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Overview

▷ Theory/algorithms

▶ k-means and seeding procedures

▶ Gaussian mixtures – soft and hard

▶ Model selection via Minimum message Length

▷ Protein science

▶ Internal coordinates

▶ Joint distributions for torsion angles



Algorithms

PART 1: Kmeans and EM
PART 2: Fitting complex mixtures in flat torii
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Point set in Euclidean space: centroid, center of mass

Definition 1. For a point set P = {x1, . . . ,Xn} in Rd :

▶ Center of mass/centroid: x ∈ Rd minimizing
∑

xi∈P ∥x − xi∥2

▶ Geometric median: x ∈ Rd minimizing
∑

xi∈P ∥x − xi∥

Blue: center of mass; yellow: geometric median.

Lemma 2. The center of mass/ centroid µ of P minimizes the sum of squared
distances to all points.

▷Ref: https://en.wikipedia.org/wiki/Geometric_median

https://en.wikipedia.org/wiki/Geometric_median


The centroid minimizes the sum of squared distances

Denoting µ the center of mass:∑
xi∈P

∥xi − x∥2 =
∑
i

∥xi − µ+ µ− x∥2 (1)

=
∑
i

⟨xi − µ+ µ− x , xi − µ+ µ− x⟩ (2)

=
∑
i

∥xi − µ∥2 + 2⟨µ− x ,
∑
i

(xi − µ)⟩+ n ∥µ− x∥2 (3)

=
∑
i

∥xi − µ∥2 + n ∥µ− x∥2 (4)

since by definition of the centroid
∑

i (xi − µ) = 0.
Thus, the sum is minimized for x = µ.



Optimization: the k-means criterion

▷ k-means criterion, for k clusters: find k centers {c1, . . . , ck} so as to minimize the
following sum:

ΦK =
∑
xi∈P

min
cj∈C

∥∥xi − cj
∥∥2 . (5)

▷ Clustering induced:

▶ For each sample xi : distance to the nearest center cj

▶ Clustering defined implicitly: induced by the Voronoi diagram – next slide

▷ Search space and hardness:

▶ When k = 1: the center sought is the center of mass

▶ The search space for centers is (Rd )k

▶ From the combinatorial standpoint, max number of assignment of points to
clusters: Stirling number of second kind ∼ kn/k!

▶ For fixed k: problem can be solved in time O(n(d+2)k+1) – enumerating all
partitions

▶ In general – k is a function of n: the problem in NP-hard i.e. cannot be solved
in polynomial time unless P = NP



k-means and Lloyd iterations

▶ Assign each point to its nearest center – Voronoi partition

▶ Replace each center by the center of mass of points in its Voronoi cell

▶ Iterate until convergence

▷ Nb: only O(ndk ) subsets of data points can be induced by Voronoi – not kn.



k-means++: smart seeding procedure

▷ Idea: force the selection of seeds far away from those already chosen center q ∈ C

▶ D2
Def
= Cost({p},C) = minq∈C ∥p − q∥2

procedure SmartSeeding(P, k)

Input: dataset P, num. of centers k
Uniformly sample p ∈ C and set C = {p}
for i = 2 to k do

Sample p ∈ P\C with proba. P [p] = Cost({p},C)/
∑

q∈C Cost({q},C)

C ← C ∪ {p}
end for
Return C

end procedure

▷ Nb: squaring distances is enough; higher exponents may favor outliers.



k-means++ and smart seeding

▷ Usual problem: clusters are not well represented by the initial seeds

▷ Smart seeding:

▶ force the initial seeds to stab/encounter the clusters

▶ seed choosen with a probability proportional to the squared distances to already
chosen seeds

Theorem 3. With k-means++, the expectation of the k-means functional
satisfies

E [ΦK ]

ΦK ,OPT
≤ 8(ln k + 2) = O(ln k). (6)

Theorem 4. The approximation factor is no better than 2 ln k.

▷Ref: k-means++: the advantages of smart seeding, Arthur and

Vassilvitskii, ACM SODA 2007
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k-means++-G: greedy k-means++

Quote from the k-means++ paper: “ Also, experiments showed that k-means++
generally performed better if it selected several new centers during each iteration, and
then greedily chose the one that decreased ΦK as much as possible.”

▷ Implemented in scikit-learn with l = 2 + logK candidates:

Theorem 5. (GR03) The approximation ratios of k-means++-G are:

▶ Ω(l3 log3 k/ log2(l log k)).

▶ O(l3 log3 k)

▷ Pathological case: opt 2-clustering: cost < 1; if b is a center: cost = Ω(n)

▷ Pool size and randomization:

▶ Increasing the pool size l jeopardizes randomization

▷Ref: Grunau et al, ACM SODA 2003



Local searches via single swaps and multi-swaps

▷ The single swap method from Arya et al:

procedure LocalSearchesExhaustive
Input: dataset P, centers C
if ∃q ∈ C , ∃p ∈ P\C such that Cost(P,C − p + p) < Cost(P,C) then

Pick the best swap of seeds p′, q′

C ← C\{q′} ∪ {p′}
end if
Return C

end procedure

▷ p multi-swaps: in the previous algorithm, seek replacements of size p.

Theorem 6. The p multi-swap method has a CAF ≤ (3 + 2/p)2. The bound
is almost tight.

ýThere exists configurations of points where the algorithm yields a 9 + ε
approximation factor.

▷Ref: Mount et al, ACM SoCG 2004



k-means++-LS: combining ++ and local searches
▷ Idea: sample p – exhaustive search + search exhaustively substitutes q ∈ C

procedure LocalSearch++ k-means++-LS
Input: dataset P, centers C
Sample p with proba. Cost(P)
q′ ← argminq∈C Cost(P,C − q + p)
if Cost(P,C\{p} ∪ {p}) < Cost(P,C) then

C ← C\{q′} ∪ {p′}
end if

end procedure

procedure k-means++ with local search(P, k, Z)
Initialize C via smart seeding
for i=1,. . . ,Z do C ← LocalSearch ++(C)
end for
Return C

end procedure

Theorem 7. (LS19) With Z ≥ 105k log log k, one has the CFA
E [ΦK ] /ΦK ,OPT ≤ 509. The algorithm runs in time dnk2 log log k.

Theorem 8. (CA23) The single swap method achieves a CAF of < 26.64.

▷Ref: Lattanzi et Solher, PMLR 2019

▷Ref: Cohen-Added et al, Neurips 2023



Theory vs practice: k-means++-G vs k-means++-LS

▷ Theory: the approx. factor of k-means++ is better than that of k-means++-G,
namely – O(log k) vs O(l3 log3 k)

▷ But in practice: k-means++ used all over.

▷ Conclusion:

▶ Tight approximation ratios correspond to rather pathological cases that may not
be met in practice

▶ Theoretical analysis based on more realistic data models?

▶ NB: see the Signal to Noise Ratio used to fit GMM (Chen and Zhang, Neurips
2024)



k-means++-MS: generalizing k-means++-LS

▷ Local search with p multi-swap:

▶ Opt out p = O(1) seeds at a time – !!!
(
k+p
p

)
candidate swaps !!!

▶ Perform Z = O(ndkp−1) iterations

Theorem 9. (CA23) k-means++-MS achieves a constant factor
approximation of CAF < 10.48

▷ Greedy variant for one multi-swap iteration: starting with k + p seeds;
iteratively removes the seed minimizing the increases in the SSE function – i.e.
the seed least useful one to represent the data

▷ Practice: (finally!) outperforms k-means++-G

▷Ref: Cohen-added et al, Neurips 2023



Seeding strategies: limitations

▶ Seeding methods use distances between points; ΦK uses distances to
centroids

▶ Greedy seeding incurs a variance drop off along the choice of seeds

▶ First seed: maximum variance for pairwise distances

▶ Last seed: much less



Our contribution: a novel line of seeding methods

▷ Observations and fixes:

▶ Seeding methods use distances between points; ΦK uses distances to centroids

▶ → look ahead and rank candidates using distances to centroids
induced by seeds

▶ Greedy seeding incurs a variance drop off along the choice of seeds

▶ → order the seeds being challenged for local search
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▷Ref: Carrière and Cazals, 2025



On the number of cluster : the elbow criterion

k

Sum of squared distances

▷ Nb: cf also the scree plot for PCA: g(k) =
∑

k λi

▷ Exercise: use dynamic programming to fit a bilinear least square model – or
more generally a piecewise linear model with k pieces
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Co-clustering

https://scikit-learn.org/stable/auto_examples/bicluster/plot_

spectral_coclustering.html

https://scikit-learn.org/stable/auto_examples/bicluster/plot_spectral_coclustering.html
https://scikit-learn.org/stable/auto_examples/bicluster/plot_spectral_coclustering.html


k-means and 2-factor Non Negative Matrix Factorization
(NMTF)

▷ Data matrix approximation for clustering: approximate the n × p data matrix X :

X ≈ GF (7)

Dimension-wise:(n × p) : (n × K)(K × p), (8)

with

▶ Cluster indicator matrix G ∈ Rn×K
+

▶ Centroids matrix F ∈ RK×p – centroids of the clusters

▷ The relationship between k-means and NMTF is given by

Theorem 10. Orthogonal NMF, which solves

min
F≥0,G≥0

∥X − GF∥2F such that GTG = IK , (9)

is equivalent to k-means clustering.

▷ Benefit of using matrix factorization: ability to handle several decompositions
▷Ref: Ding et al, Orthogonal nonnegative matrix tri-factorizations for

clustering, 2006



2-factor NMTF: illustration
▷ Matrix approximation:

X ≈ GF (10)

Dimension-wise:(n × p) : (n × K)(K × p) (11)

NMF: illustration. From [?]. Nb: on this example, the orthogonality of matrix
G has not been enforced. This is soft rather than hard clustering.
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Comparing two clusterings using matchings between
clusters of clusters

F. Cazals, D. Mazauric, R. Tetley, and R. Watrigant
ACM Trans. Exp. Algorithms, 2019

https://sbl.inria.fr/doc/D_family_matching-user-manual.html
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https://sbl.inria.fr/doc/D_family_matching-user-manual.html


Merging clusters: a matter of scale

(A) Two clusterings (kmeans++, Tomato, etc) (B) Meta-clusters as union of clusters



Comparing clusterings: the Variation of Information

• A set Z of t items
• A clustering F of size r for Z : F = {F1, . . . ,Fr}; nk = |Fk |;
pk = nk/t.
• A clustering F of size r ′ for Z : F = {F1, . . . ,Fr}; n′

k = |F ′
k′ |;

• Overlap between two clusters: p(k, k ′) = |Fk ∩ F ′
k′ |/t.

• Entropy of clustering: H(F ) = −
∑

k=1,...,r p(k) ln p(k)

• Mutual information between F and F ′:

I (F ,F ′) =
∑
k

∑
k′

p(k, k ′) ln
p(k, k ′)

p(k)p(k ′)
.

• Variation of information (VI):

VI (F ,F ′) = H(F ) + H(F ′)− 2I (F ,F ′).

• Main properties:

▶ VI is a metric

▶ VI (F ,F ′) ≤ ln t

H(F ) H(F ′)

I(F, F ′)H(F | F ′) H(F ′ | F )

V I(F ′, F )

▷Ref: M. Meila, Journal of Multivariate Analysis, 2007



Grouping clusters into metaclusters:
problem formalization in terms of intersection graph

▷ Goal: recovering some coherence between groups of clusters

▶ as a function of a scale parameter D
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▷ Rationale: many-to-many

▶ Aggregating many clusters, map to many clusters

▶ Characterize the scale at which clusters merge



Comparing clusterings: previous work

▷ 1-1 mapping of clusters: equivalent to the problem of computing a
maximum weighted matching in weighted bipartite graph.
▷ Solution: solved in O(n2 log n + nm)
▷ Particular case of the D-family-matching problem for D = 1 – see later

F1

F2

F ′
1

F ′
2

F ′
3

F ′
4

F ′
5

F F ′

u1 u2

u′
1 u′

2 u′
3 u′

4 u′
5

5 15 5 105

(a) (b) D = 1



Intersection graph

▷ Notations:

▶ Data: Z = {z1, . . . , zt}
▶ Clustering F of size r: F = {F1, . . . ,Fr}

Fi ⊆ Z ,Fi ̸= ∅ and Fi ∩ Fj = ∅ for every i , j ∈ {1, . . . , r}, i ̸= j .

▶ Clustering F’ of size r’: F ′ = {F ′
1, . . . ,F

′
r′}

F ′
i ⊆ Z ,F ′

i ̸= ∅, and F ′
i ∩ F ′

j = ∅ for every i , j ∈ {1, . . . , r ′}, i ̸= j .

NB: a clustering may not contain all t items

Definition 11 (Intersection graph G = (U,U ′,E ,w) for F and F ′).

The set U = {u1, . . . , ur}: vertices of F
The set U ′ = {u′

1, . . . , u
′
r′}: vertices of F ′

Edges E = {{ui , u′
j} | Fi ∩ F ′

j ̸= ∅, 1 ≤ i ≤ r , 1 ≤ j ≤ r ′}.
Edge weight of edge e = {ui , u′

j} ∈ E is we = |Fi ∩ F ′
j |.



D-family matching

▷ Let D ∈ N+: a constraint on the diameter of certain subgraph of the
intersection graph

Definition 12. [D-family-matching for an intersection graph]
A family S = {S1, . . . , Sk}, k ≥ 1, such that

▶ for every i , j ∈ {1, . . . , k}, if i ̸= j , then: Si ⊆ V , Si ̸= ∅, Si ∩ Sj = ∅,
▶ and the graph G [Si ] induced by the set of nodes Si

has diameter at most D.

▷ Comments:

▶ D = 1: matching

▶ D = 2: clusters as stars

▷ Notations:

▶ Set of all D-family matchings of a graph G : SD(G)



D-family matching problem

▷ Score Φ(S) of a D-family-matching S:

Φ(S) =
k∑

i=1

∑
e∈E(G [Si ])

we . (12)

▷ Remarks:

▶ The sum runs over all edges of a connected component. (Later: see
algorithms based on spanning trees.)

▶ We wish to compute a D-family-matching which minimizes the
inconsistencies.

Definition 13 (D-family-matching problem). Let D ∈ N+. Given
an intersection graph G , the D-family-matching problem consists in computing

(Opt score for a given D) ΦD(G) = max
S∈SD (G)

Φ(S). (13)

NB: Score with the diameter D stressed: Φ(SD=d)



Comparing clusterings: at which scale do clusters merge?

What is the right number of clusters?
▷ Example:

▶ Using k-means++ to cluster 5000 samples from five Gaussian blobs

▶ Using D-family matching to infer the right/natural # of clusters

(A) k-means++, k = 20 (B) k-means++, k = 50

(C) D = 3, 17 meta clusters, ΦD(G) = 4068(D) D = 4 , 4 meta clusters, ΦD(G) = 5000
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Gaussian Mixture Models

▷ Point set: {x1, . . . , xn} ⊂ Rd .

▷ Gaussian mixture model:

g(x) =
∑

k=1,...,K

wkN (xi | µk ,Σk)
)
,
∑
k

wk = 1. (14)

▷ Question: design a GMM fitting X

▷ Parameters: Θ = {µk ,Σk}, k = 1, . . . ,K ; Θ′ = Θ ∪ {wk}, k = 1, . . . ,K

Low separation Clear separation



From a data partition to the initial GMM

▷ Find representative centers: k-means++

▷ Means2GMM algorithm:

1: procedure Means2GMM(X , µ1, ..., µK )

2: Partition C1, ...,CK
Def
= assign each xi ∈ X to its closest mean

3: //Build GMM components
4: for k ← 1 to K do
5: µk = 1/|Ck |

∑
x∈Ck

x

6: wk = |Ck | / |X |
7: Σk = 1/|Ck |

∑
x∈Ck

(x − µk )(x − µk )T

8: If Σk is not positive definite, take Σk = 1/(d |Ck |)
∑

x∈Ck
∥x − µk∥2 Id )

9: If Σk is still not positive definite, take Σk = Id
10: end for
11: end procedure

▷ Means2SphGMM: change the full anisotropic estimation of line 7 by the isotropic
estimation of line 8.

▷Ref: Blomer et al, 2016
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The multivariate Gaussian
and the Mahalanobis distance

▷ The d-dimensional normal multivariate distribution:

N (x | µ,Σ) =
1

det(2πΣ)1/2
exp(−

1

2
(x − µ)TΣ−1(x − µ)). (15)

Definition 14. Given a probability distribution Q with mean µ and positive
semi-definite covariance matrix Σ, the Mahalanobis distance is

dM(x ,Q) =

√
(x − µ)TΣ−1(x − µ)

dM(x , y) =

√
(x − y)TΣ−1(x − y)

▷ Mahalanobis distance as a Euclidean norm:
Assuming one can write Σ−1 = B−TB−1:

dM(v) =
√

vTB−TB−1v =

√
(B−1v)TB−1v =

∥∥B−1v
∥∥ . (16)

▷Ref: Kessy et al, Opt whitening and decorrelation, 2018



Whitening:
Transforming RV to orthogonality

▷ Whitening: transforming random variables to orthogonality

▷ Gaussian distribution:

Theorem 15. Let X ∼ N (µ,Σ). Define Z = B−1(X − µ) with B defined below.
Then Z ∼ N (0, Id ).

▷ Proof sketch: 1. Decomposition of the covariance matrix Using the spectral
theorem:

Σ = PDPT = PD1/2(PD1/2)
T Def

= BBT. (17)

NB: expression for Σ−1:

ΣΣ−1 = BBTΣ = I ⇒ Σ−1 = B−TB−1 or Σ−1/2 = B−1 (18)

2. Change of variables:

fZ (z) = fX (x) | det(Jacobian) | .

▷Ref: Kessy et al, Optimal whitening and decorrelation, The American

Statistician, 2018



The multivariate Gaussian: posterior

Consider a mixture of K Gaussians

g(x) =
∑

k=1,...,K

wkN (xi | µk ,Σk)
)
,
∑
k

wk = 1. (19)

Given a point x , let us investigate the probability to have x generated by the
k-th component. To model, this process, consider K boolean latent variables,
with zk = 1 iff the k-th component generated x . From which we define:{

prior probability: N (x | µk ,Σk)

posterior probability: γxk = P [zk = 1 | x ]
(20)

Using Bayes’ rule, we obtain:

γxk = P [zk = 1 | x ] = P [x |zk = 1]P [zk = 1]

P [x ]
=

wkN (x | µk ,Σk)∑
k wkN (x | µk ,Σk)

. (21)



Maximum Likelihood: problem

▷ Likelihood for the n samples:

P
[
X | Θ′] = ∏

i=1,...,n

g(x). (22)

▷ Associated log likelihood for the n samples:

LL(X | Θ′) = lnN (X | Θ′) =
∑

i=1,...,n

ln
(∑

k

wkN (xi | µk ,Σk )
)
. (23)

▷ Goal: maximize the likelihood.



Maximum Likelihood: solutions

▷ Maximization wrt to the µk : derivative of the LL (Eq. 23) wrt the µk yields

−
∑
k

γikΣk (xi − µk ) = 0 (24)

from which we get {
µk = 1

Nk

∑
i γikxi ,

Nk =
∑

i γik .
(25)

NB: µk is a weighted center of mass, with weights equal to the posterior probabilities.

▷ Maximization wrt to the Σk :

Σk =
1

Nk

∑
i

γik (xi − µk )(xi − µk )T. (26)

▷ Maximization wrt to the mixing coefficients πk : This is done using Lagrange
multipliers: ∑

i=1,...,n

ln
(∑

k

wkN (xi | µk ,Σk )
)
+ λ(

∑
k

wk − 1). (27)

and the calculation yields
wk = Nk/N. (28)

▷Ref: Bishop, Patter recognition and machine learning, 2006



Log likelihood and Gaussians:
singularities - over-fitting

▷ Pb with singularities: assume that

▶ the covariance matrices satisfy Σk = σ2
k Id .

▶ some sample point matches one mean, that is µk = xi , for some indices k and i .

We get the probability

N (xi | µk ,Σk ) =
1√

|2πσ2
k Id |

=
1

(2π)d/2
1

σd
k

. (29)

▶ This terms tends to infinity, and so does the LL.

▶ When fitting a GMM, if a components specializes to one point, its variances
goes to zero, and the LL goes to infinity. Thus, need to identify singular
components and process them accordingly.
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Problem statement and hardness

▷ Goal: for a point cloud generated by a k-GMM: identify the generator of each
sample

Find: z∗ = (z∗j )
T ∈ [k]n (30)

▷ General sampling model:

Yj = Θ∗
z∗j

+ εj , with εj ∼ N (0,Σ∗
j ) (31)

▶ Model 1: different centers Θ∗
z∗j
; global covariance matrix Σ∗

▶ Model 2: different centers Θ∗
z∗j
; different covariance matrices Σ∗

j

▷ NB: model 1 with Σ∗ is known: applying whitening, problem converted into an

isotropic GMM via the transform Σ∗− 1
2 Yj

▷ Loss function: need to find the proper permutation of labels:

For any z, z∗ ∈ [k]n : h(z, z∗) min
ψ∈Ψ

1

n

∑
J

1(ψ(zj ) ̸= z∗j ) (32)

▷Ref: Chen and Zhang, NeurIPS 2024



Hardness via Signal to Noise Ratio

▷ Difficulty of clustering: separation between the Gaussians

▷ For isotropic Gaussians: Signal to Noise ratio using the Mahalanobis distance

SNR = min
a,b∈[k];a ̸=b

∥∥∥Σ∗− 1
2 (Θ∗

a −Θ∗
b )
∥∥∥ . (33)

NB:

Σ∗ = σ2Id ⇒ SNR =
∆

σ
, with ∆ = min

a,b∈[k],a ̸=b
∥Θ∗

a −Θ∗
b∥ . (34)

▷ Non isotropic Gaussians: no closed form

▷Ref: Chen and Zhang, NeurIPS 2024



EM with hard clustering

▷Ref: Chen and Zhang, NeurIPS 2024



Consistent clustering and minimax lower bounds
Performing best in the worst case
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▷ Comments:

▶ Parameter space only for z∗; centers and covariances are fixed

▶ If k is fixed: SNR →∞ is a sufficient condition for consistent clustering

▷Ref: Chen and Zhang, NeurIPS 2024



Algorithms

PART 1: Kmeans and EM
PART 2: Fitting complex mixtures in flat torii



Algorithms

Model selection: warmup

Modeling joint distribution on flat torii

The Minimum Message Length approach to model selection



Model selection: goal and notations

▷ Goal: given a set of iid observations, select a model that

▶ fits/explains the data,

▶ and/or possibly predicts new outcomes – generative model

▷ Notations:

▶ Θ: some space defining a statistical model with d-dimensional parameters

▶ Prior on the parameters: h(θ), θ ∈ Θ

▶ x(n): a sequence of n iid observations of some unknown random variable X .
Abusing notations: denoted x

▶ log f (x ; θ) the log likelihood of data with respect to a statistical model /
hypothesis

▷ Example / Bernoulli: with n coin tosses x = {x1, . . . , xn} and k Head, estimate p̂
to get Head:

f (x ; θ) =
(n
k

)
θk (1− θ)n−k ; log f (x ; θ) = C + k log θ + (n − k) log(1− θ) (35)

⇒ maxθ log f (x ; θ) yields θ̂ = k/n.

https://en.wikipedia.org/wiki/Model_selection

https://en.wikipedia.org/wiki/Model_selection


Model selection: classical strategies
▷ Maximum likelihood estimator θ̂ML:

θ̂MLE = argmax
θ

log P [x |θ] . (36)

▶ No a priori on the statistical model, model complexity ignored

▷ Maximum a Posteriori θ̂MAP:

argmax
θ

P [θ|x] = argmax
θ

P [x |θ]P [θ]

P [x]
. (37)

▶ uses a prior belief on θ; ignores P [x]

▷ Bayesian: also using a prior on θ, estimate the full posterior

P [θ|x] =
P [x |θ]P [θ]

P [x]
. (38)

▶ Difficulty: computing P [x] =
∫
θ P [x |θ] dP [θ]

▷ NB: posterior = likelihood × prior / evidence

▷ Minimum Description/Message Length: likelihood + model complexity ⇒ of
interest for mixtures



(Univariate) Fisher information - definition
▷ Goal: assess the overall sensitivity of a statistical model to its param. θ

Definition 16. (Unit Fisher information)

Iθ =

{∑
x∈X [ d

dθ
log f (x |θ)]2pθ(x)(discrete)∫

x [
d
dθ

log f (x |θ)]2f (x | θ)dx(continuous)
(39)

▷ Example: Bernoulli / coin toss with parameter θ : Iθ = 1
θ(1−θ)

▷ NB: for n iid trials: IXn ;θ = nIθ

▷Ref: Ly et al, J. of Mathematical Psychology, 2017



Fisher matrix: multivariate case

Definition 17. Matrix
Iθ =

(
Iij (θ)

)
, (40)

with

Iij (θ) = −EX

[
∂2ln L

∂θi∂θj

]
(41)

▷ NB: Fisher’s matrix is positive semidefinite.



Priors and Jeffreys’ prior

▷ Uniform prior: assigns the same probability to every model set of the same volume

▷ Caveats:

▶ Without having seen any datum: any region in model space equally likely

▶ Posterior is not invariant by reparameterization of the model – see Example
below

▷ One substitute:

Definition 18. (Jeffreys’ prior)

gJ(θ) =

√
Iθ

V
, with V =

∫
θ

√
Iθdθ. (42)

▷ Example: Jeffreys’ prior for the Bernoulli experiment: gJ(θ) =
1

π
√
θ(1−θ)



Model selection and priors: illustration (I)

▶ Bernoulli experiments with nheads = 7 out of 10 tosses:
f (xn

obs) = θ7(1− θ)3

▶ Posterior associated with the uniform prior

P [θ|xn] = 1320 ∗ θ7(1− θ)3 (43)

▷Ref: Ly et al, J. of Mathematical Psychology, 2017



Model selection and priors: example (II)

▷ Reparameterization: propensity θ
assuming the coin is bent with angle ϕ

θ = h(ϕ)
1

2
+

1

2
(
ϕ

3
)3.

ϕ

θ

ϕ Head

Tail

▷ Densities in param. space and posteriors:

ýPosterior very different from that with the uniform prior

▷Ref: Ly et al, J. of Mathematical Psychology, 2017



Model selection and priors: example (III)
▷ Using Jeffrey’s prior on ϕ or θ yield the same posterior

gJ(ϕ) =
3ϕ2

π
√
π6 − ϕ6

(44)

gJ(θ) =
1

π
√
θ(1− θ)

. (45)

▷Ref: Ly et al, J. of Mathematical Psychology, 2017



Model selection and priors: example (IV)
Distribution in model space M

▷ Model encoding and model space: mθ = [P [0] ,P [1]] vs mθ = [2
√

P [0], 2
√

P [1]]

NB: latter representation preferred since all models have the length

▷ Distribution of models inM using the θ and ϕ parameterization–spacings 0.1:

▷ Uniform distribution in model space:

V =

∫
Mθ

1dmθ(X ) =

∫
Θ

√
Iθdθ. (46)

▷Ref: Bickel et al, Efficient and adaptive estim. for semiparametric

models, J. Hopkins Univ. Press, 1993



Fisher’s info: two expressions
▷ NB: Likelihood: L = L(x | θ) = f (x | θ) ;

∫
X Ldx = 1.

Lemma 19. Under suitable conditions – see Amari et al:

Iθ = EX

[
(
∂ ln L

∂θ
)2
]
= −EX

[
∂2ln L

∂θ2

]
(47)

▷ Proof sketch:
First note the following:

(
∂ ln L

∂θ
)2 =

∂ ln L

∂θ

1

L

∂L

∂θ
(48)

∂

∂θ
(L
∂ ln L

∂θ
) = L

∂2 ln L

∂θ2
+
∂L

∂θ

∂ ln L

∂θ
(49)

Then – subscript X omitted in expectations:

E
[
(
∂ ln L

∂θ
)2
]
=

∫
L(
∂ ln L

∂θ
)2dx =

∫
∂ ln L

∂θ

∂L

∂θ
dx – with Eq.(48) (50)

=

∫
∂

∂θ
(L
∂ ln L

∂θ
) − L

∂2 ln L

∂θ2
dx =

∂

∂θ

∫
L
∂ ln L

∂θ
dx − E

[
∂2 ln L

∂θ2

]
(51)

=
∂

∂θ

∫
∂L

∂θ
dx − E

[
∂2 ln L

∂θ2

]
=

∂2

∂θ2

∫
Ldx − E

[
∂2 ln L

∂θ2

]
(52)

= 0 − E
[
∂2 ln L

∂θ2

]
– since

∫
Ldx = 1. (53)

▷Ref: Amari and Nagaoka, Methods of Information Geometry. Oxford Univ.
Press, 2000



Invariance of the posterior using Jeffreys’ prior

•Generic expression of the posterior pdf using Bayes’ rule and Lemma 19:

P [θ | x] = P [x | θ] gJ(θ) ∝ L(x | θ)

√
−E

[
∂2ln L

∂θ2

]
= L(x | θ)

√
E
[
(
∂ ln L

∂θ
)2
]

(54)

•Posterior: pdf using new parameter η and dependency θ(η)

P [η | x] = P [θ(η) | x] |
∂θ

∂η
| = L(x | θ(η))

√
E
[
(
∂ ln L

∂θ(η)
)2
]
|
∂θ

∂η
| (55)

= L(x | θ(η))

√
E
[
(
∂ ln L

∂θ(η)

∂θ

∂η
)2
]

(56)

•Posterior: direct calculation using the parameter η and the function θ(η)

P [η | x] = L(x | η)

√
E
[
(
∂ ln L

∂η
)2
]
= L(x | η)

√
E
[
(
∂ ln L

∂θ

∂θ

∂η
)2
]

(57)



Model selection strategies
▷ Comparing various models θi : components Iθ

▶ Goodness of fit via MLE estimate

▶ Dimension i.e. number of free parameters

▶ Geometric complexity: volume of model space

▷ Main strategies

▶ Akaike information criterion (AIC)

▶ Bayesian information criterion (BIC)

▶ Fisher information approximation (FIAT)

AIC = −2 log fj (x
(n)
obs | θ̂j (x

(n)
obs)) + 2dj

BIC = −2 log fj (x
(n)
obs | θ̂j (x

(n)
obs)) + dj log n

FIAT = log fj (x
(n)
obs | θ̂j (x

(n)
obs)) +

dj

2
log

n

2π
+ log

(∫
Θ

√
det Iθdθj

)

▷Ref: Grünwald, The minimum description length principle, MIT press,

2007

▷Ref: Ly et al, J. of Mathematical Psychology, 2017
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Side chains and rotamers
▷ The χ angles of Histidine:

χ1χ2

▷ Rotameric vs non rotameric χ angles:

0°

45°

90°

135°

180°

225°

270°

315°

0°

45°

90°

135°

180°

225°

270°

315°

Rotameric / discrete Non rotameric



Backbone dependent χ angles

▷ Example, HIS: (ϕ, ψ, χ1, χ2)

▷ Limitations of these distributions:

▶ . . .

▶ . . .



Phisical – ϕψχal: mixture of von Mises

▷ Goal: per amino-acid, model the joint density (ϕ, ψ, χ1, . . . , χn)
NB: X = (x1, . . . , xd ) with xi ∈ [0, 2π); that is, X is a point on the flat torus Td .

▷ Mixture model

▶ Mixture component: product of univariate von Mises

fΘi
(X ) =

∏
i=1,...,d

expκi cos(xi−µi ) . (58)

▶ Mixture model: F (X ) =
∑

i=1,...,M wi fΘi
(X )

▶ Num. parameters: num components: 1; params of the components: M(1 + 2d).

▷ Question: provide two limitations of
these distributions

▶ . . .

▶ . . .

▷Ref: Konagurthy et al, Bioinformatics 39, 2023



Example 1: rotameric side chain – MET
Projection into (χ1, χ2, χ3) and comparison against Dunbrack’s lib.

▷Ref: Konagurthy et al, Bioinformatics 39, 2023



Example 2: non rotameric side chain – GLN
Projection into (χ1, χ2, χ3) and comparison against Dunbrack’s lib.

▷Ref: Konagurthy et al, Bioinformatics 39, 2023



Phisical: overview

▷Ref: Konagurthy et al, Bioinformatics 39, 2023



ϕψχal: method and limitations
▷ Methods for fitting mixtures:

▶ Dirichlet processes

▶ EM + regularization (AIC, BIC)

▶ Minimum Message Length / Minimum Description Length

▷ From coding theory: turn the proba. P [θ, x] = P [θ]P [x |θ] into a message length

ml(θ, x) = − log2 P [θ]︸ ︷︷ ︸
Model

− log2 P [x |θ]︸ ︷︷ ︸
Data/likelihood

. (59)

▷Ref: A. Dempster, N. Laird, D.

Rubin, ML from incomplete data

via the EM algorithm, J. Royal

Stat. Society, 1977

▷Ref: P. Grünwald, The minimum

description length principle,

MIT, 2007

▷Ref: Konagurthy et al, Bioinformatics 39, 2023



Designing complex mixtures: fundamental questions
▷ Classical mixture components in Rd :

▶ product of d univariate functions – cf Phisical

▶ fully dimensional function – von Mises / Gaussian

▷ Questions:

▶ Clusters: which dimension / which shape ?

▶ Mixture components: which functional form ?

▶ Cluster versus mixture components: coherence ?



Fréchet mean and p-mean on the unit circle

▷ Authors:

▶ Frédéric Cazals

▶ Timothée O’Donnell



Data centering on S1: p-mean and Fréchet mean
▷ Input

▶ n (rational) angles Θ0 = {θi}i=1,...,n

▶ Associated non-negative weights: {wi}i=1,...,n

▷ Circular distance

d(θ, θi ) = min(| θ − θi |, 2π− | θ − θi |) (60)

▷ p-mean functional, for an integer p ≥ 1

FP(θ) =
∑

i=1,...,n

wi fi (θ), with fi (θ) = dp(θ, θi ). (61)

▷ p-mean – Fréchet mean for p = 2

θ∗ = arg min
θ∈[0,2π)

FP(θ). (62)
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Estimation and inference by
compact coding: Quadratic
Mimimum Message Length

▶ C. Wallace and P. Freeman,
Estimation and inference by
compact coding, J. of the Royal
Statistical Society Series B, 1987

▶ C. Wallace, Statistical and
inductive inference by minimum
message length, Springer, 2005.

▶ P. Grünwald, The mnimum
Description length principle,
MIT press, 2007.

“In order to understand the world, we must first understand how information is
transmitted and received.” Claude Shannon

ApresT 15/04/2024, Frederic.Cazals@inria.fr



Model selection: coding with the Minimum Message
Length
The 1d case

Consider the joint probability:

P [θ, x ] = P [θ]P [x |θ] (63)

In coding theory, that yields a message length

ml(θ, x) = − log2 P [θ]︸ ︷︷ ︸
Model

− log2 P [x |θ]︸ ︷︷ ︸
Data/likelihood

. (64)

▷ (Strict) Minimum Message Length: a two-step selection process in tandem:

▶ Constraint: quantized parameter set Θ = {θ̂j , j = 1, . . . }.
w(θ̂j): the width of the interval associated to θ̂j

▶ Alice, statistician, chooses: the generic model, w(·), the model θ′ ∈ Θ

s = w(θ′)

θ′θ̂

ε

▶ Bob, coding specialist: choses θ̂ nearest to θ′, encodes, and sends the msg



MML strategy: cont’d

▷ Hypothesis 1: given a prior h(θ), total probability for the interval

[θ̂ − w(θ̂)/2, θ̂ + w(θ̂)/2]

P
[
θ̂j

]
∼ w(θ̂j )h(θ̂j ) (65)

NB:
∑

j P
[
θ̂j

]
may not add up to one ... but worse approximations ahead !

▷ Msg length for model + likelihood:

I1(x) = − log(w(θ̂j )h(θ̂j ))︸ ︷︷ ︸
Model

− log f (x ; θ̂j )︸ ︷︷ ︸
Likelihood

. (66)

▷ Challenge to minimize I1(x): Alice must design the spacings w(·) – without the

knowledge of x , and choose θ′ that will get converted to θ̂ by Bob to send the msg



Quadratic MML: Alice chooses the spacing w(·) (I)

▷ Hypothesis 2 on the spacings w(·):
ε = θ̂ − θ′ ≤ ±w(θ′)/2

s = w(θ′)

θ′θ̂

ε

Hypothesis on the moments of θ̂ in this interval

E
[
θ̂ − θ′

]
= 0;E

[
(θ̂ − θ′)2

]
=

∫ w(θ′)/2

−w(θ′)/2

1

w(θ′)
x2dx = w(θ′)2/12. (67)

▷ Msg length I1: Taylor expansion of log f (x ; θ̂) at θ̂ = θ′:

I1(x) = − log(w(θ̂)h(θ̂))− log f (x ; θ̂) (68)

≈ − log(w(θ′)h(θ′)) (69)

− log f (x ; θ′)− (θ̂ − θ′)
∂

∂θ′
log f (x ; θ′)−

1

2
(θ̂ − θ′)2

∂2

∂θ′2
log f (x ; θ′) (70)



Quadratic MML: Alice chooses the spacing w(·) (II)
Taking expections with respect to the quantization – shorthand s = w(θ′) :

Ec

[
θ̂ − θ′

]
= 0,Ec

[
(θ̂ − θ′)2

]
= s2/12

yields

Ec [I1(x)] ≈ − log(sh(θ′))− log f (x ; θ′)−
1

24
s2

∂2

∂θ′2
log f (x ; θ′) (71)

Which is minimized by setting

s2 = w(θ′)2 = −12/[
∂2

∂θ′2
log f (x ; θ′)] (72)

▷ Corresponding msg length:

I1(x) = − log h(θ′) +
1

2
log

Ix,θ′

12︸ ︷︷ ︸
Model

− log f (x ; θ′) +
1

2︸ ︷︷ ︸
Data

. (73)

Definition 20. The MML estimate is the value of θ′ minimizing Eq. (73)

▷ Problem: w(·) is choosen in advanced by Alice – without the knowledge of x ⇒
previous def. is useless in practice



Fisher information

▷ Fisher information: expectation of the 2nd derivative

F (θ′, x) =
∂2

∂θ′2
log f (x ; θ′), (74)

Iθ′ = −EX∼θ′
[
F (θ′, x)

]
. (75)

⇒ acts a condition number: sensitivity of the model f when the parameter θ changes.

▷ Final msg length: using θ̂ chosen via spacing function with w(θ) =
√

12/Iθ

I1(x) ≈ [− log
h(θ′)√
Iθ′/12

] + [− log f (x ; θ′)] + [
1

2

F (θ′, x)

Iθ′
]. (76)

▶ volume/proba of the region ∋ θ′
▶ data encoding i.e. likelihood
▶ penalty due to the replacement of θ′ by θ̂

NB: last term can be taken constant if F (θ′, x)/Iθ′ is upper bounded.



Possible caveats: assumptions on the quadratic MML

▶ ∀x ∈ X , the function f (x ; θ) has approx. quadratic dependence on θ near
its maximum – cf Taylor expansion.

▶ The space Θ has a locally Euclidean metric for the nearest rounding
process to make sense.

▶ The Fisher information Iθ is defined everywhere

▶ The prior and Iθ vary little over distances in Θ of the order 1/
√
Iθ



Coding and Gersho’s conjecture

▷ Coding a point using a lattice: replace x by the center of mass of the lattice
Voronoi cell

The following quantities are of interest–with P a
congruent Voronoi polytope:

▶ Volume of P: Volume(P) =
∫
P dx

▶ The second moment with respect to the centroid
of P: U(P) =

∫
P ∥x − x̂∥2 dx , with x̂ the centroid

of P.

▶ The normalized / expected second moment:
I (P) = U(p)/Volume(P).

Define:

q(P) =
1

d

I (P)

Volume(P)2/d
=

1

d

∫
P ∥x − x̂∥2 dx

Volume(P)1+2/d
(77)

▷ Conjecture: ≪For the distorsion minimizing encoder,
the regions are congruent to the polytope P of a
lattice:≫

qd = min
P

q(P). (78)

▷Ref: Gersho, IEEE Trans. Info. Theory, 1979

▷Ref: Conway - Sloane, IEEE Trans. Info. Theory, 1982



Quadratic MML: the general case

▷ Param: vector θ = (θ1, . . . , θd)
T

▷ Model term, P [θ]: obtained by multiplying the volume of the uncertainty
region in which θ is centered, with the probability (assumed to be constant) in
that region.

P [θ] = V ∗ h(θ), with V =
q
−d/2
d√
Iθ

(79)

The MML becomes:

I1(θ, x) = − log
(h(θ)√

Iθ
q
−d/2
d

)
︸ ︷︷ ︸

Model

− log f (X ; θ) +
d

2︸ ︷︷ ︸
Data

(80)

▷ Data term: the negative log likelihood, penalized by the complex cost.

▷Ref: Wallace and Freeman, Estimation and inference by compact coding,

J. of the Royal Statistical Society Series B, 1987



Application: designing mixtures in flat torii

▷ (ϕ, ψ) torsion angles in proteins:

Modeling the density of ϕψχal:
couplings illustrated on (ϕ, ψ) for
HIS.

▷ Contenders under scrutiny:

▶ (Dirichlet) processes

▶ Improved versions of EM

▶ Mixtures using multivariate
Gaussians / von Mises
distributions

▷Ref: ϕψχal, Bioinformatics, 2023
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