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Overview

> Theory/algorithms
» k-means and seeding procedures
» Gaussian mixtures — soft and hard

» Model selection via Minimum message Length

> Protein science
» Internal coordinates

» Joint distributions for torsion angles



Algorithms

PART 1:  Kmeans and EM
PART 2:  Fitting complex mixtures in flat torii



Algorithms

k-means, k-means++: basics



Point set in Euclidean space: centroid, center of mass

Definition 1. For a point set P = {x1,...,Xn} in RY:
> Center of mass/centroid: x € RY minimizing 2 oxep llx— xil|?

» Geometric median: x € R? minimizing Zx-eP [Ix = ||
i

Blue: center of mass; yellow: geometric median.

Lemma 2. The center of mass/ centroid p of P minimizes the sum of squared
distances to all points.

>Ref: https://en.wikipedia.org/wiki/Geometric_median


https://en.wikipedia.org/wiki/Geometric_median

The centroid minimizes the sum of squared distances

Denoting p the center of mass:

>l = x1? *ZHX: = x| (1)
x;€P
=D (xi—ptp—x,x—p+p—x) ()
i
= lxi — pll® +2( - x, Z(Xl Wy +nlu—x?>  (3)
=> i — ull® + nllp— x| (4)
i

since by definition of the centroid Y~ (x; — 1) = 0.
Thus, the sum is minimized for x = p.



Optimization: the k-means criterion

> k-means criterion, for k clusters: find k centers {cj,..., ck} so as to minimize the
following sum:
. 2
by = E min [|x — ¢|°. (5)
gEeC
x;€P

> Clustering induced:

» For each sample x;: distance to the nearest center ¢;

» Clustering defined implicitly: induced by the Voronoi diagram — next slide
> Search space and hardness:

» When k = 1: the center sought is the center of mass

> The search space for centers is (RY)¥

» From the combinatorial standpoint, max number of assignment of points to
clusters: Stirling number of second kind ~ k"/k!

> For fixed k: problem can be solved in time O(n(d+2)k+1) — enumerating all
partitions

» In general — k is a function of n: the problem in NP-hard i.e. cannot be solved
in polynomial time unless P = NP



k-means and Lloyd iterations

P> Assign each point to its nearest center — Voronoi partition
» Replace each center by the center of mass of points in its Voronoi cell

» lterate until convergence

> Nb: only O(n%) subsets of data points can be induced by Voronoi — not k”.



k-means++: smart seeding procedure

> ldea: force the selection of seeds far away from those already chosen center g € C

Def .
> D2 = Cost({p}, C) = mingec llp — alf?

procedure SMARTSEEDING(P, k)

Input: dataset P, num. of centers k

Uniformly sample p € C and set C = {p}

for i =2 to k do
Sample p € P\C with proba. P[p] = Cost({p}, C)/ >_,cc Cost({q}, C)
C+ CcU{p}

end for

Return C

end procedure

> Nb: squaring distances is enough; higher exponents may favor outliers.



k-means++ and smart seeding

> Usual problem: clusters are not well represented by the initial seeds

> Smart seeding:
> force the initial seeds to stab/encounter the clusters

» seed choosen with a probability proportional to the squared distances to already
chosen seeds

Theorem 3. with k-means++, the expectation of the k-means functional

satisfies
E [¢k]

< 8(Ink +2) = O(In k). (6)
P opPT

Theorem 4. The approximation factor is no better than 21In k.

>Ref : k-means++: the advantages of smart seeding, Arthur and
Vassilvitskii, ACM SODA 2007



Algorithms

Seeding: local searches + multi-swaps and beyond



k-means++-G: greedy k-means++

Quote from the k-means++ paper: “ Also, experiments showed that k-means+-+
generally performed better if it selected several new centers during each iteration, and
then greedily chose the one that decreased ®x as much as possible.”

> Implemented in scikit-learn with / = 2 4 log K candidates:

Theorem 5. (GRO03) The approximation ratios of k-means++-G are:
> Q(Plog? k/log?(/log k)).
> O(Plog? k)

> Pathological case: opt 2-clustering: cost < 1; if b is a center: cost = Q(n)

n 1 n
1| 1
a I

p

> Pool size and randomization:

» Increasing the pool size | jeopardizes randomization

>Ref: Grunau et al, ACM SODA 2003



Local searches via single swaps and multi-swaps

> The single swap method from Arya et al:

procedure LOCALSEARCHESEXHAUSTIVE
Input: dataset P, centers C
if 3g € C,3p € P\C such that Cost(P, C — p + p) < Cost(P, C) then
Pick the best swap of seeds p’, ¢
C+ C\{d'}u{p’}
end if
Return C
end procedure

> p multi-swaps: in the previous algorithm, seek replacements of size p.

Theorem 6. The p multi-swap method has a CAF < (34 2/p)?. The bound
is almost tight.

= There exists configurations of points where the algorithm yields a 9 + ¢
approximation factor.

>Ref: Mount et al, ACM SoCG 2004



k-means++-LS: combining ++ and local searches
> Idea: sample p — exhaustiveseareh + search exhaustively substitutes g € C
procedure LOCALSEARCH++ K-MEANS++-LS
Input: dataset P, centers C
Sample p with proba. Cost(P)
q' < argmingecc Cost(P, C — g + p)
if Cost(P, C\{p} U {p}) < Cost(P, C) then
C+ C\{q'}u{pr'}
end if
end procedure
procedure k-means++ WITH LOCAL SEARCH(P, k, Z)
Initialize C via smart seeding
for i=1,...,Z do C + LocalSearch + +(C)
end for
Return C
end procedure

Theorem 7. (LS19) With Z > 105k log log k, one has the CFA
E [®k] /®k,0pT < 509. The algorithm runs in time dnk? log log k.

Theorem 8. (CA23) The single swap method achieves a CAF of < 26.64.

>pRef: Lattanzi et Solher, PMLR 2019
>Ref: Cohen-Added et al, Neurips 2023



Theory vs practice: k-means++-G vs k-means++-LS

> Theory: the approx. factor of k-means++ is better than that of k-means++-G,
namely — O(log k) vs O(/3 log? k)

> But in practice:  k-means++ used all over.

> Conclusion:

» Tight approximation ratios correspond to rather pathological cases that may not
be met in practice

» Theoretical analysis based on more realistic data models?

> NB: see the Signal to Noise Ratio used to fit GMM (Chen and Zhang, Neurips
2024)



k-means++-MS: generalizing k-means++-LS

> Local search with p multi-swap:
> Opt out p = O(1) seeds at a time — ! (k:”) candidate swaps !!!

> Perform Z = O(ndkP™!) iterations

Theorem 9. (CA23) k-means++-MS achieves a constant factor
approximation of CAF < 10.48

> Greedy variant for one multi-swap iteration: starting with k 4 p seeds;
iteratively removes the seed minimizing the increases in the SSE function — i.e.
the seed least useful one to represent the data

> Practice: (finally!) outperforms k-means++-G

>Ref: Cohen-added et al, Neurips 2023



Seeding strategies: limitations

» Seeding methods use distances between points; ®x uses distances to
centroids

» Greedy seeding incurs a variance drop off along the choice of seeds

» First seed: maximum variance for pairwise distances

» Last seed: much less



Our contribution: a novel line of seeding methods

> Observations and fixes:

» Seeding methods use distances between points; ®k uses distances to centroids

» — look ahead and rank candidates using distances to centroids
induced by seeds

» Greedy seeding incurs a variance drop off along the choice of seeds

» — order the seeds being challenged for local search

1

rescaled

- MSLS-G (Z=k, p=2+log(K))
02

>pRef: Carriére and Cazals, 2025



On the number of cluster : the elbow criterion

Sum of squared distances

A

AN
\\‘\'\ -~

> Nb: cf also the scree plot for PCA: g(k) = >, Ai

> Exercise: use dynamic programming to fit a bilinear least square model — or
more generally a piecewise linear model with k pieces



Algorithms

Kmeans and co-clustering



Co-clustering

Original dataset
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https://scikit-learn.org/stable/auto_examples/bicluster/plot_
spectral_coclustering.html


https://scikit-learn.org/stable/auto_examples/bicluster/plot_spectral_coclustering.html
https://scikit-learn.org/stable/auto_examples/bicluster/plot_spectral_coclustering.html

k-means and 2-factor Non Negative Matrix Factorization
(NMTF)

> Data matrix approximation for clustering: approximate the n X p data matrix X:

X ~ GF ]
Dimension-wise:(n x p) : (n X K)(K x p), (8)
with
» Cluster indicator matrix G € RerK

» Centroids matrix F € RKXP — centroids of the clusters

> The relationship between k-means and NMTF is given by

Theorem 10 Orthogonal NMF, which solves

i X — GF||? h that GTG = |,
pomin | II£ such tha s ©)

is equivalent to k-means clustering.
> Benefit of using matrix factorization: ability to handle several decompositions

>Ref: Ding et al, Orthogonal nonnegative matrix tri-factorizations for
clustering, 2006



2-factor NMTEF: illustration

> Matrix approximation:

X ~ GF (10)
Dimension-wise:(n x p) : (n x K)(K x p) (11)
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Figure 3: Left: A 2D dataset of 38 data points. Ru.,hr Their H = (hy. hz) values are shown as blue and red
curves. Datapoints are ordered by regions {B, A,C, E, D}, where B = {zy,-- 215}, A = {246, - -+ , 230},
(&) {r31, 132}, E = {za3,1 b, D= {a ras}. ) H wvalues for pniuts in regions {C,E, D}
indicate they are fractionally gned to clu

NMF: illustration. From [?]. Nb: on this example, the orthogonality of matrix
G has not been enforced. This is soft rather than hard clustering.



Algorithms

Comparing clustering using meta-clusters



Comparing two clusterings using matchings between
clusters of clusters

F. Cazals, D. Mazauric, R. Tetley, and R. Watrigant
ACM Trans. Exp. Algorithms, 2019
https://sbl.inria.fr/doc/D_family_matching-user-manual.html
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https://sbl.inria.fr/doc/D_family_matching-user-manual.html

Merging clusters: a matter of scale

o

ey

(A) Two clusterings (kmeans++, Tomato, etc)  (B) Meta-clusters as union of clusters



Comparing clusterings: the Variation of Information

o A set Z of t items

e A clustering F of size r for Z: F = {Fy1,...,F:}; nk = |Fl;
Pk = nk/t.

e A clustering F of size r' for Z: F ={F,...,F};, n, = |F.|;
e Overlap between two clusters: p(k, k') = |Fx N F,/|/t.

e Entropy of clustering: H(F)=—>_,_,  p(k)Inp(k)

. . H(F)
e Mutual information between F and F’: -

(k k')
I(F,F") ZZp(k K') P

e Variation of information (VI):

VI(F,F'y = H(F)+ H(F') = 2I(F, F").

VI(F', F)
e Main properties:
» VI is a metric
> VI(F,F')<Int

DRef: M. Meila, Journal of Multivariate Analysis, 2007



Grouping clusters into metaclusters:
problem formalization in terms of intersection graph

> Goal: recovering some coherence between groups of clusters

P as a function of a scale parameter D

(a) A H

o
B
Fy Fl
. o0 .o
o0 " .' oo
o o .«
Clustering F Clustering F

> Rationale: many-to-many
> Aggregating many clusters, map to many clusters

» Characterize the scale at which clusters merge




Comparing clusterings: previous work

> 1-1 mapping of clusters: equivalent to the problem of computing a
maximum weighted matching in weighted bipartite graph.

> Solution: solved in O(n? log n + nm)

> Particular case of the D-family-matching problem for D = 1 — see later

By



Intersection graph

> Notations:
» Data: Z={z,...,2}
» Clustering F of sizer: F ={F,...,F}

FiCZ Fi#0and FFNFj=0forevery i,je{l,....r}, i #]j.

» Clustering F' of size r': F' ={F{,...,F,}

r

Fl CZ,F #0,and F;NF =0 foreveryi,je{l,...,r'},i #j.

NB: a clustering may not contain all t items

Definition 11 (Intersection graph G = (U, U’, E, w) for F and F’).
The set U = {u1,...,ur}: vertices of F

The set U’ = {u,...,u), }: vertices of F’

Edges E = {{u, uj} | FNF #0,1<i<r1<j<r'}

Edge weight of edge e = {u;, u} € E is we = |F; N F}|.



D-family matching

> Let D € N": a constraint on the diameter of certain subgraph of the
intersection graph

Definition 12. [D-family-matching for an intersection graph]
A family S = {S1,...,5«}, k > 1, such that

» forevery i,j € {1,....k}, ifi#j, then: SCV, S #0, SNS =0,

» and the graph G[S;] induced by the set of nodes S;
has diameter at most D.

> Comments:

» D = 1: matching

» D = 2: clusters as stars
> Notations:

> Set of all D-family matchings of a graph G: Sp(G)



D-family matching problem

> Score ®(S) of a D-family-matching S:

OS)=> > we (12)
e€E(GIS)

i=1
> Remarks:

» The sum runs over all edges of a connected component. (Later: see
algorithms based on spanning trees.)

» We wish to compute a D-family-matching which minimizes the
inconsistencies.

Definition 13 (D-family-matching problem). Let D € N*. Given
an intersection graph G, the D-family-matching problem consists in computing

(Opt score for a given D) ®p(G) = max_ d(S). (13)
5€5p(6)

NB: Score with the diameter D stressed: ®(S”=7)



Comparing clusterings: at which scale do clusters merge?

What is the right number of clusters?
> Example:
» Using k-means++ to cluster 5000 samples from five Gaussian blobs
» Using D-family matching to infer the right/natural # of clusters

(A) k-means++, k =20 (B) k-means++, k = 50
A - B) :
ik -
o A )

(C) D = 3, 17 meta clusters, ®p(G) = 406§D) D = 4 , 4 meta clusters, $p(G) = 5000



Algorithms

GMM: warmup



Gaussian Mixture Models

> Point set:  {x1,...,x,} C R

> Gaussian mixture model:

g(x) = Z wi N (X | uk,):k)),z we = 1. (14)

k=1,...,K

> Question: design a GMM fitting X
> Parameters: © = {ux, Tk k=1,...,K; @ =0 U{wih,k=1,...,K

Low separation Clear separation



From a data partition to the initial GMM

> Find representative centers:  k-means++

> Means2GMM algorithm:
1: procedure Means2GMM(X, u1, ..., k)

2: Partition Cy, ..., Ck Def assign each x; € X to its closest mean

3: //Build GMM components

4: for k < 1 to K do

5: e =1/1Cl Diec, x

6: wk = |Ci| / 1X]

T Tk =1/l Peeq, (x = ) (x — )"

8: If Xy is not positive definite, take T = 1/(d|Ck[) 3 cc, IIX — wil214)
9: If 4 is still not positive definite, take x = Iy

10: end for

11: end procedure
> Means2SphGMM: change the full anisotropic estimation of line 7 by the isotropic
estimation of line 8.

>Ref: Blomer et al, 2016



Algorithms

Fitting GMM with SOFT EM



The multivariate Gaussian
and the Mahalanobis distance

> The d-dimensional normal multivariate distribution:

N(x | 1,%) = o exp(—2 (x — 1) =1 (x — ). (15)

1
det(2r¥ 2

Definition 14. Given a probability distribution Q with mean p and positive
semi-definite covariance matrix X, the Mahalanobis distance is

d(, @) = \/(x — W)= x — )

du(x,y) =/ (x — ) =1 (x — )

> Mahalanobis distance as a Euclidean norm:
Assuming one can write ¥ ! = B~ TB~1:

du(v) = VvTB=TB=1y = /(B~1v) B~lv = ||[B71v|. (16)

>Ref: Kessy et al, Opt whitening and decorrelation, 2018



Whitening:
Transforming RV to orthogonality

> Whitening: transforming random variables to orthogonality

> Gaussian distribution:
Theorem 15. Let X ~ N (u,X). Define Z = B=1(X — ) with B defined below.
Then Z ~ N(0, 14).

> Proof sketch: 1. Decomposition of the covariance matrix Using the spectral
theorem:

¥ = PDPT = pDY/2(pp1/2)" 2

BBT. (17)
NB: expression for ¥ ~1:
Yy 1 =BR'y=I=>3s1'=B""Blorx /2 =B"1 (18)
2. Change of variables:
fz(z) = fx(x) | det(Jacobian) | .

>Ref: Kessy et al, Optimal whitening and decorrelation, The American
Statistician, 2018



The multivariate Gaussian: posterior

Consider a mixture of K Gaussians
g() = Y wiN(xi |, Zi)) ZWk =1 (19)

k=1,...,K

Given a point x, let us investigate the probability to have x generated by the
k-th component. To model, this process, consider K boolean latent variables,
with zx = 1 iff the k-th component generated x. From which we define:

{prior probability: N(x | p, Zk) (20)

posterior probability: v =P[zx =1 x]
Using Bayes’ rule, we obtain:

]P’[X‘Zk:l]]P’[Zk:l] _ WkN(X ‘ ,U,k,zk)
Pl B IS D

Y =Plzc = 1] x] =



Maximum Likelihood: problem

> Likelihood for the n samples:

Px|e]= [] sk (22)

i=1,...,n

> Associated log likelihood for the n samples:

LLX[O)=InN(X|©)= > (> wN(xi |, Ti))- (23)
i k

> Goal: maximize the likelihood.



Maximum Likelihood: solutions
> Maximization wrt to the p: derivative of the LL (Eq. 23) wrt the py yields

= YuZk(xi — ) =0 (24)
K

from which we get

_ 1 Cx
{Uk = N Zi YikXi» (25)

N =32, Vi
NB: py is a weighted center of mass, with weights equal to the posterior probabilities.

> Maximization wrt to the X:

Z Vi (i = ) (i — i) T (26)
> Maximization wrt to the mixing coefficients 7,: This is done using Lagrange
multipliers:

> IO w N | e Zi)) +AO ] wi — 1). (27)
i=1,...,n k k

and the calculation yields
wy = Ni/N. (28)

>Ref: Bishop, Patter recognition and machine learning, 2006



Log likelihood and Gaussians:

singularities - over-fitting

> Pb with singularities: assume that
» the covariance matrices satisfy ¥, = Uild.
» some sample point matches one mean, that is ux = x;, for some indices k and i.

We get the probability

1 1 1
N(X,' ‘ ,U,k,zk) = i (29)

= d
\/12mo21y| (2m)472 of

» This terms tends to infinity, and so does the LL.

» When fitting a GMM, if a components specializes to one point, its variances
goes to zero, and the LL goes to infinity. Thus, need to identify singular
components and process them accordingly.



Algorithms

Fitting GMM with HARD EM



Problem statement and hardness

> Goal: for a point cloud generated by a k-GMM: identify the generator of each
sample
Find: z* = (z)" € [k]" (30)

> General sampling model:

YJ:@;J* -‘rEj, with €j~N(0,Z}<) (31)
» Model 1: different centers @;‘_*; global covariance matrix *
J
» Model 2: different centers @:_*; different covariance matrices Zj’f
J

> NB: model 1 with ©* is known: applying whitening, problem converted into an
isotropic GMM via the transform T3 Y;

> Loss function: need to find the proper permutation of labels:
For any z,z* € [k]" : h(z,z*) min ! Z 1(¥(zj) # z") (32)
YEV n 5 J

>Ref: Chen and Zhang, NeurIPS 2024



Hardness via Signal to Noise Ratio

> Difficulty of clustering: separation between the Gaussians

> For isotropic Gaussians: Signal to Noise ratio using the Mahalanobis distance

1
SNR= mi Hz**é or o ‘ 33
aoli (o3 b) (33)
SN O, S
NB: A
¥* =0%ly=SNR=—, with A= min |0 —0O;|. (34)
(2 a,belk],a#b

> Non isotropic Gaussians: no closed form

et A
= \Q\\ NG =)
\ /

o=t NOE) R0, () R

G012 3 e

2 0 0 12 a4

>Ref: Chen and Zhang, NeurIPS 2024



EM with hard clustering

Algorithm 2: Adjusted Lloyd's Algorithm for Model 2.

Input: Data Y, number of clusters k, an initialization z'%/, number of iterations T'.
Output: =7

1 for

f=1,....,Tdo
Update the centers:

E_fC|Ji] Y): {z;" V= ”} \
7= , Yae
ZJC[“]][{:J =“}
Update the covariance matrifes:
(Y —H::;) Y _9‘[:1,1 ‘T][ :[t 1) —a
JE[m]IVD 7 f]
e .
E.}C[H] H{”J - u}

Update the cluster assignment vector:

(t) _
ba =

5 =

Ya € [k].

24 = argmin(¥; — 8°)T(S1) 7 (¥; - 08) + log SV, ¥ € [n].

ac[k]

(12)

(13)

(14)

>Ref :

Chen and Zhang, NeurIPS 2024



Consistent clustering and minimax lower bounds
Performing best in the worst case

Theorem 2.1. Under the assumption —ax

1} J,
7 00 we have

. SNR?
— inf sup Eh(Z,z") = cxp(—(l +o(1)) ) . (6)
5 P e 8
o
§ If SNR = O(1) instead, we have inf: sup._. o (2, 2") = ¢ for some constant ¢ = (.
Theorem 3.1. Assume d = Q1) and max, pepp) Aa(E5)/ A (X)) = O(1). Under the assumption
7% —» 00, we have
 SNR'Z
~ inf sup ER(Zz") Zexp| —(14+0(l))— | .
- 2 oaeglk]n 8
3 R
o
=

IfSNR' = O(1) instead, we have inf : SUP,- ¢ g Eh(z,2") = e for some constant ¢ = (.
> Comments:
» Parameter space only for z*; centers and covariances are fixed

> If k is fixed: SNR — oo is a sufficient condition for consistent clustering
>Ref:

Chen and Zhang, NeurIPS 2024



Algorithms

PART 1:  Kmeans and EM
PART 2:  Fitting complex mixtures in flat torii



Algorithms

Model selection: warmup



Model selection: goal and notations

> Goal: given a set of iid observations, select a model that
> fits/explains the data,

» and/or possibly predicts new outcomes — generative model

> Notations:
> ©: some space defining a statistical model with d-dimensional parameters
> Prior on the parameters: h(6),0 € ©

> x(": a sequence of n iid observations of some unknown random variable X.
Abusing notations: denoted x

> log f(x;0) the log likelihood of data with respect to a statistical model /
hypothesis

> Example / Bernoulli: with n coin tosses x = {x1,...,xn} and k Head, estimate p
to get Head:

f(x;0) = (:) 0%(1 — 0)"*;log f(x;0) = C + klog 0 + (n— k) log(1— 8)  (35)

= maxg log f(x; 0) yields 6 = k/n.

https://en.wikipedia.org/wiki/Model_selection


https://en.wikipedia.org/wiki/Model_selection

Model selection: classical strategies

> Maximum likelihood estimator Oy :

éMLE = arg meax log P [x]6] .

» No a priori on the statistical model, model complexity ignored

> Maximum a Posteriori Oyap:

P[x|6]1P [0
arg max P [0|x] = arg max M
6 0 Phd
> uses a prior belief on §; ignores P [x]
> Bayesian: also using a prior on 6, estimate the full posterior

PLxlo1P L]

P[0|x] = P[]

> Difficulty: computing P [x] = [, P[x|6] dP[6]

> NB: posterior = likelihood X prior / evidence

> Minimum Description/Message Length: likelihood + model complexity = of
interest for mixtures

(36)

(37)

(38)



(Univariate) Fisher information - definition

> Goal: assess the overall sensitivity of a statistical model to its param. 6

Definition 16. (Unit Fisher information)

Iy {er?{[jg log f(x|0)]?pe (x)(discrete)

39
4 Jog f(x]|0)]2F(x | 6)dx(continuous (39)
xldo
> Example: Bernoulli / coin toss with parameter 0 : Iy = 9(1179)
— a0
N
_>< 25
c
-“% 20
©
E 15 I
S
R=N ]
]
£ 5
@
w o
0.0 0s 1.0

Parameter 6

> NB: for niid trials: Ixn.g = nly

>Ref: Ly et al, J. of Mathematical Psychology, 2017



Fisher matrix: multivariate case

Definition 17. Matrix

lg = (IU(Q)) R (40)
with in L
0) = B | S| (41)

> NB: Fisher's matrix is positive semidefinite.



Priors and Jeffreys' prior

> Uniform prior: assigns the same probability to every model set of the same volume
> Caveats:
» Without having seen any datum: any region in model space equally likely

» Posterior is not invariant by reparameterization of the model — see Example
below

> One substitute:
Definition 18. (Jeffreys’ prior)
£)(0) = @ with V:/\/Eda. (42)
6

> Example: Jeffreys’ prior for the Bernoulli experiment: g;(6) = ﬁ
= —



Model selection and priors: illustration (1)

» Bernoulli experiments with npeads = 7 out of 10 tosses:
f(xgbs) = 07 (1 — 0)°

» Posterior associated with the uniform prior

P [9]x"] = 1320  07(1 — 6)° (43)

Uniform prior on # Posterior # from 6 ~ U[0,1]
-

25

Za

i /’%\

Propensity ¢ Propensity 8 ]

Fi6 3. Buyesian updating based on observations &7y with yobe = T heads out of n = 10 tosses.
In the left panel, the uniform prior distribution ssigns equal probability to every possible
value of the coin’s propensity 8. In the vight panel, the posterior distribution is o compromise
between the prior and the observed duta.

>Ref: Ly et al, J. of Mathematical Psychology, 2017



Model selection and priors: example (I1)

> Reparameterization: propensity 6
assuming the coin is bent with angle ¢

0= h(6); +5(5)

i T
o
> Densities in param. space and posteriors:
~ Uniform prior on ¢ Posterior ¢ from ¢ ~ U[-m, 7]
£ 10 \
] / B \
T Angles ’ Angle 6
Ky 3
Prior 6 from ¢ ~ U[-,7] Posterior 8 from ¢ ~ U7, 7]
N |
. “\ Il
2. | I
] il Yotro =7 |
8- J Haba 1, J
. T 7
Propensity ¢ Propensity 6

= Posterior very different from that with the uniform prior

>Ref: Ly et al, J. of Mathematical Psychology, 2017



Model selection and priors: example (1)

> Using Jeffrey’s prior on ¢ or 0 yield the same posterior

3¢
- % 44
8J (¢) 71_ \/m ( )
1
0) = ———. 45
80)= (45)
Jeffreys's prior on ¢ Jeffreys's posterior on ¢

N
|n| ‘

£ Yobs =7
Al | = /\
o J n=10
a s
e &7 —_— \
o 7 H : 3 H
Angle ¢ Angle ¢
RLT R Rt R?
Jeffreys’s prior on 8 Jeffreys’s posterior on @
.l |
a || i
é : K Yobs =7
! - n=10 /
' _
e ok os  as 1o o\n IR RV
Propensity ¢ Propensity ¢

>Ref: Ly et al, J. of Mathematical Psychology, 2017



Model selection and priors: example (V)

Distribution in model space M
> Model encoding and model space: my = [P[0],P[1]] vs my = [24/P[0],2/P[1]]

o0 os w15 2 ao o5 1o 15 20
P(X=0) m(X=0)

NB: latter representation preferred since all models have the length

> Distribution of models in M using the 6 and ¢ parameterization—spacings 0.1:

20 20

> Uniform distribution in model space:

V:/Mg 1dm9(X):/e\/Ed0. (46)

>Ref: Bickel et al, Efficient and adaptive estim. for semiparametric
models, J. Hopkins Univ. Press, 1993



Fisher's info: two expressions
> NB: Likelihood: L= L(x|6)=f(x]0); [, Ldx=1.

Lemma 19. Under suitable conditions — see Amari et al:

dlnL A?In L
2
lp=Ex |( 2| = —Ex : (47)
00 00
> Proof sketch:
First note the following:
dinL, dlL1aL
- - (48)
06 o060 L oo
8 dlnL 8InL  dLdInL
—(L )=1L — (49)
o6 o6 862 86 06
Then — subscript X' omitted in expectations:
]E{(alnL)z] /L(BInL)zd alnLaLd ith Eq.(48) (50)
= Ix = —dx — witl .
20 o6 260 00 q
8 dhnlL 8InL 8 ainL InL
= [ =@ - dx=— [ L——dx —E (51)
0 6 962 o6 06 962
8 oL 8% L 82 %L
=— | —dx—E =— [ Ldx—E (52)
06 J 06 962 902 962
3InL )
=0—-E — since /de =1 (53)
962 p

>Ref: Amari and Nagaoka, Methods of Information Geometry.
Press, 2000

Oxford Univ.



Invariance of the posterior using Jeffreys' prior

eGeneric expression of the posterior pdf using Bayes' rule and Lemma 19:

dlnL

P10 x] = Plx | 0]8)(0)  L(x | 0) | =ty e |5

[82InL

- 2| e

ePosterior: pdf using new parameter 1 and dependency 6(n)

Pl |1 = P0G} | x| 5 | = Lix | 0()y [ g;;) FINC)

dl L 09
= L(x|0(n . (56)
0(n) dr/
ePosterior: direct calculation using the parameter 1 and the function 6(n
dlnlL dlnL 06
Pl |61 = Lix |y & (T = Lox Ly 2 —)2] (57)
00 on



Model selection strategies
> Comparing various models 0;: components Iy
» Goodness of fit via MLE estimate
» Dimension i.e. number of free parameters

» Geometric complexity: volume of model space

> Main strategies
> Akaike information criterion (AIC)
> Bayesian information criterion (BIC)

» Fisher information approximation (FIAT)

AIC = —2|ogf( Xope | 8 (x obs))+2d
BIC = —2log fi(x Obs‘|6( Obs‘))—i—djlogn

d; n
FIAT = log £ (x| 6;(x\7))  + EJ log — +|og(/ V/det lpd6;)
(S]
>Ref: Griinwald, The minimum description length principle, MIT press,

2007
>Ref: Ly et al, J. of Mathematical Psychology, 2017



Algorithms

Modeling joint distribution on flat torii



Side chains and rotamers
> The x angles of Histidine:

Rotameric / discrete Non rotameric



Backbone dependent y angles

> Example, HIS: (¢, %,x1,x2)

x Psi / MIC : 0.436737 HIS : Phi x Chil / MIC : 0.213861

Psi

Chil

BN

Chil
Chi2

> Limitations of these distributions:
|
| S



Phisical — ¢xal: mixture of von Mises

> Goal: per amino-acid, model the joint density (&, %, X1,---,Xn)
NB: X = (x1,...,xq) with x; € [0,27); that is, X is a point on the flat torus T¢.

> Mixture model

» Mixture component: product of univariate von Mises

fo,(X) = H eXpNiCOS(Xi*Hi)_ (58)
i=1,...,d

> Mixture model: F(X) =32,  pywife,(X)
» Num. parameters: num components: 1; params of the components: M(1 + 2d).

HIS : Phi x Psi / MIC : 0.436737
3

> Question: provide two limitations of
these distributions

>
>

T e
>Ref: Konagurthy et al, Bioinformatics 39, 2023



Example 1: rotameric side chain — MET
Projection into (1, X2, x3) and comparison against Dunbrack’s lib.

Mixture model Dunbrack Rotamer Library

(@

I Evmto durbuton [ Curboac oarras Ly . Workars ekl

Angls idegrees)
Methionine (MET)

>Ref: Konagurthy et al, Bioinformatics 39, 2023

N



Example 2: non rotameric side chain — GLN

Projection into (1, X2, x3) and comparison against Dunbrack’s lib.

Mixiura modal Dunbeack Ratamer Library

(b)

Empirieal data

om0 anzn
™
™
s
, onts
£ om
2
Eoos 1 i
om
anen
ams
o am b m m m ; am a0 0w m
iy Xy
i  — | e n W o
Angle idegraes)
Glutamine (GLN)

>Ref: Konagurthy et al, Bioinformatics 39, 2023
1PN G4
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Phisical: overview

Table 2. Quanititative comparisen between the ML-inferred mixure modsl (A} and thet of the Dunbrack ratamer library (32,0

MML mixture model | M) message Dunbrack rotamer library [T Null model
Tength statistics in bits (rounded) message length statistics in bits (rounded) (raw) i bits
(aa) NO (M= First par Smmﬂ Total (1D bl First part Second
(LG feomplexity) (eomplexi #Params) {complexity) «
(rn + fit) (fit)
LEU (m 1484) 34540650 34,547,667 46,109408
ALA 4) 14,848,361 N
VAL 26,750,651
GLY NiA
GLU
SER
ILE
ASP u'o 1529)
THR (90; 629) .
Lvs (266; 3457 (104,976; 943 488)
ARG (250, (104,976; 943,488
TRO 231
ASN (150; 17855829 17,862,
PHE (226; 2 15950396 15,959,961 X
GIN (239; 2 18,921,120 18,931,988 18417683 25323563 308
TYR 182, 13,596,728 13,604,557 2248951 19,4515 247
HIS (163; GA02501 9809028 4373651 11419682 12725125 247
MET @ 4212664 11,504,102 308
TRP 212, 174 | 4062397 6,659,922 5 247
cys (96;671) 3946457 133 (885 10,368 190,183 5,015,548 176 5489018 183
For each of the 20 nasurally oxcursing amino ives the i of heinput st 1) o which the somparison i bsed. LU gives the marmbe of conmponnt of the minture model, and |A“] sivesthe
amber of parameters across all el 102 i of all by the Dumbrack whezeas #Pararms gives
| nunber of paramsess inplit im hai bhrary. p\s.nxcshmhmvdl.l: the ety o part ength in b, ity w..mupm length i bl Jndﬂwrl Somberof
o g ach of e modkly 31 N Finall th of staring the

i acih o it have side chsin clbeelal
Hence for ALA

e Ko the S e ml.n.mnuu.mu;l“m (Gl
angles. While we made] the josnt u.mm..m,mu dhheds: .mm.ng b ont, amtch o o e o omly provide

Tibeary estimates are necessarily

the backha

>Ref: Konagurthy et al, Bioinformatics 39, 2023



¢pxal: method and limitations

> Methods for fitting mixtures:
» Dirichlet processes
» EM + regularization (AIC, BIC)
» Minimum Message Length / Minimum Description Length

> From coding theory: turn the proba. P[0, x] = P[0] P [x|6] into a message length
ml(0,x) = — log, P[0] — log, P [x]6] . (59)
—_——— ———

Model Data/ likelihood

sunt

!

‘ pan—

ponent parameters

>Ref: A. Dempster, N. Laird, D.
Rubin, ML from incomplete data
via the EM algorithm, J. Royal
Stat. Society, 1977

DRef: P. Griinwald, The minimum
description length principle,
MIT, 2007

s
(e
A

>Ref: Konagurthy et al, Bioinformatics 39, 2023



Designing complex mixtures: fundamental questions

> Classical mixture components in R9:
» product of d univariate functions — cf Phisical

» fully dimensional function — von Mises / Gaussian

> Questions:
» Clusters: which dimension / which shape ?
» Mixture components: which functional form ?

» Cluster versus mixture components: coherence ?

HIS : Phi x Psi




Fréchet mean and p-mean on the unit circle

> Authors:
» Frédéric Cazals
» Timothée O'Donnell



Data centering on S*: p-mean and Fréchet mean
> Input
» n (rational) angles ©¢ = {6i}i=1,....n
> Associated non-negative weights: {w;}i=1,.. »

> Circular distance

d(0,0;) =min(| 0 — 0; |,2m— |0 — 0, |) (60)
> p-mean functional, for an integer p > 1
Fe(0) = > wifi(0), with £i(0) = d”(0,0,). (61)
i=1,..., n

> p-mean — Fréchet mean for p = 2

0" = arg  min | Fp(0). (62)




Algorithms

The Minimum Message Length approach to model selection



Estimation and inference by

h . . » C. Wallace and P. Freeman,
CO.m.paCt COdIng' Quadratlc Estimation and inference by
Mimimum Message Length compact coding, J. of the Royal
TN

Statistical Society Series B, 1987

» C. Wallace, Statistical and
inductive inference by minimum
message length, Springer, 2005.

» P. Griinwald, The mnimum
Description length principle,
MIT press, 2007.

“In order to understand the world, we must first understand how information is
transmitted and received.” Claude Shannon

ApresT 15/04/2024, Frederic.Cazals@inria.fr



Model selection: coding with the Minimum Message
Length
The 1d case
Consider the joint probability:
P[0, x] = P[0]P[x|6] (63)
In coding theory, that yields a message length
ml(0,x) = —log, P [0] — log, P [x|6] . (64)
N — N ———
Model Data/ likelihood

> (Strict) Minimum Message Length: a two-step selection process in tandem:

> Constraint: quantized parameter set © = {f;,j =1,...}.
w(0;): the width of the interval associated to 6;

» Alice, statistician, chooses: the generic model, w(-), the model V=X
| 7 ¢

\ €
-

-
s =w(0)

» Bob, coding specialist: choses f nearest to 0’, encodes, and sends the msg



MML strategy: cont'd

> Hypothesis 1: given a prior h(), total probability for the interval
[0 — w(0)/2,6 + w(6)/2]
P [91] ~ w(0;)h(0;) (65)
NB: ZJ]P’ [HAJ] may not add up to one ... but worse approximations ahead !
> Msg length for model + likelihood:
h(x) = — log(w(8;)h(8;)) — log f(x; 6;) . (66)

Model Likelihood

> Challenge to minimize l1(x):  Alice must design the spacings w(-) — without the
knowledge of x, and choose 0’ that will get converted to o by Bob to send the msg



Quadratic MML: Alice chooses the spacing w(-) ()

0 p
> Hypothesis 2 on the spacings w(-): €

52@—0’§:|:W(9’)/2 -

Hypothesis on the moments of f in this interval

E [é - o’] =0E [(é - 9')2] = /_v:v(;))/; W(lel)x2dx —w(0')?/12.  (67)

> Msg length /1:  Taylor expansion of log f(x; é) atf=¢"

h(x) = — log(w()h(d)) — log f(x; 0) (68)
~ —log(w(0')h(6")) (69)

/ ) / 0 / 14 7\2 82 /
—log f(x;0") — (6 — 0") - log £(x;0") — - (6 — 0")" —> log f(x;0") (70)

00’ 2 o0



Quadratic MML: Alice chooses the spacing w(-) (I1)

Taking expections with respect to the quantization — shorthand s = w(6’) :

Ec [é - 0’] =0,E, [(é - 0’)2] =s2/12

yields
, 02
Ec [h(x)] = — log(sh(6")) — log f(x;0") — is 2072 log f(x; 6") (71)
Which is minimized by setting
2 =w(0')? = 12/[ 5 log £(x; 0')] (72)
> Corresponding msg length:
, 1 , 1
Il(x):—logh(ﬂ)—i—ilo —|ogf(x;9)+§. (73)
Model Data

Definition 20. The MML estimate is the value of 6’ minimizing Eq. (73)

> Problem:  w(-) is choosen in advanced by Alice — without the knowledge of x =
previous def. is useless in practice



Fisher information

> Fisher information: expectation of the 2nd derivative

82
F(0',x) = 207 log f(x;6'), (74)
lp = —Exg [F(0,%)] - (75)

= acts a condition number: sensitivity of the model f when the parameter 6 changes.
> Final msg length: using § chosen via spacing function with w(8) = 1/12/Iy

h(6') LX)
m] + [~ log f(x;0")] + [27} (76)

h(x) = [~ log I

» volume/proba of the region > ¢’
> data encoding i.e. likelihood

> penalty due to the replacement of 6’ by 0
NB: last term can be taken constant if F(0’,x)/lys is upper bounded.



Possible caveats: assumptions on the quadratic MML

> ¥x € X, the function f(x; 0) has approx. quadratic dependence on 6 near
its maximum — cf Taylor expansion.

» The space © has a locally Euclidean metric for the nearest rounding
process to make sense.

» The Fisher information Iy is defined everywhere

» The prior and lp vary little over distances in © of the order 1/+/Ip



Coding and Gersho's conjecture

> Coding a point using a lattice: replace x by the center of mass of the lattice
Voronoi cell

The following quantities are of interest—with P a
congruent Voronoi polytope:

> Volume of P: Volume(P) = [, dx

Square lattice

» The second moment with respect to the centroid
of P: U(P) = [, |Ix — %||* dx, with % the centroid
of P.

» The normalized / expected second moment:

I(P) = U(p)/Volume(P).
Define:

1 1(P) 1 fplx—=IPdx
" d Volume(P)?/d ~ d Volume(P)l+2/d

q(P)

(77)

> Conjecture: < For the distorsion minimizing encoder,
the regions are congruent to the polytope P of a
lattice:>

qq = min (P). (78)
>Ref: Gersho, IEEE Trans. Info. Theory, 1979
>Ref: Conway - Sloane, IEEE Trans. Info. Theory, 1982



Quadratic MML: the general case

> Param: vector 0 = (61, ...,04)"

> Model term, P[0]: obtained by multiplying the volume of the uncertainty
region in which 6 is centered, with the probability (assumed to be constant) in

that region.
q—d/2
P[0] = V x h(f), with V = 4 79
(0] (9) N (79)
The MML becomes:
h(0) Il . d
h(8,x) = —log(—-= \/T ) —log f(X;0) + 2 (80)
N ——
Model Data

> Data term: the negative log likelihood, penalized by the complex cost.

>Ref: Wallace and Freeman, Estimation and inference by compact coding,
J. of the Royal Statistical Society Series B, 1987



Application: designing mixtures in flat torii

> (¢, 1)) torsion angles in proteins:
HIS : Phi x Psi
B
2 .
fs > Contenders under scrutiny:
1
> (Dis
5 o

> Improved versions of EM

> Mixtures using multivariate
B e Gaussians / von Mises
Lo — distributions

Phi

Modeling the density of ¢y xal:

couplings illustrated on (¢, ) for

HIS.
>Ref: ¢1xal, Bioinformatics, 2023
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