:
> Conditioning of the solutions wrt the {a, £, 7,8} via necessary conditions

» Ability to sample uniformly solutions given the necessary conditions



Sampling strategy based on validity intervals: overview

> Angular representations:

> Ca;i from tripeptide T: four tuple of angles Ak’,‘ = {ak,iank,i7§k,i—176k,i—1}
with i € {1,2,3}

» Tripeptide T}, 12-dim angular space: Ay = {Ax 1,Ak2,Ar3}.

> Strategy:

> Assume we have necessary conditions for the angles, as a finite set of validity
intervals | = {[a;, b;]}

» Assume each bound a; or b; is defined by an implicit equation in the 12 angular
variables

> By the implicit function theorem (assuming it applies): each equation
corresponds to a hyper-surface

» Domain enclosed by these hyper-surfaces: domain within which TLC solution lie

Zh
Vi )
A 12 dimensional angular
space for the k-th tripeptide
Vi necessary conditions for

TLC}, to have solutions




Validity Intervals and Depth One Validity Intervals (DOVI)

> Validity intervals: for each angle 7, ;, one can compute 2+2 intervals on st
representing (stringent) necessary conditions for TLC to admit solutions:

(Initial)Zr, ; = {Ir, ;} with I, ; = ™" (A), 0 (A,i)] (10)
(Rotated)Z, |5 = {l, ;63 with I, s = [:\‘zsn(Ak,iJrl)a 118 (Ak,it1)] (11)
Indeed:

» I, : obtained from the invariance of ; at C_;

>

- ;|5¢ obtained from I, ; via the relation o; = 7; + §;

> NB: 2 initial and 2 rotated: intervals bounds in [0, 7] + symmetry wrt C,, plane
> Intersection of validity intervals: necessary conditions expressed as intervals
ITk,r' n lﬂ—k,,-|6-

1"“‘(<Ak1+l)
\‘ I'm" A-L

12 (Ar)

Loy 16

Limit case: implicit equation in the 12
dimensional space Ay.

Angle 74 ; /‘IL"‘};"(Ak i+1)

Limit case: I (Ay;) = I;'";;"(Ak_l+1)



Validity domain for tripeptide Tk:
intersecting two initial and two rotated intervals

> Rigid body / of tripeptide T,: angles tuples ~~ Depth One Validity Intervals

DOVI:, (1) : Ak = 0+ (Zr, , NI, ,|6) (12)

> The angular validity domain Vy for Tj:

For the angle 7y ;: the domain V C Ay
such that

Vk,Vi,Ya € Vi : DOVI;, (a) # 0

> Non empty intersection for 2 intervals Ir, ; € Z, ; and I, s € I, i‘(g' conditions

L (Aka) L

lmaX(Ak l) =1 |:5 (Ak 1+1)
or IMin(A, ;) =1 5 (A1)

Angle i

= two implicit equations in A :
two sub-manifolds Vy Limit case: 12%(Ay,) = I%0( A i)



Validity intervals: deep i.e. iterated VI

> Two types of constraints:
» Coherence along each edge of the C,, triangle — via w angle

» Constraint on 6; at each C,

> A sequential and iterative construction: interval types used
> Initial VI
» Rotated VI
» Deep VI and Restricted Deep VI

(IVI) Initial Validity Intervals o £4; along each Calpha edge (RVI) Rotated Validity Intervals

o From boundary condi- (7, 7, } s Toss)
tions and Vi w6+ Lol

law of
cosines \

® Union and intersections

| (DVD) Deep Validity Tutervals

(7.7

p

o From dot
product equation

Ky, K“‘
(RDVI) Restricted Deep Validity Intervals

 (DOVI) Depth One Validity Intervals

J=

/

o 4, along cach Calpha edge



Stringency of necessary conditions: assessment

> Reminder: the search space is 5D

> Evaluation of the stringency of validity intervals:
» Take random instances of peptides — in the 5D space
» Identify positives (P) and negatives (N)
» Given that N = True Negative + False Positives

Strigency of necessary condition c :

FP(c)
N

> Nb: projecting the 5D points into 3D: coordinates of C,.; >

(13)



Stringency of necessary conditions: results

> (A,B) Random TLC
instances: position of

b C,.iro- Blue/red:
R —— IS oS0 25 00 25 50 75 fertile/sterile point.
(B) »> (C) C, valence constraints:
. s False Positives in yellow
s s : ; »> (D) Depth 1 validity
. . intervals: False Positives in
2 2 yellow
o o
-2 -2
. L g
-6 -6 4 i
-8 -8
=75 =50 =25 0.0 25 5.0 75 =75 =50 =25 0.0 25 5.0 7.5
©) (D)

> Nb: FP reduced significantly...but beware of the bias due to the 3D projection!



Stringency of deep validity intervals

> Stringency: initial validity intervals 4+ deep validity intervals

17.5%

15.0%

12.5%

10.0%

7.5% 4

Percentage of false positives

5.0% 1

2.5% 4

0.0% -

> Observation: the % of FP decreases

> Conjecture: the intervals converge towards the solutions of TLC



Initial Validity Intervals: bounds
> Obs: limit cases for the dot product (/7 1, Z;) = cos(6; % ;).
Proof: Viéte's law of cosines for the spherical triangle ABC:
cos x = cos 0 cos n; + sin 0; sin n; cos~y. (14)

Extreme values for v = 0, w: cos(6; & n;)

cos(0; + ;)

" cos(; — ;)
2y

Viéte formula of cosines €Oos X

> Final step:
» plug the extreme values into the dot product (f{_1,?)

» = polynomial in cos, sin of the 12 angles + the 3 os



Valence angle constraint: the case of g;_1 (II)

> oj_1.-:

first limit case

start with the dot product

(1, Z;) = —cosoj_1sin&_1sina; — cos&;_1 cos ;.

(/1. Z3) = cos(6; + 1)

from which we obtain

sin&;_q sin

{S _ + cos (0; —n;)+cos & _1 cos a;

0j_1.— = arccos S~

When S= — 17, 0;_1._ — 0T. Therefore,
ST >1,
we set o;_1._ = 0, so that any value gj_; < gj_1.4 is valid.
> 0j_1.4: mutatis mutandis
> Result: validity interval I, , = [oi—1.—,0i_1,4] C [0, 7]

(15)

(16)

(17)

(18)



C,, valence constraints

> Conditions to define the four extreme angles: the case of o;_1
Cosine: | 1

™ St S 0

' '

Angle: — Oi-lit ¢ g Oilj—
Initial Validity Interval

Definition 1. (C,, valence constraints) The C, valence constraints are the
necessary validity conditions defined by :

» Angle gj_1._: the condition ¢j._ < 0j.4 requires S— > —1.
» Angle 0;_1.4: the condition oj._ < 0.4 requires ST < 1.
»> Angle 7;._: the condition 7j._ < 7j.4 requires T~ > —1.
> Angle 7;.4: the condition 7;,_ < 7.4 requires T+ < 1.
For the constraint to be verified all these conditions must be valid for all three

{(oi—1,7i)} pairs.

> Application: pick a tripeptide geometry {a;, &, i, 6;}, and check whether the four
previous conditions are fulfilled.



Validity Intervals: Initial and Symmetric
Pairs of Validity Intervals

> Angle oj_1:
» Validity interval I, _, = [oi—1,—, 0i—14+] C [0, 7]
> Symmetric interval with respect to the plane C,.;C,.;11Cy.ivo:

’ ’ ’ Def
Io',-,l = [0-1'71;77 o—ifl;+] :e [271' —0i—-1,—, 2m — Ui—1§+]'

Nb: values in (7, 27].

> Angle 7i:  mutatis mutandis

Definition 2. (Initial validity intervals) The initial validity interval for ci_1
are defined by:

Icr,-_l = Icr,-_1 U lc;,v,l (19)
Likewise, the initial validity interval for T; are defined by:

/

.=l ,Ul. (20)



Extreme angles: visualization
> Dot product surface:
floim1,7i) = (1, 7) (21)
= —cos&;_1 Cosn;j cos (22)
— cos&;_1 sinm; cos T; sin o
— cosmjsin&j_1 cosoj_1sinq;
+ sin&;_1 sinm;(cos o;_1 cos T; cos a; + sin o _1 sin 7;)
= cos 0; (23)
> angles gj_1._ and gj_1.4 correspond to planes orthogonal to the o;_y;
dito for 7._ and ;.4
> Dot product surface and extreme angles oj_1._,0j_1.4,Tj—1.—, Ti—1.+

(A) () (©)

Nb: a; =100, x;—1 = 50,7; = 50 (A) Whole surface (B) With horizontal plane
cos0; = cos9°. Intersection curve: 1 c.c. (C) With horizontal plane cos6; = cos 35°.
Intersection curve: 2 c.c.



Dot surfaces and their classification

Definition 3. (Signature at C Consider the endpoints of the validity intervals,
g a y

in this order o;_1._,0;_1.4,7Ti:—, Tj-+. The signature of a TLC problem is a string in

{N, P, Z}* —one letter for each each extreme angle, with the following convention:

» letter N for cos(endpoint) < —1,
> letter P for cos(endpoint) > 1,
» letter Z for —1 < cos(endpoint) < 1.

1.00

tau=2.64

PNZZz PZZN ZNZN
Dot surfaces and validity intervals for the dataset of random TLC instances. (A)
The 7 signatures (Def. 3) in terms of extreme angles for the data set of random TLC
instances. In all cases, the green plane corresponds to cosf; = cos111.6°. A signature
reads as follows: N:negative ie dot product < —1; Z: zero ie dot product € [—1,1]; P:
positive ie dot product > 1. (B) Validity intervals.



Rotated validity intervals (1)
> Along C, edge:
oi =T + 6. (24)

> Rotated interval for an angle: obtained from the value of its twin angle
(from 7; for o}, and vice-versa)

(B) ; (©)
N ’ér( N\
LT Y
LA e
c j ' T={l.L} e Tos = Uougsn 1,15}
I I, ={I,.I.} Zogs = {Tro I, 15}

8; = /Plane(C;iCasi1C;), Plane(CuyiCasiy1 Nis1)



Rotated validity intervals (I1)

Definition 4. (Rotated validity intervals) The rotated validity intervals for the

angles and 7; are defined by:

' .
> foroi1: Zo, 416 = lo;_ 416U 10141\5 with:

® Iy, ,|s¢ interval for o;_; obtained by applying Eq. (24) to Ir,_,. (Nb:

uses the edge C_;C

oi—

o/ 6} interval for o;_; obtained by applying Eq. (24) to l;_’_i .

Oj—1

; of the C,, triangle.)

(Nb:

1

uses the edge C_;C,.; ; of the C, triangle.)

» for 7;: dito

(B)
Lo,
o N
LT
cd N

8 = £Plane(CoyiCayi1Ci), Plane(CogiCogis1 Nis1)

Lo, = {Lo I}
I, ={I.I.}

O

e

77,\x< ) g
o )1 ,
N 7ils Tois = oo Ly )

Trjs = {Tnuiss 1,15}



Deep Validity Intervals: depth 1
> Intervals obtained so far:
» The conditions on o;_1 and 7; inherent to the conservation of the valence
angles (Eq. (26)).
» The conditions exploiting rotated validity intervals, stemming from Eq.
(24)

> Combination: intervals combined as follows (I, I,ll.il) x (L, 415 I,/I_71|5),
which yields depth one validity intervals:

Definition 5. (Depth one validity intervals) The depth 1 inter-angular
interval set 75 | for oi_1:

’

jé,lL = (Iffi—lﬂlﬁf71|5)u(lai—1016;71\5)U(I0i71mlffffﬂ(S)U(IUiflmlﬂ,;ﬂ(i) (25)

1

depth 1 inter-angular interval set jT(,.) for 7;: dito.

Definition 6. (Depth 1 inter-angular constraint) The depth 1 inter-angular
constraint for o;_1 is jﬂl £ (.
The depth 1 inter-angular constraint for 7; is: jT(il) £ 0.

For the constraint to be verified all these conditions must be valid for all three
{(7i,0i-1)} pairs.



Depth-n validity constraints: outline

o 4, along each Calpha edge

(RVI) Rotated Validity Intervals
{Togos Tous}

(DVI) Deey
j=1 OO

)
(RDVI) Restricted Docp Validity Tntersals

> Depth 1 validity intervals:

» |nitialization via the limit conditions — from Viéte law of cosines:

{(?sl;,zo = cos(6; + ),
(P 4.5 Zi) = cos(6; — m;)

» Then refinement thanks to intersections with Rotated validity intervals

> Depth-n validity intervals:

> Given a DVI of depth j (initially, j = 1),

apply the valence angle constraint to
obtain the twin interval on 7; from o;_1

and vice-versa, using

(P71, %) = cosb;. (26)

> |terate



Loop sampling

Loop sampling
Loop sampling
Introduction - perspective
Loop model, frames, and algorithm overview
Results
Outlook



Metaphor: two problems with global4local components

>, AN -

Paris / San Francisco / Stanford: Biomolecules: identifying stable
30" + 30’ minutes states and their probabilities
> First leg:

® Paris to San Francisco airport (SFO): 777
® Biomolecules, finding large amplitude conformational changes between
states: my methods based on inverse problems

> Second leg:

® SFO to Stanford: shuttle, cab
® Biomolecules: studying equilibria with molecular dynamics

= our methods vs classical methods: complementary



Next gen sampling: scientific punchline, originality and risks

> Three classes of techniques to study the dynamics of biomolecules:
» Direct problems: molecular dynamics
» Inverse problems of the loop closure type using internal coordinates
> (Deep learning based: no massive data at hand-at this stage)

Constraints:

LN

Atom j  Ujje+dt

Variables:

Atom i Vilt+dt

R T atom i vk
Atom I Vljt+de
Molecular dynamics, time-steps of 10~ 15s: Inverse problems, typical changes:
|Ax;|| ~ 1/100A | Axi| ~ 1 — 104

> Using internal coordinates: originality
» Fast methods to predict large amplitude conformational changes
® NB: geometric proxy/priors for classical methods such as MD
> Using internal coordinates: caveats
> Risks: model accuracy (solvent, side chains), statistical biases
» Gains: unmatched diversity and speed



Protein Loop Sampling: main approaches
> Classical approaches:
> Molecular-dynamies: cost + handling loop closure
»> Non rigid geometry—but solution space is continuous (manifold)
» Data driven/combinatorial greedy methods + inverse kinematics
» Dihedral angles only/rigid geometry + inverse kinematics (TLC)
Library of 4 fragments, 4 residues each

) MRS SR

Strategy A: unidirectional

;ﬁ',m:(\}

Strategy B: bidirectional

> Open questions:
> Global loop parameterization amenable to sampling: all a.a. on equal footing
> Uniform sampling in {(¢, )} angle space,
» Connection with thermodynamics,
» Complexity: how hard are these problems?

>Ref: Dod et al 1983; Cortés and Siméon, 2004; Levitt, Guibas et al,
2005; Snoeyink et al, 2005; Latombe et al, 2005; Cortés et al 2019, etc
>Ref: Cazals et al; 2022



Loop sampling: difficulties and main approaches

> Main difficulties

» Space of solutions: a continuous space — if #dihedral angles > 6

» Walking on this constrained manifold: geometrically/numerically difficult

» Incremental construction based on tripeptides: combinatorial explosion

> A mixed discrete - continuous approach

» Rosetta KIC for a chain with n amino acids: perturb the dihedral angles of

n — 3 a.a.; then close the chain on the last 3 with TLC

» Concatenation of solutions yielded by tripeptides: grow chains from left and

right; close with TLC

> The problem remains difficult:

> Practice: orphan loops in databases / IDPs

» Theory: no global parametric solution

>Ref:
DRef :
>Ref:
DRef :
>Ref:

Kolodny, Guibas, Levitt, Koehl, 2005
Kortemme et al, Nat. Methods, 2009
Cortes et al, Bioinformatics, 2018
Deane et al, Bioinormatics, 2018
Cazals, 0’Donnell; Submitted



TLC teleportation, rigid motions, and frames

> Loop decomposition into tripeptides and connecting peptide bodies
Tripeptide Tripeptide Tripeptide Tripeptide
T T, Tioa T

\ [ [ I \ ‘
[ Aums i

Fixed :
Anchors A g Asigs A
. NSl !
Ay ., .sz = Aua ] Fixed
i1 A i Anchors
Asiz
Ay :

Ar

P;: peptide body
between T; and Ty

Ay Cy Agier: Ny

Asicr: G ®
Asiva: Cap

> Tripeptide: 9 atoms, 5 moving via teleportation
> Peptide body connecting two tripeptides: rigid ... whence rigid motions
» Consequence: two classes of citizens

® peptide bodies within tripeptides
® peptide bodies connecting tripeptides

= corrected via frame shifting



Frames involved in whole loop sampling

Definition 7. Subset of the loop to which individual TLC are applied.

> Frame shifting:
» frame 1 starting at the first a.a. always contains n tripeptides regardless of N;
» frame 2 at the second peptide contains n — 1 tripeptides if N mod 3 =0 and n;
» frame 3 at the third peptide contains n if N mod 3 = 2 and n — 1 otherwise.

> The three frames obtained for a chain of N =3n+ 2 a.a., with n =2

NG C N C, C N C, C N C. C N C, C N CoC N C, C

WAARAANAAAAA

frame boundary

N Gy C

O Atoms outside frame Rigid body overlap

O Atoms in rigid bodies moved with SE(3)

O Atoms impacted by TLC v



Global geometric model
I

> Loop studied L: M = 3 X m amino, m tripeptides: L = Ty,
rigid peptide bodies and their complements

> Loop decomposition:
’ ’ ’
L=Py Ty P1 ... Pee1 T) P ... Pp1T,,Pm.
Tripeptide Tripeptide
T

Tripeptide Tripeptide
T

T T
\ |

\ I I
Ay

Anchors
A —
A o, Aucs \/\ Aumy )
g Asiva Anchors
Az
A3 ;

A
P;: peptide body
between 7; and Tipy

AnC

Asict: Can ©)
Asiv2 : Capz

> Parametric space:
> For one peptide body: SE(3) = SO(3) x R3

» For one tripeptide: solution space of TLC...except that

® The angular parameterization of TLC {«,&,7n,d}: depends on

) [ Aums
- Asi Ay Asits *@T Asm
e t

(27)

SE(3) x SE(3) since the left and right legs come from P;_; and P;_;



Sampling one frame: spaces involved and main idea

> Loop decomposition into: rigid peptide bodies and tripeptides cores

Loop segment: 7} nn,‘. T

Praa(0)

L=P, T, Py
’
Pi Tyi1 Prsa
Pm_1T.Pm.

> Random sampling of loop conformations using Hit-and-Run:

M: 6(m — 1) dimensional

A space for the motions of the
Vv m — 1 peptide bodies

S A 12m dimensional angular >

space for the m tripeptides

Aim: perform rejection

V: necessary conditions based . . .
on validity intervals sampling in a region V
S: solutions i.e. | can b .. .

f ombeded e containing all valid loop

F: Clash free solutions in &

geometries.

» How: with Hit-and-Run
in a domain

‘o et/ chareic.terlzmg necessary

® Sterite/Invalid conditions — cf validity

intervals




Sampling one frame: spaces involved and solution sketch

> Global parameterization of the conformational space of the loop: based on rigid
bodies associated with peptide bonds

> M: motion space for the m — 1 peptide bodies, essentially (SE(3))™~!
» A: 12m-dimensional angular space coding the geometry of tripeptides

» V: domain bounded by 24 hyper-surfaces in A, corresponding to Validity
Constraints Necessary Constraints for TLC to admit solutions

» S: the fertile space, where TLC admits one solution for each tripeptide

> F: clash free solutions in S for {N, C,, C, O, Cﬂ} pairs

> Number of solutions: [T;(num solutions tripeptide i)

peptide body 1-2

peptide body 2-3

Tripeptide #1 Tripeptide #2 Tripeptide ¥3




Angular representations: tripeptide and loop

> Angular representation of a tripeptide: the 2 x 4 angles

Definition 8. Let Ak,i = {ak,i, Mk,irEk,i—1,k,i—1} be the set of angles associated
with C,.iin the k-th tripeptide Tk.

The angular representation of a tripeptide Ty is the 12-tuple Ay = {Ay 1, Ak 2, Ak 3}
The corresponding 12-dimensional space is denoted Ay.

Definition 9. (Angular conformational space A) The angular conformational
space of the loop L is the 12m dimensional space defined by the product of the m
angular space of the individual tripeptides:

m
Def

A= HAk~ (28)

k=1



Validity domain for the whole chain L with m tripeptides

> Angles 7:  3m angles 7 (3 for each tripeptide)

> Recap per angle 7:
> For one angle: at most 4 Depth One Validity Intervals (DOVI)

» For each DOVI: 2 sub-manifolds of Ay defined by limit cases; yields (at
most) 8 sub-manifolds in Aj.

> For one tripeptide: 3 7 angles = 24 constraint surfaces in the 12
dimensional angular space Ay.
> Enumerating constraints:

» One tripeptide: 24

» Whole loop: 24m




Motion space for peptide bodies

Moving peptide bodies with rigid motions

> Configuration spaces for motions:
> One peptide body: R : (52 x [0, A)) x (52 x [0,27)) C SE(3)
» The m — 1 peptide bodies in the loop L: M = R™~1

> Peptide body motions: sample m — 1 independent screw motions
(translation-+rotation)

> Overall linear interpolation r € M: between the identity and the rigid motion
corresponding to r:

Ray(V) = {y(t) = Id + tV, with v(0) = Id}. (29)
> Restriction to each peptide body: defines a rigid transformation
Vi [0, 1] = SE(3),7(0) = Id, (30)
> Position of the k-th peptide body Py(t) at time t:

Py (t) = vk(t) Pk (0). (31)



Algorithm overview

> For a given angle 7:

t determines the positions of peptide bodies whence tripeptide legs (32)
~ kinetic angular representation A;(t) of Ty (33)
~ kinetic validity intervals I, ,(t), I, 5(t) (34)

> Example condition for kinetic depth 1 validity interval to be # (:
172 (Ar,i(8)) = T (A, i1 (1)) (35)

> Algorithm overview:

» For each angle 7, ;: find the

N 60m — 1) dmensiona] closest intersection with the 24
space for the motions of the

o peptice bodiee hyper-surfaces, along the 1D

A: 12m dimensional angular . ..

“pace for the m tripeptides curve defined by the rigid

V: necessary conditions based

on validity intervals motion interpolation.

S: solutions i.c. loop can be
2 Gl fee sotions i § > Let tmax be the corresponding
value of t: draw

ts + Uniform(0, tmax)

> Apply the rigid transforms
defined by ts to the m — 1
peptide bodies

» Solve the m individual TLC
problems

@ Fertile/valid
@ Sterile/Invalid




Sampling algorithm for one frame: pseudo-code

. Input: p;: point from which the move is made; corresponds to t =0
: Qutput: a point € S
: Var tmax: initialized using the smallest value of t > 0 breaking triangular
inequality in a given tripeptide
4: V: Random direction (Eq. 29)
5: fori € {1,...,m} do
6: for | € {1,2,3} do
T:
8
9

WN =

// Angle 7 ;: process the (at most) 24 equations

S= {tmax}

: // Process all interval pairs
10: for I, (t) € Zr, .(t) do
11: for I, 5(t) € I, ,1s(t) do
12: Stmp < numerical solutions for Eq. ?? and ?? t € [tmin, tmax]
13: S=S5USmp
14: end for
15: end for
16: Sort S by ascending order
17: Let t;, be the k-th element of S
18: ug = %
19: k=1
20: // Stop when no validity interval can be defined for 7 ;
21: while DOVI., (uy) # 0 do
22: tmax = tk
23: k=k+1
24 end while

b1 ~% and far



Algorithms and parameters

> Unmixed loop sampler ULSgK;ﬁ‘O,ﬁNES [po]:

» One|All a flag indicating how many solutions are retained at each
embedding step,

» Ngs the number of embedding steps,
» Ny the number of random trajectories followed in motion space,

» Nog the output rate (the number of steps in-between the ones where
conformations get harvested),

» po: the starting configuration.

> Mixed loop sampler MLSgX;"\EfNES [po]: every other step, the loop is shifted

by 1 or 2 units to also sample the peptide bodies.



VMD demo




Loops sampling: ¢, and w

> Typical values of the torsion angle w:
» SSE?
> loops?



Loops sampling: ¢, and w

> Typical values of the torsion angle w:

» SSE? w+£2—3°
» loops? w4 15°

30.0%

25.0%

20.0%

15.0%

10.0%




llustration: CDR-H3-HIV, 30 amino acids

> System:

» The loop is a complementarity-determining region (CDR-H3) from PG16, an
antibody with neutralization effect on HIV-1.

» pdbid: 3mme, chain A; residues: 93-100, 100A-100T, 101, 102.

Conformations generated by algorithm MLSSL;ZSO. (A) Variable domain (red) and
the 30 a.a. long CDR3. (B,C) Side/top view of 250 conformations.

> Generation speed: ~ 10 conformations per second



Results: sampling and study of fluctuatlons
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Results: sampling and study of fluctuations
Algo 50 500 5000

FRY Yy

Backbone RMSF (36 atoms) for the 12 amino acid long loop PTPN9-MEG2.

MLS§ [Lo] MLSG),. [Lo] ULSEr,. [Lo]| MoMA-LS




Outlook

> Key features:

» First global parametric model of protein loops amenable to effective
sampling strategies a-la Hit-and-Run
» Results: on par or better with state-of-the-art methods

® Atomic fluctuations along the loop
® Mutual reachability for existing conformations

» Insights on the intrinsic difficulty of the problem—via random walks and
curved polytopes

> Open problems:
» Uniformity of sampling (Theorem)
» Connexion to micro-canonical ensembles and densities of states

» Sampling with side chains



Loop sampling

Open problems



Open problems

» Tightness of the Depth-N Validity Constraints
» Uniformity of the sampling in solution space

» Mixing dihedral angles and the remaining internal coordinates
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