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Rationale. Proteins underlie all biological functions, yet, understanding their mechanisms at the atomic
scale remains a fundamental open problem. The difficulties are inherent to complex dynamics in very high
dimensional spaces. Indeed, with circa 5000 atoms and xyz coordinates per atom, a polypeptide chain of
median size lives in a configuration space of dimension 15,000. While AlphaFold has been a game changer
by providing plausible structures of selected (well folded) regions of proteins, it by no means provide insights
on dynamics.

In this context, the goal of this class is twofold. First, to cast the main problems related to protein dy-
namics into a rigorous mathematical / algorithmic framework. Second, to present some of the major ongoing
developments, which feature a stimulating interplay between theoretical biophysics, geometry, topology, and
machine learning. To get acquainted with real data, one course will be devoted to a computer practical
providing background on standard molecular manipulations, and illustrating selected methods studied in
class.

Pre-requisites. Training in algorithms / machine learning. Interest for biophysics / biology / medicine.

MVA: positioning.

• Themes: track Santé, machine learning, theory.

• Topics: proteins, molecular conformations, thermodynamics, dynamics, high dimensional spaces, kine-
matics, sampling, (free) energies.

Course overview. The courses consists of 6 lectures (cours magistral) of 3 hours each; plus one lecture
mixing theory and demos.

The class is taught in English.

∗Original vesion: May 2024. Updated along with the lectures
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1 Understanding protein functions at the atomic level
The goal of this lecture is to get acquainted with the structure, dynamics, and functions of proteins. Doing
so requires bridging the gap between notions from biology, chemistry, (statistical) physics, and kinematics.

• Proteins: structure and determination; [1], [2]
• Molecular coordinates and potential energy; [3]
• Thermodynamics, PMF and free energy; [4], [5]
• Kinetics, Markov State Models; [6], [7]
• Dynamics and time scales; [8]
• Binding affinity [9]
• Two molecular mechanisms: antibody-antigen interactions, membrane transport; [10], [11], [12]
• Open (mathematical, algorithmic) challenges in protein science

2 k-means and mixtures, with applications to torsion angles in flat
torii

This lecture focuses on the important topic of torsion angles in proteins (from the backbone and side chains),
and their joint probability densities. Studying these requires a proper understanding of mixtures in general
(whence the link with Kmeans), and mixture fitting procedures.

• Torsion angles as soft coordinates.
• Kmeans clustering and its initialization [13, 14, 15, 16]
• Gaussian mixture models [17]
• Rotamers and multivariate densities on flat torii; [18]
• Minimum message length and applications to mixture of von Mises [19, 20]

3 Molecular kinematics, inverse problems, loop sampling
This lecture focuses on inverse problems for kinematic chains – aka loop closure problems, and the application
to protein loop sampling procedures.

• Direct versus inverse problems: molecular dynamics vs inverse kinematics
• Modeling proteins using internal coordinates; [21]
• Kinematics and loop closure problems; [22], [23]
• Inverse problems and protein loop sampling; [24, 25]

4 Structural alignments and analysis on static structures
This lecture will review the mathematics and algorithms of must-know basic operations on static proteins
structures. Implementations available in the Structural Bioinformatics Library [26].

• Molecular surfaces, volumes, and interfaces – using Voronoi diagrams and α-shapes [27]
• Procruste probblems [28], [29]
• Molecular distances [30], [31], [32]
• Iterative structural alignments [33]
• Identification of rigid domains using spectral clustering [34]
• Application: unveiling the mechanism of an antibiotic efflux pump [35]
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5 Motions and energies: normal modes, (free) energies, ICA, tICA
This lecture will review the mathematics and algorithms of must-know basic operations on ensembles of
molecular conformations. Implementations available in the Structural Bioinformatics Library [26].

• Normal modes [36, 37, 38]
• Thermodynamics and free energies: simplified models [39]
• Time-lagged independent component analysis (tICA) [40]
• Computing in statistical physics: the Wang-Landau algorithm; [41], [42]
• Connexion with volume calculation and polytopes [43], [44], [45]

6 Spatial partitions in high dimensional spaces, nearest neighbors
and their significance

Tree like structures are key for nearest neighbor searches in high dimensional spaces, and to perform feature
selection. This lecture will review reference methods for these two tasks, which have applications in structural
bioinformatics and beyond.

• Random projection trees; [46]
• Applications to nearest neighbor finding, regression, dimension estimation; [47]
• Concentration of distances and significance of nearest neighbors

7 From Darwin to AlphaFold: MSA, DCA, attention mechanisms,
and structure prediction

Protein sequences play a crucial role in providing evolution related pieces of information. This lecture
will review models to capture couplings in multiple sequence alignments, and the application of these in
AlphaFold. The quality of AlphaFold predictions will also be studied.

• Protein sequences and multiple sequence alignments; [48]
• Direct coupling analysis and variants; [49], [50]
• Coupling analysis with factored transformers; [51, 52], [53]
• AlphaFold; [54]
• AlphaFold-DB: assessment of reconstructions; [55]

8 General references
• Bioinformatics: [48]

• Biophysics and theoretical biophysics: [2], [4], [56]

• Algorithms, machine learning: [5], [43], [57]

9 Validation mode
Projects for students working in tandem (15 points) + individual quizz and/or short exercises (5 points).

A project will consists of reproducing / expanding results recently published. Students are asked to
return a report, plus a git repo / notebook / code archive. Students will be given one month to complete
the project.

Catch-up: oral exam on the lectures–typically a quizz with one or two questions per lecture.
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10 Links with other classes
Overall, this class would complement lectures of the Track Santé, providing a molecular view of various
topics studied at a macroscopic level in the courses Méthodes mathématiques pour les neurosciences (E.
TANRE, R. VELTZ), and Medical image analysis based on generative, geometric and biophysical models (H.
DELINGETTE, X. PENNEC).

More specifically, several topics are linked to other classes, in particular: lecture 2 (AlphaFold) is con-
nected the course Deep learning (V.LEPETIT, M. VAKALOPOULOU); lecture 3 (loop sampling) is partly
connected to the course Computational statistics (S. Alassonniere), as it covers the design of probabilistic
mixtures in flat torii (using the Minimum Message Length framework); lecture 4 (High-dimensional sam-
pling) is connected to lectures dealing with sampling / MCMC in general, with a specific view as we deal
with molecular geometry models.
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