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Computational Structural Biology

▷ Goals: unveil the structure-dynamics-function conundrum for
biomolecules (proteins and nucleic acids)

▷ Methods: biophysics (crystallography, NMR, cryo-microscopy) + modeling

▷ Nobel prizes related to molecular/structural biology – as of 01/2025: 82 1

▶ Chemistry or Physiology-medicine: structures and mechanisms
▶ Chemistry or Physics: methods

▶ Chemistry: modeling

▶ 2013: Levitt, Karplus, Warshel for the development of
multiscale models for complex chemical systems

▶ 2024: D. Baker: For computational protein design; D.
Hassabie and J. Jumper: For protein structure prediction

▷ An extraordinary field
▶ Technology driven: novel biophysical experiments,
▶ Raises open mathematical / computational questions,
▶ Reveals the molecular foundations of biology and medicine.

1
https://pdb101.rcsb.org/learn/flyers-posters-and-other-resources/other-resource/

structural-biology-and-nobel-prizes

https://pdb101.rcsb.org/learn/flyers-posters-and-other-resources/other-resource/structural-biology-and-nobel-prizes
https://pdb101.rcsb.org/learn/flyers-posters-and-other-resources/other-resource/structural-biology-and-nobel-prizes


Challenge Structure of proteins: specification
▷ Input: sequences from genome sequencing projects

▷ Output: plausible structures i.e. atomic coordinates {(xi , yi , zi )}
Experiment
Prediction

Alphafold

▷ Protein sequences versus structures: numbers
▶ Num. sequences: UniProtKB/TrEMBL: ∼ 2.5 × 108; UniProtKB/Swiss-Prot:

∼ 6 × 105

▶ Num. structures in the Protein Data Bank: ∼ 2.3 × 105 structures

▷ Recent & notable: the Deepmind combined approach (DL, optimization)
▶ Bias towards well folded structure – no disorder (IDP)
▶ Structure only – neither thermodynamics nor kinetics
▶ Predicting is not explaining



Alphafold by Deepmind
▷ Successes

Experiment
Prediction

Alphafold

▷ . . . and failures

▷ Distribution of confidence value (pLDDT ∈ [0, 1]) per entire genome

AF-Q8NEL0-F1

AF-Q8IWJ2-F1

AF-P0DJD3-F1

AF-Q9H1Q7-F1 AF-O95219-F1 AF-P57730-F1-v4

▶ Structure only, no dynamics
▶ Biases towards well folded structures ... !!! flexible/disordered regions!!!
▶ Predicting is not explaining

▷Ref: Jumper et al, Nature, 2021
▷Ref: (Cazals and Sarti, 2025)



Challenge Dynamics of proteins: specification
Youtube
▷ Input: structure(s) of biomolecules + potential energy model

▷ Output
▶ Thermodynamics: meta-stable states and observables
▶ Kinetics: transition rates, Markov state models

▷ Time-scales
▶ Biological time-scale > millisecond
▶ Integration time step in molecular dynamics: ∆t ∼ 10−15s

▶ 162 amino
acids, > 2000
atoms

▶ 5.058ms of
simulation time

▶ ∼ 230 GPU
years on
NVIDIA
GeForce GTX
980 processor

▷Ref: Chodera et al, eLife, 2019

https://www.youtube.com/watch?v=IDLEi-M8Aow


Challenge Molecular machines–structure and dynamics:
specification

▷ Molecular machines: assemblies with tens / hundreds of subunits

▷ Input
▶ cryo-electron microscopy (cryo-EM) maps of whole assemblies
▶ crystal structures of subunits
▶ other data: native mass spectrometry data, . . .

▷ Output: structure(s) + mechanism(s)

▷ Polymerase of E. coli:
structure+dynamics

▷ Polymerase of influenza:
structure

▷Ref: Scheres et al, Elife, 2015; ▷Ref: Cusak et al, Nature, 2015



Cryo-electron microscopy: the microscope

▷ Titan Krios: boosting the resolution revolution
▶ Space: near atomic resolution for most samples
▶ Time: from images to thermodynamics and dynamics

▷ Approximate running costs:
▶ Cost: 5 Me
▶ Data acquisition: 2.5ke/day
▶ One dedicated engineer

▷ A problematic situation in France (numbers to be confirmed):
▶ France: 1 in Strasbourg, 1 in Grenoble, 1 at Soleil
▶ UK, Germany: > 25 each
▶ Cryo-microscopy lab of NY city: > 6



Hall of fame: more than 20 structural biology-related Nobel Prizes in 50 years

▶ (1962, chemistry) J. Kendrew and M. Perutz, for their studies of the structures
of globular proteins

▶ (1962, medicine) F. Crick, J. Watson and M. Wilkins, for their discoveries
concerning the molecular structure of nucleic acids and its significance for
information transfer in living material

▶ (1972, chemistry) Anfinsen, for his work on ribonuclease, especially concerning
the connection between the amino acid sequence and the biologically active
conformation

▶ (2002, chemistry) K. Wutricht and J. Fenn, for the development of methods for
identification and structure analyses of biological macromolecules

▶ (2006, chemistry) R. Kornberg, for his studies of the molecular basis of
eukaryotic transcription

▶ (2009, chemistry) V. Ramakrishnan, T. Steitz, A. Yonath, for studies of the
structure and function of the ribosome

▶ (2013, chemistry) M. Karplus, M. Levitt, A. Warshell, for the development of
multiscale models for complex chemical systems

▶ (2017, chemistry) F. Dubochet, J. Frank and R. Henderson, for developing
cryo-electron microscopy to identify high-resolution structure of biomolecules in
solution

▶ (2024, chemistry) D. Baker for For computational protein design, and D.
Hassabie and J. Jumper for For protein structure prediction



Methods: molecular simulation



2024 Nobel prize in Chemistry

▶ D. Baker: For computational protein design
▶ D. Hassabie and J. Jumper: For protein structure prediction
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What is a protein?
▷ Primary structure: sequence of amino acids

▷ Polypeptide chain

▷ Heterodimeric protein

▷ Protein - protein complex

▷ Nb: median number of a.a. in a chain: ∼ 450



Amino acids and the peptide bond
▷ Natural amino acids and their side chains
Nb: 0 to 10 heavy atoms per side chain

▷ Peptide bond synthesis:
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Geometric models: Cartesian and internal coordinates
▷ Cartesian versus internal coordinates: {xiyizi}i versus {dij , θijk , σijkl}

▷ Bond length and valence angle
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▶ bivariate distribution for (ϕ, ψ)

▷ Side chain: 20 natural amino acids
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The Ramachandran diagrams
▷ Ramachandran diagrams and populated regions
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▶ Main regions: αL, αR, βS , βP

▶ Three prototypical diagrams

▶ Glycine – no side chain/chiral Cα

▶ Proline – side chain cycles on N
▶ Others – with Cβ and chiral Cα

▷ Distance constraints and the Ramachandran tetrahedron
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▷Ref: Stereochemistry of polypeptide chain configurations, JMB, 1963;
Ramachandran et al
▷Ref: Revisiting the Ramachandran plot, Protein Science, 2003; Ho et al
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Structure resolution:
X ray crystallography, NMR, cryo-electron microscopy

Crystallography

NMR

Cryo electron microscopy

Note: resolutions between 1 and 15 Å



X ray crystallography

▷ (Selenium) crystals

▷ X ray diffraction

▷ Protein crystals

▷ Diffraction pattern



Proteins and NMR

▷ One typically finds several types of regions within proteins:
▶ well structured regions,
▶ unstructured regions – see Fig.
▶ regions undergoing conformational changes under selected conditions.

Flexibility of biomolecules:
illustration. Structure of the
Antennapedia homeodomain
solved by NMR. Superimpositon
of 20 conformations of the
backbone. The tight packing of
the regions 7-59 indicates that
this region is stable, while the
two ends are disordered. From
the Nobel lecture of K. Wütricht.

▷ The dynamical properties are typically related to the functions of proteins.
▷ They depend on the conditions: pH, ionic strength.



The Protein Data Bank

▷ Structures in the PDB: origin and molecular type

▷ Growth of the PDB

▷ To learn more: PDB 101 https://pdb101.rcsb.org/

https://pdb101.rcsb.org/


A typical PDB file

▷ Geometry information: n atoms yield 3n Cartesian coordinates . . . and
3n − 6 degrees of freedom

▷ Other pieces of information: organism, molecules / sequences (and their
engineering), crystal resolution and symmetry group, secondary structures,
disulfide bonds.



PDB files: pitfalls

▷ Focus on files from X ray crystallography:
▶ Crystal structures: a confined environment
▶ Asymetric unit versus biological unit
▶ Extra atoms/molecules: water, chemical, co-factors, etc
▶ Missing atoms: H systematically, heavy atoms . . . often
▶ Alternate locations – if several conformations
▶ Atoms retain dynamics encoded in B factors
▶ Resolution and precision on coordinates – a complex problem

▷ To learn more:
https://pdb101.rcsb.org/learn/
guide-to-understanding-pdb-data/
methods-for-determining-structure

https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/methods-for-determining-structure
https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/methods-for-determining-structure
https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/methods-for-determining-structure


Visualization systems

▷ Main systems
▶ Visual Molecular Dynamics
▶ Pymol
▶ Chimera
▶ . . .

▷ Demo



Databases of protein sequences
▷ (Reviewed) UniProtKB/Swiss-Prot – since 1986:

▶ Refs: https://www.uniprot.org/,
https://www.uniprot.org/help/manual_curation

▶ High quality manually annotated and non-redundant protein sequence database,
▶ Contains: experimental results, computed features and scientific conclusions
▶ Size – Dec. 2024: ∼ 600k sequences

▷ (Unreviewed) UniProtKB/TrEMBL – since 1996:
▶ Enriched from genome sequencing projects
▶ Computationally analyzed records + automatic annotation and classification
▶ Size – Dec. 2024: ∼ 250M sequences

▷ Removing redundancy: the UniRef databases UniRef100, UniRef90, UniRef50
▶ https://www.uniprot.org/help/uniref

▶ Clustering homologous sequences across organisms

▷ Gene Ontology:
▶ https://geneontology.org/

▶ Annotations on the function of the genes and gene products

https://www.uniprot.org/
https://www.uniprot.org/help/manual_curation
https://www.uniprot.org/help/uniref
https://geneontology.org/


Databases of protein models: AlphaFold-DB
https://alphafold.ebi.ac.uk/

▷ Goal: provided AlphaFold predictions for all known sequences

▷ Ambition: to be expanded to cover most of the (over 100 million) representative
sequences from the UniRef90 data set.

AF-Q8NEL0-F1

AF-Q8IWJ2-F1

AF-P0DJD3-F1

AF-Q9H1Q7-F1 AF-O95219-F1 AF-P57730-F1-v4

▷Ref: Varadi et al, NAR, 2021
▷Ref: Cazals and Sarti, 2025

https://alphafold.ebi.ac.uk/
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The potential energy of (bio-)molecules: force fields
▷ The 3n − 6 degrees of freedom of a molecule:

d θ

– types for atoms (element, bonds)
– covalent: bond lengths, angles
– non covalent: pairwise distances
– solvent model

▷ Potential energy: non linear function

Vtotal = Vbond + Vangle + (Vproper + Vimproper) + (Vvdw + Velectro) (1)

Vbond: bonds
Vangle: covalent angles
Vproper: proper dihedrals

Vimproper: improper dihedrals
Vvdw: van der Walls
Velectro: electrostatics

▷ Examples:
▶ AMBER: Su = (73, 133, 112, 3, 14, 758)

1093 unique parameters
▶ CHARMM: Su = (85, 152, 209, 13, 33, 1)

493 unique parameters
▶ MARTINI: Su = (16, 4, 0, 2, 21, 3)

46 unique parameters



Force field from molecular mechanics: example

▷ BLN69 model protein: three types of Beads: hydrophobic(B), hydrophylic(L) and
neutral(N).

▷ Dimension of conformation space: 3x69=207 cartesian coordinates

▷ Force field / potential energy:

VBLN =
1
2
· Kr

N−1∑
i=1

(Ri,i+1 − Re)
2 +

1
2
K0

N−2∑
i=1

(θi − θe)
2

+ ϵ ·
N−3∑
i=1

[Ai (1 + cosϕi ) + Bi (1 + 3 cosϕi )]

+ 4ϵ
N−2∑
i=1

N∑
j=i+2

·Cij [(
σ

Ri,j
)12 − Dij (

σ

Ri,j
)6]

▷ Rmk. Model has been studied in detail, and 1/2 million of local minima have been
reported.

▷Ref: Oaklet and Wales 2011; Cazals et al 2016



Softness of Internal coordinates –force constants from CHARMM 36

Bonds: δdij ∼ .2Å : ∆V ∼ 20kcal/mol Valence angles: δθij ∼ 10◦ : ∆V ∼ 20kcal/mol

Torsion angles:∆V ∼ 3 − 4kcal/mol

Dihedral angles:
▶ are indeed soft coordinates,

but. . .
▶ long range steric clashes,
▶ yield complicated inverse

problems. for loop closure



Potential of Mean Force:
potential energy vs free energy

▷ Rationale: decouple the slow and fast dof of a system. Example: solvated
protein:

▶ slow dof: protein
▶ fast dof: solvent molecules

▷ How to: replace the overall potential energy by an average, computed over
the fast dof

▷ PMF definition:

exp(−βPMF (x1, . . . , xn)) ∝
∫
exp(−βV (x1, . . . , xd))dx

n+1,...,d

ρunif.(x1,...,xn)
(2)

Nb: in this equation, ρunif. stand for the uniform distribution on the slow dof,
which naturally depends on the nature of these parameters – cartesian or
internal coordinates.



Potential energy landscapes: illustration

▷ Potential energy map: vacuum (PE) versus solvated (PMF):

▷ Corresponding Boltzmann-weighted probability maps:

Solvent stabilizes many
more conformers–hydrogen
bonding.

▷Ref: Petitt, Karplus, Chem. Phys. Lett., 121, 1985



Designing force fields
▷ A regression problem: predicting a response variable (potential energy) using
descriptors of the system.

▷ Number of parameters to be fitted: 500-1000.

▷ Strategy: optimizing the various parameters to replicate physical properties
of small organic molecules

▶ heat capacity, density, viscosity, T for state changes, surface tension, etc.

▷ Avoiding over-fitting: classical machine learning techniques are used,
including cross-validation, Bayesian models, etc

▷Ref: Horta et al, JCTC, 2016
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PEL and Levinthal’s paradox

▷ The Levinthal paradox: the exponential (infinite) number of conformations a
protein can adopt is incompatible with its exhaustive exploration of the
conformational space. Indeed, proteins work on observable time scales?

▷ Anfinsen’s dogma: the global (free) energy minimum is encoded in the
sequence, and is kinetically accessible.
Anfinsen: 1972, Nobel prize in chemistry.

Funneled PEL which makes it easy to find the global minimum



The Folding Problem: intrinsic difficulty

▷ C. Anfinsen’s experiment (Nobel 1972): A.A. sequence ⇒ structure
▶ Identification of the native state —minimum of free energy
▶ Determination of the folding pathways

▷ Torsion angles and their rotameric (discrete) structure

χ1χ2

ϕ

ψ
0°

45°

90°

135°

180°

225°

270°

315°

0°

45°

90°

135°

180°

225°

270°

315°

▷ Levinthal’s paradox: yet, an exponential number of conformations
▶ Counting: 4 torsion angles per amino acid, each 3 options: 34 = 81
▶ Counting: 500 amino acids per protein: 81500 ∼ 1.7 × 10954



PEL: a complex multi-scale structure
▷ Structure: conformations consisting of

▶ local minima
▶ saddle points connecting them

▷ Disconnectivity tree/graph:
▶ Nodes: local minima
▶ Edges: saddle points connecting local minima

Figure: Simplified view of the potential energy landscape of BLN69, encoded in
its disconnectivity tree. About 1/2 million of local minima are known. Overall, 8
structures which stand out in terms of minima.



Critical points of the potential energy

▷ Critical point of the potential energy V : point where the gradient vanishes
Diagonalizing the Hessian + performing a linear change of variables yields

V (u) =
∑

i=1,...,k

λiu
2
i −

∑
i=k+i1,...,d

λiu
2
i . (3)

▷ Def.: the number of negative eigenvalues is called the index of the critical
points.

▷ Two types of special points are of interest:
▶ local minima: zero negative eigenvalues.
▶ index one saddle points: one negative eigenvalue.

▷ Difficulties faced in exploring a PEL:
▶ the number local minima and saddle points generally grows exponentially

with the dimension.
▶ the presence of the solvent complicate matters, and makes the surface

very rugged.



Barriers on a PEL: enthalpic and entropic

▷ Two types of barriers:
▶ enthalpic barrier. a region of the PEL requiring to gain significant elevation to

visit a neighboring basin / local minimum.
▶ entropic barrier. an almost flat region of the PEL, whose exhaustive exploration

is likely to occur to find the exit point(s). NB: the foggy plateau metaphor.

▷Ref: Free energy computations, Lelièvre, Stoltz, Rousset, 2010



PEL: a typical exploration
▷ Typical exploration of a PEL energy landscape

▷Ref: Schoen and Jansen, Int. J. Mat. Res., 2009



Classifying PEL
▷ Bad news:

▶ Very large number of critical points.
▶ Enthalpic - entropic barriers.

▷ Good news:
▶ strong coupling / coherence between dof, making the effective dimensionality

small.
▶ few significant (large or deep) basins.

▷ Prototypical landscapes

Figure: Classification of PEL. (Left) Protein (Right) Glasses

▷Ref: Wales, 2003



Multiscale analysis of PEL: what is a deep basin ?
▷ Analogous problem for mountains: defining a peak is a matter of scales:

– prominence: closest distance to the nearest local maximum with higher elevation
– culminance: elevation drop to the saddle leading to a higher local maximum

Figure: Mountain topography: what is a peak? The analysis requires
defining local minima as opposed to local maxima.

▷ The Norden peak does not qualify:

– fourth highest peak of the Mont Rose massif, 4609 meters
– prominence: 575 meters; culminance: 94 meters
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Thermodynamic ensembles

▷ Conformation versus state:
▶ Conformation: microscopic state (think: coordinates)
▶ Thermodynamic/meta-stable state: conformations easily interconvertible

into one-another

▷ Stability and barriers:
▶ Stability is a function of temperature and observation time
▶ Two types of barriers: (potential) energy, entropy

▷ Ensemble: collection of all conformations belonging to the same
thermodynamic state

▷ Thermodynamic ensembles: canonical (NVT), isobaric-isothermal (NPT),
microcanonical (NVE)

▷ Application of ensembles: computing averages values of observables – next
slide



Thermodynamics and observables

▷ Quantities defined for a conformation x :
▶ Potential energy: V (x)

▶ Kinetic energy: K(x)

▶ Total energy: E(x) = V (x) + K(x)

▶ Boltzmann’s distribution: Peq(x) = e−βE(x)/Z ,Z =
∑

Conformationx P
eq(x)

▷ Quantities defined for ensembles:
▶ Average of observable O wrt an ensemble:

< O >≡
∑

Conformationx O(x)Peq(x)

▶ Exple: average total energy U =< E >

▶ NVT: Helmholtz free energy A = U − TS = kBT lnZ

▶ NPT: Gibbs free energy G = U + PV − TS = H − TS



Emergence of macromolecular function(s) from
Structure – Thermodynamics – Kinetics



Emergence of macromolecular function(s) from
Structure – Thermodynamics – Kinetics

Structure: stable conformations i.e.
local minima of the PEL

Thermodynamics: meta-stable
conformations i.e. ensemble of con-
formations easily inter-convertible
into one - another.

Kinetics: transitions between meta-
stable conformations e.g. Markov
state model

Potential Energy Landscape

• large number of local minima

• enthalpic barriers

• entropic barriers



Kinetics: Markov State Models (MSM)
▷ A MSM is characterized by:

▶ the MSM is described by a graph whose nodes are the meta stable states, and
edges transitions between them.

▶ the system does not have memory: the current states determines the next one.
▶ transitions between two states obeys transition probabilities.

▷ Example: Markov state model for the protein methyltransferase SETD8

Figure: From Chodera et al, eLife, 2019

▷ Movie: https://www.youtube.com/watch?v=IDLEi-M8Aow

https://www.youtube.com/watch?v=IDLEi-M8Aow


Kinetics: the Master Equation

▷ Notations:
▶ P(t): the occupancy probabilities of individual minima
▶ W : matrix coding the gains/losses per basin associated with transition

rates across saddles, i.e.

▷ Master equation for one species:

dPi

dt
=

∑
j ̸=i

kijPj(t)− kjiPi (t). (4)

The dynamics of the system are defined by the following ordinary differential
equation [?]:

dP(t)/dt = WP(t) (5)

▷ Rmk. Bootstrapping from vibrational free energies –cf the harmonic
oscillator.

▷Ref: Van Kampen, Stochastic processes in physics and chemistry, 1992
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Molecular dynamics and protein functions: examples

▷ Molecular flexibility and the functions of proteins:
▶ Protein folding: the adoption of a tertiary structure, possibly with the

help of chaperonin proteins.
▶ Enzymatic activity: the transformation of reactant into products, by a

protein or a ribozyme (cf the ribosome)
▶ Non covalent molecular recognition: the formation of a non covalent

complex.
▶ Allostery: activity regulation thanks to the binding of an effector protein.
▶ Ion and small molecular transport: e.g. ion transport in membrane

channels.
▶ Active transport of large molecules: e.g. transport into the nucleus by the

nuclear pore complex.
▶ Molecular motions (in muscle e.g.): actin-myosin movements.



Two schools: static versus dynamic studies

▷ Balls and sticks

(Watson and Crick, DNA model)

▷ The Ballet & time lapse

▶ Static analysis using crystal structure from the Protein Data Bank
http://rcsb.org

▶ Dynamical analysis using molecular mechanics

http://rcsb.org


Statics vs dynamics



Dynamics: alea jacta est in the mid eighties

▷Ref: Brooks, Karplus, Montgomery Pettitt; Advances in Chemical
Physics, Proteins; Wiley, 1988
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Dynamics of biomolecules:
first simulation of a protein, and a recent one



Molecular dynamics and protein functions: movies

▷ Selected (great) movies:
▶ Proteins according to AlphaFold https://youtu.be/KpedmJdrTpY

▶ Protein synthesis by the ribosome:
https://www.youtube.com/watch?v=TfYf_rPWUdY

▶ Membrane fusion-entry and infection by SARS-Cov-2:
https://youtu.be/e2Qi-hAXdJo

▶ Molecular motors: https://www.youtube.com/watch?v=X_tYrnv_o6A

▷ Other videos of interest:
▶ Various phenomena in this movie:

https://www.youtube.com/watch?v=wJyUtbn0O5Y

▶ More XVivo movies at
https://www.youtube.com/channel/UCAUL7Wl_lydKXI8q0oi4CUw

▷ Rmk. Remarkable illustration of the aforementioned mechanisms can be
found in the book [?]; see also the gallery on the PDB portal, at
https://pdb101.rcsb.org/sci-art/goodsell-gallery.

https://youtu.be/KpedmJdrTpY
https://www.youtube.com/watch?v=TfYf_rPWUdY
https://youtu.be/e2Qi-hAXdJo
https://www.youtube.com/watch?v=X_tYrnv_o6A
https://www.youtube.com/watch?v=wJyUtbn0O5Y
https://www.youtube.com/channel/UCAUL7Wl_lydKXI8q0oi4CUw
https://pdb101.rcsb.org/sci-art/goodsell-gallery


Proteins and protein folding
Movie by Deepmind/ The AlphaFold team

https://youtu.be/KpedmJdrTpY

https://youtu.be/KpedmJdrTpY


Dynamics of biomolecules: protein folding
A molecular dynamics simulation

▷ More videos from the movie gallery Illinois:
http://www.ks.uiuc.edu/Gallery/Movies/ProteinFoldingStretching/

http://www.ks.uiuc.edu/Gallery/Movies/ProteinFoldingStretching/
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Protein dynamics: time scales

▷ Relevant quantities to quality dynamics and their time scales:
▶ Spatial extent: the size of the region undergoing the change,
▶ Amplitude: the displacement undergone,
▶ Times scale: the duration required for the conformational change to

occur.

▷Ref: Adcock and McCammon, Chem. Reviews, 2006



Molecular simulation: four schools

▷ Various classes of methods:
▶ Molecular dynamics
▶ Monte Carlo based methods
▶ Energy landscapes methods
▶ AI based methods: tokenization, diffusion, denoising diffusion maps

▷Ref: Field, A practical introduction to the simulation of molecular
systems, 1999
▷Ref: Frenkel and Smit, Understanding molecular simulations, 2002
▷Ref: Wales, Energy landscapes, 2003
▷Ref: Stoltz et al, Free energy calculations, 2010
▷Ref: Jing et al, Berger et al, etc – posterior to 2023



Dynamics: California dreamin’. . .
▷ Direct problems / molecular dynamics versus inverse problems

Atom i

Atom j

Atom k

Atom l

vi|t+dt

vj|t+dt

vk|t+dt

vl|t+dt

Cα1

Cα2

Cα3

di θi

Variables:

Constraints:

Molecular dynamics, time-steps of 10−15s: Inverse problems, typical changes:
∥∆xi∥ ∼ 1/100Å ∥∆xi∥ ∼ 1 − 10Å

▷ Next major scientific goal: a metaphor

Paris / San Francisco / Stanford:
30’ + 30’ minutes

Cα,1

Cα,2

Cα,3

Biomolecules: identifying stable
states and their probabilities
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Main points

Main points:
▶ Proteins and binding affinity
▶ Enthalpy - entropy compensation
▶ The time dimension 1/Koff

▶ Application: antibodies binding viruses



Biological complexes: structural diversity

▷ Biology rests on interactions biomolecules make with one another. A remarkable
variety of such complexes exist, both in size and time scales spanned – see Janin et al.
▷ Size-wise, complexes span a range from O(100 kDa) up to 120 MDa (mammalian
NPC). Note that the nuclear pore complex is the largest assembly known (to date) in
eukaryotic cells, as it involves circa 500 polypeptide chains.

▷ Biological complexes: diversity

[J. Janin]

▷Ref: Janin et al, Quaterly reviews of biophysics, 2008



Biological complexes: time-wise
▷ Time-wise, biological complexes also span several orders of magnitude, say from the
millisecond to years for permanent ones (Fig. ??).

▷ Biological complexes: time scales

[J. Janin]

▷Ref: Janin et al, Quaterly reviews of biophysics, 2008



Docking models
▷ Over the years, several docking models have been proposed (Fig. 6):

▶ Lock-and-key Fisher, 1894. In this model, the two partners associate as rigid
bodies.

▶ Induced fit: Koshland, 1958. While getting close, the partners shape
one-another, resulting in the conformations found in the complex.

▶ Conformer selection, Monod-Wyman-Changeux, 1965. In solution or in the cell,
each molecule exists in a variety of conformations. In the course of their
diffusion, compatible conformations stumble onto one-another, and the complex
gets formed.

Figure: Flexibility of
biomolecules: illustration.
From the Nobel lecture of K.
Wütricht.

+

+

Complex

Conformer selection
Monod-Wyman-Changeux, 1965

Lock-and-key
Fisher, 1894

Induced fit
Koshland, 1958

Figure: Docking models.



Binding affinity: dissociation free energy

▷ Protein complexes rock back and forth

▷ Dissociation constant / free energy as a function of concentrations:

Kd = [A][B]/[AB]

∆Gd = −RT lnKd/c
◦ = ∆H − T∆S.

▷ Binding affinities (thermodynamics):
– random complex: Kd ∼ 10−6

– high: Kd ∼ 10−9

– very high: Kd ∼ 10−12

– extreme: Kd ∼ 10−15

▷ Time scales (kinetics):
– short-lived complexes: 10−6s (e.g.
enzyme-substrate)
– stable complexes: 103s (e.g.
antibody-antigen)
– permanent complexes: 106s
(aggregates)



Binding affinity: thermodynamics

▷ Dissociation constant kD for C ⇋ A+ B:

Kd =
[A][B]

[C ]
;∆Gd = −RT lnKd/c

◦ = ∆H − T∆S . (6)

▷ The enthalpy - entropy compensation:
▶ enhanced packing of interface atoms due to attractive forces: ∆H < 0
▶ higher packing, restricted atomic motions: T∆S < 0

▷ Marginal stability of proteins and complexes:

∆G

∆H

T∆S

▶ Large ∆H and T∆S compensate
▶ Crossing of curves difficult to predict
▶ Marginals stability is key to regulation

Pict. courtesy of Alan Cooper (Thermodynamics of unfolding)



Enthalpy - entropy compensation – thermodynamics

▷ Energy: loose some, gain some. . .
Energy minimization:

• ⇒ ∆H wants to be negative. . .

At the moleular level:

• thermal/Brownian motion tend to
make things the other way around

• ⇒ T∆S wants to be positive

• ⇒ Variations counted as −T∆S

▷ Balance between these two tendencies: Gibbs free energy
▷Ref: Cooper, Biophysical Chemistry, Royal Society of Chemistry, text
#24, Cambridge, 2001



Binding affinity: spectrum
▷ Typical binding affinity values are presented in Table 7.

Figure: binding affinity: typical examples. Table from Kuriyan et al.

▷Ref: Kuriyan et al, The molecules of life, 2012



Binding affinity predictions: setting a reasonable goal

▷ Binding affinity measurements, experiments:
ITC, SPR, and titration by fluorescence, with
typical error range 0.1 - 0.25 kcal/mol

▷ Change in ∆Gd of 1.4, 2.8 and 4.2 kcal/mol:
Change in Kd of 10x, 100x, 1000x respectively

▷ Binding affinity is a thermodynamic quantity, depending on:
concentration, temperature, ionic strength, pH

▷ Changing the pH in the range 5.5 – 8.5: can change ∆Gd by 1.4-2.3 kcal/mol

▷ Methods not taking into account the solvent/dynamics:
cannot claim an accuracy well beyond ∼ 1.4 kcal/mol

▷Ref: Kastritis et al; Protein Science (20), 2011
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Chemical equilibrium

▷ Setup: we consider a protein P and a ligand L which interact in a non-covalent
fashion. This means that no chemical bonds get created or removed. We further
assume that these two species for a chemical equilibrium:

P + L ⇌ PL,Keq =
[PL]Eq.

[P]Eq.[L]Eq.
(7)

▷ The notion of equilibrium is central here, and owes to competing effects:
▶ Due to attraction forces, P and L get closer to one another.
▶ Due in particular to thermal fluctuations, they get away.

▷ In the medium considered (test tube, cell): three chemical species: P, L, and the
complex PL.
▷ In the sequel, we consider the standard setup:

▶ We start from std concentrations of the individual species, say 1 Molar
▶ We consider the equilibrium concentrations



Equilibrium constants Ka,Kd

▷ Consider the non-covalent interaction P + L ⇌ PL

▷ The law of mass action yields the association and dissociation constants:Association constant : Ka =
[PL]Eq.

[P]Eq.[L]Eq.

Dissociation constant : Kd =
[P]Eq.[L]Eq.

[PL]Eq.

(8)

Using std units, Ka is expressed in moles−1, and Kd is in moles.

▷ Determine the concentration of the molecular species, here P, L, and PL, when the
binding reaction reaches an equilibrium.

▷ The relationship between Ka and the variation of free energy satisfies:

∆G0
a = −RT log c0Ka = RT log

Kd

c0 . (9)

▷ Rmk. In Eq. 9, c0 is meant to obtain a unit-less number: if Ka is expressed in
moles−1 ,then C0 is equal to 1 molar.



Fractional saturation
▷ The fraction of proteins with bound ligand satisfies:

f =
#num proteins with bound ligand

total # proteins
(10)

=
[PL]Eq.

[P]Eq. + [PL]Eq.
(11)

=
[P]Eq.[L]Eq.

Kd ([P]Eq. +
[P]Eq.[L]Eq.

Kd
)

(12)

=
1

Kd (
1
Kd

+ 1
[L]Eq.

)
=

[L]Eq.

[L]Eq. + Kd
(13)

▷ Varying the concentration of the ligand, one gets from Eq. 10:
▷ Observation: Kd is the concentration of the ligand such that the fraction of bound
equals 1/2.

Figure: Fractional saturation. from [?, Chapter 12].



Equilibrium constants and reaction rates

▷ To account for kinetics, one resorts to the reaction rates

P + L
Kon
⇌
Koff

PL. (14)

Note that Kon is expressed mol−1s−1 while Koff is expressed in s−1. These rates
account for the fact that in order to assemble, the molecules must first meet/collide.

▷ The relationship with dissociation is as follows:

Ka =
Kon

Koff
. (15)



Residence times
Binding affinity is a thermodynamic quantity. On the other hand, time is clearly
involved in biomolecular interactions – Chapter ??.

▶ Mean life of the complex, 1/Koff: average life span of the PL complex.
▶ Half-time of the complex, log 2/Koff: the time required for half of a population

of complexes to unbind.

[J. Janin]

Figure: Biological complexes: time scales. From Janin et al.

▷Ref: Janin et al, Quaterly reviews of biophysics, 2008
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Enthalpy - entropy compensation - I
▷ To understand the components of binding, let us recall:

∆G0
a = −RT log c0Ka = RT log

Kd

c0 = ∆H − T∆S . (16)

▷ To understand the relative variations of ∆H and T∆S , we need to discuss several
components in turn:

▶ (1) System protein + ligand, enthalpy
▶ (2) Mixing: Two versus three species
▶ (3) Ligand and its translational / rotational entropy
▶ (4) System protein + ligand, conformational + vibrational entropy
▶ (5) Solvent and its entropy

Binding affinity: enthalpy-entropy
competition illustrated along the
binding process. The volume
accessible to the ligand decreases,
whence T∆S < 0 and −T∆S > 0.
On the other hand, the interaction
energy (enthalpy) decreases by W0.
From [?].



Enthalpy - entropy compensation - II
1. System protein + ligand, enthalpy:

▶ Energy minimization when P and L get closer. (Exple: strong
electrostatic interactions.)

2. Mixing: Two versus three species:
▶ Three species (P, L, PL) have more entropy than two.

3. Ligand and its translational / rotational entropy:
▶ Assuming P fixed: 6 dof of the ligand get constrained.

Translation/rotational entropy decreases.
4. System protein + ligand, conformational + vibrational entropy:

▶ In PL, conformational changes hindered + coupled harmonic
oscillators: conformational and vibrational entropy decrease.

5. Solvent and its entropy:
▶ Buried surface area at the interface ⇒ the solvent S increases.

Summary:
▶ During association, grossly speaking: ∆H is negative, and −T∆S is positive.
▶ Variation of enthalpy and entropy are very subtle, and the balance depends in

general on the temperature.
▶ For biological systems: this subtlety is key to regulation. By slightly changing

the conditions (temperature, pH, ionic strength which alter the electrostatic
interactions), the behavior changes.



Enthalpy-entropy competition: illustration on protein
unfolding

Figure: Protein unfolding: illustration of the enthalpy-entropy
competition. Courtesy of Alan Cooper.



Partition functions determine macroscopic properties
Example: binding affinity as ratio of Zs

▷ A standard antibody-antigen complex:

Fab of CR8020

Fab of C05

Fab of FI6

Virus
membrane

HA head

HA stem

▷ Model without solvent:
▶ FAB of antibody ∼ 3k

atoms
▶ Hemaglutinin ∼ 14k atoms
▶ One conformation: 1 point

in R51,000

▷ ∆Gd as a multidimensional integral with V the PE and W the solvent PMF:

∆Gd = −
1
β
ln

ZIGZAg

Zcomplex
= −

1
β
ln

(
8π2

c◦

∫
e−β(V (rA)+W (rA))drA ×

∫
e−β(V (rB )+W (rB ))drB∫

e−β(V (rC )+W (rC ))drC

)

▷Ref: Woo ad Roux, PNAS 102 (19), 2005
▷Ref: Gilson and Zhou, Ann. Rev. Biophys. Biomol. Struct., 36, 2007
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Virus neutralization by antibodies: the problem

▷ Enveloped viruses: the case of influenza
▷ Broadly neutralizing antibodies targeting the fusion protein of influenza:

▶ Ig on top: prevent the virus attachment
▶ Ig on stem: preventing the conformational changes required for

envelope-membrane fusion

▷ The influenza virus. Drawn to scale
a trimer of the fusion protein (HA)

HA trimer

Antibody

▷ Broadly neutralizing antibodies :
hemaglutinin (HA) of influenza is
depicted in green

Fab of CR8020

Fab of C05

Fab of FI6

Virus
membrane

HA head

HA stem



The structure of antibodies – IgG immunoglobulins
▷ Overall structure

▷ FABs and CDRs

FR1

CDR1

FR2

CDR2

FR3

CDR3

FR4

FR1
CDR1

FR2
CDR2

FR3
CDR3

FR4

VL

JH

JL

D

Figure: (A) Antigen-binding fragment (FAB) and Complementarity
Determining Regions (CDRs) (B) Encoding of CDRs and Frs by
the V, D and J genes



Affinity maturation: process

▷ Affinity maturation: secretion of more potent antibodies

▷ IgG lineage

Figure: Lineage of IgG
observed during an immune
response against influenza.

▷ Evolution of the affinity

Fab Kd (µM)
UCA 118 ± 14
I-2 142 ± 15
CH65 0.49 ± .10
CH67 0.36 ± 0.04

Table: Binding affinities: Kd

analysis by SPR NB: CH65 ∼
CH67; wrt UCA: ⇒ ∼ 200-fold
improvement



Affinity enhancement: origin
▷ Ancestor and matured IgG have
similar binding modes

Figure: But UCA and CH65
have similar binding modes.
Displayed: backbone traces of
the CDR3. From Schmidt et al.

▷ But matured IgG have a pre-formed
binding site:

Figure: CDR3: time spent in
bound and unbound
conformations. Maturated IG
(CH65, CH67): more time in the
bound conformation. From
Schmidt et al.

▷ Origin of the affinity enhancement: lesser entropic penalty.
“ In both branches (CH65, CH67)), increased conformational restriction of CDR H3
has been the principle consequence of affinity maturation. ”

▷Ref: Schmidt et al., PNAS, 2013



Binding affinity and specificity
▷ The two critical notions for protein interactions are

▶ Binding affinity: the strength of the interactions.
▶ Binding specificity: the variety of partners a molecules binds sufficiently strongly

with.

Figure: Binding affinity and specificity: how to for the immune
system. The molecules secreted should bind strongly enough the
pathogens; but they should also be quite specific.
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