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Abstract

This note is devoted to the study of traffic flow models that develop phase transitions. From the analytical
point of view, this is a first example of a well posedness result for conservation laws developing phase
transitions, which is independent from the number of phase boundaries in the initial data or in the solutions.
We consider below the Cauchy problem as well as the problem with boundaries.
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1. Introduction

The aim of this note is to prove the well posedness of traffic flow models developing phase
transitions and their stability with respect to the parameters. First, we briefly deal with the scalar
model by Drake et al. [16] whose analytical properties have not yet been apparently considered
in the literature. Then, we consider the model introduced in [7] and obtain a first example of
a system of conservation laws developing phase transitions whose well posedness is proved
globally, i.e. for all initial data attaining values in a given set and with bounded total variation. In
the literature, several results deal with the solution to Riemann problems in the presence of phase
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Fig. 1. The fundamental diagram in the Edie hypothesis, see [16,17].

transitions, see for instance [13,19,20]. Other works prove the global in time well posedness of
the Cauchy problem, but with initial data that are perturbations of a given phase boundary, see
for instance [8,9]. On the contrary, here the number of phase boundaries that are present in the
data and in the solution is not a priori fixed.

From the traffic point of view, the well posedness proved below allows us to consider various
control and optimization problems, see [11].

2. The scalar model

In [16] the authors select a variation of the “Edie formulation” [17] as the best among
several traffic models, see also [22] or [24, Model B]. Essentially, it consists of the
Lighthill–Whitham [21] and Richards [23] (LWR) model with a fundamental diagram as in
Fig. 1. Then, the conservation of the total number of vehicles along any road segment reads

∂tρ + ∂x (ρv(ρ)) = 0, (2.1)

where ρ is the traffic density and v the traffic speed. In this model, the speed v and the flow
ρv are defined on a disconnected set, its two connected components being two disjoint intervals
representing the free and the congested phase.

Proposition 2.1. Let Ω f = [0, Ř], Ωc = [R̂, R], with 0 < Ř < R̂ < R, and v: Ω f ∪ Ωc �→ R

be smooth, decreasing and such that v(R) = 0. Then, for all ρo ∈ L1(R; Ω f ∪ Ωc), (2.1) admits
a unique weak entropy solution ρ ∈ C0 (

R
+; L1(R; Ω f ∪ Ωc)

)
attaining ρo as initial data and

which is non-expansive with respect to the L1 norm.

The proof of Proposition 2.1 follows from the slightly more general Proposition 4.1 proved
below. Note that the invariance of Ω f ∪ Ωc implies that density and speed remain positive and
bounded.

3. The 2 × 2 model

We consider now the model introduced in [7]. It consists of a scalar LWR model coupled with
the 2 × 2 system presented in [6]. The former applies to the states of free flow, while the latter to
the congested states. A phase transition is a discontinuity separating a state of free traffic from
one in the congested phase. More precisely, the model in [7] reads

Free flow: (ρ, q) ∈ Ω f Congested flow: (ρ, q) ∈ Ωc

∂tρ + ∂x
[
ρ · v f (ρ)

] = 0

{
∂tρ + ∂x [ρ · vc(ρ, q)] = 0
∂t q + ∂x [(q − Q) · vc(ρ, q)] = 0

v f (ρ) =
(

1 − ρ

R

)
· V vc(ρ, q) =

(
1 − ρ

R

)
· q

ρ
.

(3.1)
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Fig. 2. Left, a generic fundamental diagram for (3.1) and, right, the limiting case Q− = Q = Q+.

ρ and v are as above, q is the weighted linear momentum, R is the maximal traffic density, V
is the maximal traffic speed and Q is characterized by the phenomenon of wide jams, see [7].
System (3.1) is studied in Ω f ∪ Ωc, where

Ω f = {
(ρ, q) ∈ [0, R] × R

+: v f (ρ) ≥ V f , q = ρ · V
}

Ωc =
{
(ρ, q) ∈ [0, R] × R

+: vc(ρ, q) ≤ Vc,
q − Q

ρ
∈
[

Q− − Q

R
,

Q+ − Q

R

]}
,

where we denote R
+ = [0,+∞[. Here, V f and Vc are the threshold speeds, i.e. above V f the

flow is free, while below Vc the flow is congested. Following [7], throughout the present note we
assume that the various parameters are strictly positive and satisfy

V > V f > Vc,

Q+ ≥ Q ≥ Q−,
Q+ − Q

RV
< 1, V f = V − Q+/R

1 − (Q+ − Q)/(RV )
. (3.2)

In the limiting case Q− = Q = Q+, (3.1) essentially reduces to the scalar model in Fig. 2, right,
see also [22] or [24, Model B], which falls within the scope of Proposition 2.1.

3.1. The Cauchy problem

Introduce the notations:

X = L1 (
R; Ω f ∪ Ωc

)
, ‖u‖L1 = ‖ρ‖L1(R) + ‖q‖L1(R) ,

u = (ρ, q), TV(u) = TV(ρ)+ TV(q).
(3.3)

Definition 3.1. Fix M > 0 and X as above. A map S: R
+×D �→ D is an M-Riemann semigroup

(M-RS) if the following holds:

(RS1) D ⊇ {u ∈ X : TV(u) ≤ M};
(RS2) S0 = Id and St1 ◦ St2 = St1+t2 ;
(RS3) there exists an L = L(M) such that for t1, t2 in R

+ and u1, u2 in D,∥∥St1u1 − St2u2
∥∥

L1 ≤ L · (‖u1 − u2‖L1 + |t1 − t2|
) ;

(RS4) if u ∈ D is piecewise constant, then for t small, St u coincides with the gluing of solutions
to Riemann problems.

By “solutions to Riemann problems” we refer here to those defined in [7, Section 3], recalled
here in the proof of Proposition 4.2. Properties (RS1)–(RS4) provide the natural extension of
[4, Definition 9.1] to the present case.
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We are now ready to state the main result of this note, namely the existence of an M-RS
generated by the Cauchy problem for (3.1).

Theorem 3.2. For any positive M, the system (3.1) generates an M-RS S: R
+ × D �→ D.

Moreover

(CP1) for all (ρo, qo) ∈ D, the orbit t �→ St (ρo, qo) is a weak entropic solution to (3.1) with
initial data (ρo, qo);

(CP2) any two M-RS coincide up to the domain;
(CP3) the solutions yielded by S can be characterized as viscosity solutions, in the sense of [4,

Theorem 9.2].
(CP4) D ⊆ {

u ∈ X : TV(u) ≤ M̂
}

for a positive M̂ dependent only on M.

The proof is deferred to Section 4. Here we observe that the description of several realistic
situations requires suitable source terms in the right hand sides of (3.1). The techniques in [10]
can then be applied.

3.2. The initial-boundary value problem

From the point of view of traffic flow, it is natural to consider the case of a road starting
at x = 0 where the inflow at time t is the prescribed quantity f̃ (t). This leads to the Initial-
Boundary Value Problem (IBVP) consisting of (3.1) with initial and boundary data{

(ρ, q)(0, x) = (ρ̄, q̄)(x) x ≥ 0,
(ρv)(t, 0) = f̃ (t) t ≥ 0.

(3.4)

If, besides (3.2), also(
1 − Q+

RV

)
·
(

Q+

Q
− 1

)
< 1 (3.5)

holds, then the definition of the solution introduced in [18], see also [1, Definition NC], applies:
the boundary data f̃ is attained in the sense that

lim
x→0+ρ(t, x) · v (ρ(t, x), q(t, x)) = f̃ (t) for a.e. t ≥ 0.

Denote the maximum possible traffic flow by F = R f V f .

Proposition 3.3. If (3.2) and (3.5) hold, then for all (ρ̄, q̄) ∈ Ω f ∪ Ωc, there exists a threshold
f max = f max(ρ̄, q̄) such that for all f̃ ∈ [0, f max] the Riemann problem made by (3.1) with
data {

(ρ, q)(0, x) = (ρ̄, q̄) x ≥ 0,
(ρv)(t, 0) = f̃ t ≥ 0

(3.6)

admits a solution in the sense of [1, Definition NC]. More precisely, there exists a unique
state (ρ̃, q̃) ∈ Ω f ∪ Ωc such that the flow at (ρ̃, q̃) is f̃ and the solution to the standard
Riemann problem (3.1) with data (ρ̃, q̃) and (ρ̄, q̄) consists of waves having only positive speed.
Furthermore,

(1) If (ρ̄, q̄) ∈ Ω f , then f max = F and (ρ̃, q̃) is in Ω f . The solution consists of a 2-wave in the
free phase.
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(2) If (ρ̄, q̄) ∈ Ωc, then there exists a f min = f min(ρ̄, q̄) such that:
(a) If f min ≤ f̃ ≤ f max, (ρ̃, q̃) is the unique intersection between the curve ρvc(ρ, q) = f̃

and the 2-wave through (ρ̄, q̄). The solution consists of a simple 2-wave.
(b) If f̃ < f min, then (ρ̃, q̃) is the unique state in Ω f such that ρ̃v f (ρ̃) = f̃ . The solution

consists of a phase boundary and a 2-wave.

The thresholds f min and f max are given explicitly in Section 4, in the proof of Proposition 3.3.
Here we stress that, differently from what happens in the LWR model, the incoming flow f̃ can
be greater than the flow ρ̄v(ρ̄) present on the road.

We remark that, due to the presence of phase boundaries, the number of waves entering the
domain (t, x) ∈ R

+ × R
+ cannot be a priori established.

Once the Riemann problem (3.1)–(3.6) is solved, the full IBVP (3.1)–(3.4) can be considered.
Now, in Definition 3.1, (3.3) is substituted by

u = (ρ, q, f )

X = L1 (
R

+; (Ω f ∪ Ωc)× [0, F])
‖u‖L1 = ‖ρ‖L1(R+) + ‖q‖L1(R+) + ‖ f ‖L1(R+)
TV(u) = TV(ρ)+ TV(q)+ TV( f )+ |(ρv)(0)− f (0)| .

(3.7)

Theorem 3.4. Let (3.2) and (3.5) hold. For every positive M, the IBVP (3.1)–(3.4) generates a
M-RS

S : R
+ × D �→ D
t ,

(
ρ̄, q̄, f̃

)
�→

(
ρ(t), q(t),Tt f̃

)
in the sense of Definition 3.1 and (3.7). Moreover

(IBVP1) for all (ρ̄, q̄, f̃ ) ∈ D, the map t �→ (ρ(t), q(t)) is a solution to (3.1)–(3.4) with initial
data (ρ̄, q̄) and boundary data f̃ ;

(IBVP2) any two M-RS coincide up to the domain;
(IBVP3) the solutions yielded by S can be characterized as viscosity solutions, in the sense

of [2, Section 5];
(IBVP4) D ⊆ {

u ∈ X : TV(u) ≤ M̂
}

for an M̂ > 0 depended only on M.

Above, T is the translation operator, i.e. (Tt f )(s) = f (t + s). In the present case, (RS3) of
Definition 3.1 implies that

‖(ρ1, q1)(t1)− (ρ2, q2)(t2)‖L1

≤ L ·
(
‖(ρ̄1, q̄1)− (ρ̄2, q̄2)‖L1 +

∥∥∥ f̃1 − f̃2

∥∥∥
L1

+ |t1 − t2|
)
.

Following [1], the techniques in [3,12,14] can be extended to deal with the present case. Hence
the proof of Theorem 3.4 is omitted.

4. Proofs

4.1. The scalar case

Let f : Ω �→ R be smooth with Ω being the union of two separated closed real intervals
Ω f and Ωc, the phases. The case of more than 2 phases is entirely similar. The standard Kružkov
Theorem, see for instance [4, Paragraphs 6.2 and 6.3], is directly extended to the present situation.
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Proposition 4.1. Let f : Ω �→ R be locally Lipschitz. Then,

(1) for all uo ∈ L1(R; Ω)∩ BV(R; Ω), the Cauchy problem (2.1) with initial datum uo admits a
weak entropy solution u: R

+ × R �→ R with

TV (u(t, ·)) ≤ TV(uo) and ‖u(t, ·)‖L∞ ≤ ‖uo‖L∞ ∀t ≥ 0;
(2) if uo and wo are in L1(R; Ω) ∩ BV(R; Ω), then for all t ≥ 0

‖u(t, ·)−w(t, ·)‖L1 ≤ ‖uo −wo‖L1 .

It is straightforward to extend the proof in [4] to the present situation. Indeed, assume for
simplicity that Ω f = [a, b] and Ωc = [c, d], with −∞ < a ≤ b < c ≤ d < +∞, the
other cases being entirely analogous. Consider the following extension f̄ of f to the whole
of R:

f̄ (u) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f (a) if u ∈ ]−∞, a[
f (u) if u ∈ [a, b]
c − u

c − b
f (b)+ u − b

c − b
f (c) if u ∈ ]b, c[

f (u) if u ∈ [c, d]
f (d) if u ∈ ]d,+∞[ .

Then, it is immediate to prove that if uo ∈ L1(R,Ω)∩BV(R,Ω), then the weak entropy solution
u = u(t, x) of{

∂t u + ∂x
[

f̄ (u)
] = 0

u(0, x) = uo(x)

attains values in Ω . Indeed, if uo(R) ⊆ [a, d], then also u(t,R) ∈ [a, d] for all t ≥ 0 by
the “maximum principle” [4, (iv), Theorem 6.3, Chapter 6]. Moreover, u(t, x) is the limit of
piecewise constant solutions uν(t, x) to conservation laws{

∂t u + ∂x
[

f̄ ν(u)
] = 0

u(0, x) = uνo(x)

with f ν being a piecewise linear and continuous approximation of f̄ and uνo a piecewise
constant approximation of uo, see [4, Sections 6.1 and 6.2]. For all ν, f̄ ν can be chosen so
that f̄ ν(u) = f̄ (u) for u ∈ [b, c]. Hence, if uνo(R) does not intersect [b, c], also uν(t) does not
attain values in [b, c].

For the sake of completeness, we recall that in the present section we used Liu’s entropy
condition, see [15, Section 8.4].

4.2. The 2 × 2 model

The proof of Theorem 3.2 is achieved through the construction of exact weak solutions to (3.1)
that are only approximately entropic, built by means of wave front tracking.

Recall first the following basic information on the 2 × 2 system on the right hand side
of (3.1):
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Fig. 3. Notation used in the proof of Proposition 4.2.

r1(ρ, q) =
[

ρ

q − Q

]
, r2(ρ, q) =

⎡⎣R − ρ
R

ρ
q

⎤⎦ ,
λ1(ρ, q) =

(
2

R
− 1

ρ

)
· (Q − q)− Q

R
, λ2(ρ, q) = vc(ρ, q),

∇λ1 · r1 = 2
Q − q

R
, ∇λ2 · r2 = 0,

L1(ρ; ρo, qo) = Q + qo − Q

ρo
ρ, L2(ρ; ρo, qo) = ρ

ρo

R − ρo

R − ρ
qo,

w1 = vc(ρ, q), w2 = q − Q

ρ
,

(4.1)

where ri is the i -th right eigenvector, λi the corresponding eigenvalue and Li is the i -Lax curve.
In the Riemann coordinates (w1, w2), Ωc = [0, Vc] × [W−

2 ,W+
2 ]. For (ρ, q) ∈ Ω f , we extend

the corresponding Riemann coordinates (w1, w2) as follows. Let ũ = (ρ̃, ρ̃V ) be the point in
Ω f defined by ρ̃ = Q/(V − W−

2 ). Define

w1 = V f and w2 =
{

V − Q/ρ if ρ ≥ ρ̃,

v f (ρ̃)− v f (ρ)+ V − Q/ρ̃ if ρ < ρ̃,
(4.2)

so that, in the Riemann coordinates, Ω f = {V f } × [Wo,W+
2 ], see Fig. 3. Introduce for later use

the functions

Λ̄(ρl , ρ) = ρlv f (ρ
l)− ρvc

(
ρ,L1(ρ; R, Q−)

)
ρl − ρ

,

λ̄1(ρ) = λ1
(
ρ,L1(ρ; R, Q−)

)
,

ϕ(ρ; ρo, qo) =
∫ ρ

ρo

λ1 (ρ,L1(r; ρo, qo)) dr

=
(

qo − Q

ρo

(
1 − ρ + ρo

R

)
− Q

R

)
(ρ − ρo).

The former is the speed of the phase boundary joining (ρl , ρl V ) ∈ Ω f to
(
ρ,L1(ρ; R, Q−)

) ∈
Ωc. λ̄1 is the 1-characteristic speed of

(
ρ,L1(ρ; R, Q−)

) ∈ Ωc. The latter map ϕ is defined for
(ρo, qo) ∈ Ωc and ρ ∈ [0, R].
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Proposition 4.2. Consider the Riemann problem made by (3.1) with data

(ρ, q)(0, x) =
{
(ρl , ql) if x < 0
(ρr , qr ) if x > 0.

(4.3)

For every (ρl , ql), (ρr , qr ) in Ω f ∪ Ωc, there exist smooth scalar functions defining
Riemann problems for scalar conservation laws whose solutions, juxtaposed, yield a solution
to (3.1)–(4.3).

Proof. Following the definition of a solution to (3.1)–(4.3) given in [7], we consider several
different cases.
(A): The data in (4.3) are in the same phase.

The standard procedure in [3, Section 1] works also in the present case, since no phase
boundary is present.
(B): (wl

1, w
l
2) ∈ Ωc and (wr

1, w
r
2) ∈ Ω f .

By [7, Section 3], the intermediate state (ρm , qm) in the Riemann coordinates reads (wr
1, w

l
2),

so that ρm = Q/
(

V − ql−Q
ρl

)
. and qm = ρm V . Then, the ρ component in the solution

to (3.1)–(4.3) is obtained as the juxtaposition of the solutions to the scalar Riemann problems⎧⎪⎨⎪⎩
∂tρ + ∂x

(
ϕ(ρ; ρl, ql)

)
= 0

ρ(0, x) =
{
ρl if x < 0
ρm if x > 0

and

⎧⎨⎩∂tρ + ∂x
(
ρ · v f (ρ)

) = 0

ρ(0, x) =
{
ρm if x < 0
ρr if x > 0,

while q is computed through

q(t, x) = L1

(
ρ(t, x); ρl, ql

)
in Ωc

q(t, x) = Vρ(t, x) in Ω f .

The former Riemann problem displays a scalar phase transition, see Proposition 4.1.
(C): (wl

1, w
l
2) ∈ Ω f and (wr

1, w
r
2) ∈ Ωc with wl

2 ∈ [W−
2 ,W+

2 ].
Similarly to the previous case, the solution to (3.1)–(4.3) has the following structure:

If wl
2 < 0, phase boundary between (wl

1, w
l
2) and (Vc, w

l
2), a rarefaction up to (wr

1, w
l
2) and a

2-Lax wave.
If wl

2 = 0, a phase transition acting as a contact discontinuity between (wl
1, w

l
2) and (wr

1, w
l
2)

followed by a 2-Lax wave.
If wl

2 > 0, a shock-like phase transition between (wl
1, w

l
2) and (wr

1, w
l
2) followed by a 2-Lax

wave.
In each of these cases, the intermediate state is (wr

1, w
l
2) ∈ Ωc. Call (ρm, qm) its coordinates

in the (ρ, q) plane. As before, the first component in the solution to (3.1)–(4.3) is obtained as the
juxtaposition of the solutions to the scalar Riemann problems⎧⎪⎪⎨⎪⎪⎩

∂tρ + ∂x

(
ϕ(ρ; ρl, ql)

)
= 0

ρ(0, x) =
{
ρl if x < 0
ρm if x > 0

⎧⎪⎨⎪⎩
∂tρ + ∂x

(
ρ · vc(ρ

r , qr )
) = 0

ρ(0, x) =
{
ρm if x < 0
ρr if x > 0,

the other conserved variable being

q(t, x) = L1

(
ρ(t, x), ρl, ql

)
for ρl ≤ ρ ≤ ρm ,

q(t, x) = L2
(
ρ(t, x), ρm, qm)

for ρm ≤ ρ ≤ ρr .
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The former Riemann problem displays a phase transition.
(D): (wl

1, w
l
2) ∈ Ω f with wl

2 < W−
2 and (wr

1, w
r
2) ∈ Ωc.

The solution to (3.1)–(4.3) consists of a phase boundary followed by a 1-Lax wave in Ωc, and a
2-Lax wave in Ωc between the states (wr

1,W−
2 ) and (wr

1, w
r
2). Call (ρ′, q ′) the (ρ, q)-coordinates

of (wr
1,W−

2 ) ∈ Ωc. Define

ψ(ρ) =
{
ϕ(ρ; R, Q−) if ρ ∈ [R−

c , R]
(ρl − R−

c )Λ̄(ρ
l , R−

c )+ ϕ(R−
c , R, Q−) if ρ = ρl .

The solution to (3.1)–(4.3) is obtained as the juxtaposition of the solutions to the scalar
Riemann problems⎧⎪⎨⎪⎩

∂tρ + ∂x (ψ(ρ)) = 0

ρ(0, x) =
{
ρl if x < 0
ρ′ if x > 0

⎧⎪⎨⎪⎩
∂tρ + ∂x

(
ρ · vc(ρ

r , qr )
) = 0

ρ(0, x) =
{
ρ′ if x < 0
ρr if x > 0.

(4.4)

The former Riemann problem presents a phase transition. To check that the solution provided
by the Riemann problems (4.4) coincide with that of (3.1)–(4.3), we consider in the three cases
below only the phase boundary and the 1-wave, the equivalence for the 2-wave being immediate.

• If Λ̄(R−
c , ρ

l ) ≤ λ̄1(R−
c ), the solution is a phase transition from ul to u−

c , followed by a 1-Lax
rarefaction from u−

c to u′, see Fig. 3, left. The Rankine–Hugoniot condition between ul to u−
c

given by the scalar problem on the left in (4.4) gives the speed of the phase boundary

Λ̄(R−
c , ρ

l ) = ψ(ρl )− ψ(R−
c )

ρl − R−
c

.

• If Λ̄(ρ, ρl) > λ̄1(ρ), for all ρ ∈ [R−
c , ρ

′], the solution is a shock-like phase transition.
Consider the Riemann problems (4.4). Again the speed given by the Rankine–Hugoniot
condition between ul and u′ is the speed of the phase boundary:

Λ̄(ρ′, ρl) = ψ(ρ′)− ψ(ρl )

ρ′ − ρl
.

To check this, it is sufficient to verify that

ρ′vc
(
ρ′,L1(ρ

′, R, Q)
) − R−

c vc
(
R−

c ,L1(ρ
′, R, Q)

)
=

∫ ρ′

R−
c

λ1
(
r,L1(r; R, Q−)

)
dr.

• Otherwise, let ρm ∈ [R−
c , ρ

′] be the smallest density such that Λ̄(ρl , ρm) = λ̄1(ρm).
Then, the solution is a right-sonic phase transition attached to a 1-Lax rarefaction along the
lower boundary of Ωc. Indeed, λ̄1(ρm) = (

ψ(ρm )− ψ(ρl )
)
/
(
ρm − ρl

)
, since Λ̄(ρm , ρ

l) =
λ̄1(ρm). �
Following [3], we now construct piecewise constant weak solutions to (3.1). First, for ν ∈ N,

we introduce a mesh Ων in Ω . In Riemann coordinates, let

Ων
c = {(

i2−νVc,W−
2 + j2−ν(W+

2 − W−
2 )

) ∈ Ωc: i, j = 0, . . . , 2ν
}

where W−
2 and W+

2 are as in Fig. 3. Now, let

I ν1 = {
W−

2 + j2−ν(W+
2 − W−

2 ): j = 0, . . . , 2ν
}
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I ν2 =
{
w ∈ [Wo,W−

2 ]:w = V − Q/ρ where Λ̄
(
ρ′, ρ

) = λ̄1(ρ
′)

for some
(
ρ′,L1(ρ

′; R, Q−)
) ∈ Ων

c

}
W̄ = min I ν2

I ν3 =
{{Wo} if W̄ − Wo < 2−ν{

Wo + j2−ν(W̄ − Wo): j = 0, . . . , 2ν
}

if W̄ − Wo > 2−ν

Ων
f = {V f } × (

I ν1 ∪ I ν2 ∪ I ν3
)

Ων = Ων
f ∪ Ων

c .

The construction above leads to a mesh Ων with several properties. First, for any point w ∈ Ω
there is a point wν ∈ Ων such that ‖w − wν‖ = O(2−ν). Secondly, there is a positive δν such
that any two points in the mesh are distant more than δν . Moreover, Ων+1 ⊆ Ων . Finally, the
following key proposition holds.

Proposition 4.3. The Riemann problem (3.1)–(4.3) with data in Ων admits a piecewise constant
weak solution attaining values in Ων .

Proof. Following [3], simply substitute in the construction of Proposition 4.2 the functions ϕ and
ψ with functions ϕν andψν defined by these two properties: ϕν(w) = ϕ(w) andψν(w) = ψ(w)

for every w ∈ Ων ; ϕν and ψν are piecewise linear and continuous. �

Note that the exact weak solutions yielded by Proposition 4.3 may well be non-entropic.
An approximate solution uν = uν(t, x) to the Cauchy problem for (3.1) is now constructed

by means of the standard wave front tracking technique, see [3,4]. The initial data uo in
L1, with TV(uo) ≤ M , is substituted by a piecewise constant uνo such that uνo(R) ⊆ Ων ,∥∥uνo − uo

∥∥
L1 ≤ 1/ν and TV(uνo) ≤ TV(uo). The Riemann problems centered at each point

of jump in uνo are solved through the approximate procedure described above. The corresponding
solutions are glued together and a piecewise constant approximate solution uν on all R is obtained
up to a first time t1 when two waves interact. At time t1 a new Riemann problem arises and it
is again solved through the same procedure. uν can be defined up to any positive time provided
the number of interaction points is finite on any compact subset of R

+ × R and the range of uν

remains in Ων .
The latter requirement is met. Indeed, according the approximation procedure defined above,

the approximate solution to Riemann problems with data in the mesh Ων ⊂ Ω attains values in
Ων . The former requirement is obtained through suitable interaction estimates, that also ensure
the existence of a bound on TV (uν(t)) uniform in ν and t .

To this aim, we assign a strength to each simple wave. Let ul , ur be the states on the sides of
the wave and call (wl

1, w
l
2), (w

r
1, w

r
2) the corresponding Riemann coordinates, see (4.2). Then,

the strength of the wave is

τ =
∣∣∣wr

1 − wl
1

∣∣∣ +
∣∣∣wr

2 −wl
2

∣∣∣ . (4.5)

Note that only in case (D) above these summands are both non-zero. Let τi,α be the strength of
the wave of the i -th family exiting from the α-th point of jump xα in uν(t, ·). With this choice,
define the usual Glimm functionals

V ν(t) =
∑
i,α

∣∣τi,α
∣∣ , Qν (t) =

∑
α,β:xα<xβ

∣∣τ2,ατ1,β
∣∣ . (4.6)
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Fig. 4. Interactions against a phase boundary of type (D).

It is immediate to prove that along any approximate solution, the maps t �→ V ν(t) and
t �→ Qν(t) are both non-increasing and, at each interaction, at least one of them decreases
by at least 2−ν . Hence there is a finite number of interactions on all R

+ × R. When waves of
types (A), (B) and (C) only take part to the interaction, this is proved as in [3, a), b) and c) in
Section 2]. In the case of interactions with phase boundaries of type (D), the choice (4.5) is
exactly the one that is additive/subtractive with respect to wave sizes, see Fig. 4.

We prove the L1 Lipschitz dependence using pseudo-polygonals, as in [5], see also [1,3,8,
12,14]. We introduce a class of curves (pseudo-polygonals) that connect any two initial data in
DνM = {u: R → Ων : V ν(u) ≤ M}.

Let ]a, b[ be an open interval and PC denote the set of piecewise constant functions with
finitely many jumps. An elementary path is a map γ : ]a, b[�→ PC of the form

γ (θ) =
N∑
α=1

uα · χ[xθ
α−1,x

θ
α [, xθα = xα + ξαθ,

with xθα−1 ≤ xθα for all θ ∈]a, b[ and α = 1, . . . , N .

A continuous map γ : ]a, b[ �→ DνM is a pseudo-polygonal if there exist countably many
disjoint open intervals Jh ⊆ ]a, b[ such that ]a, b[ \ ⋃

h Jh is countable and the restriction of
γ to each Jh is an elementary path. Moreover, any two elements of DνM can be joined by a
pseudo-polygonal γ entirely contained in DνM .

As shown in [3–5], the semigroup Sν preserves pseudo-polygonals in the sense that if γ is a
pseudo-polygonal then Sνt ◦ γ is also a pseudo-polygonal, for all t ≥ 0.
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Proposition 4.4. Consider a point P∗ = (t∗, x∗) of interaction. Let uν(t, x) be the approximate
solution to (3.1) defined for t < t∗ by extending backward the shocks and for t ≥ t∗ by solving
the approximate Riemann problem. Then

∑
α>0

∣∣∣σ+
i,αη

+
i,α

∣∣∣ ≤
(

1 + K
∑
k �=i

∣∣∣∣∣∑
α>0

τ−
k,α

∣∣∣∣∣
)2 ∑

α>0

∣∣∣σ−
i,αη

−
i,α

∣∣∣
+ K

∣∣∣∣∣∑
α

τ−
i,α

∣∣∣∣∣∑
k �=i

∑
α>0

∣∣∣σ−
k,αη

−
k,α

∣∣∣ . (4.7)

Once Proposition 4.2 allows us to reduce the solution of the general Riemann
problem (3.1)–(4.3) to that of scalar Riemann problems, the proof of Proposition 4.4 follows
exactly the same lines of [3, Proposition 5.1].

Define the length of (the evolution of) a curve γ ⊆ DνM of approximate solutions as

‖γ ‖ν = ∫ b
a Υ ν [γ (θ)] dθ , where Υ ν = ∑

i,α

∣∣σi,αξi,αWi,α
∣∣, Wi,α being a suitable weight

and σi,α being the strength of a jump measured in the conserved coordinates. Proposition 4.4
ensures that using [3, (6.1)] one can define weights Wi,α such that Wi,α ∈ [1,W ] and the map
t �→ Υ ν (u(t)) is non-increasing. The first requirement implies that the metric

dνη (u, w) = inf
{‖γ ‖ν : γ pseudo-polygonal joining u to w

}
is equivalent to the L1-distance uniformly in ν, see also [1,3,4]; the latter ensures that the ν-
approximate semigroup Sν is non-expansive with respect to dνη . This finally ensures that the

approximate semigroup is L1-Lipschitz, uniformly with respect to ν, completing the proof of
Theorem 3.2.

The following consequence of the particular form of (3.1) is useful toward the proof of
Proposition 3.3.

Lemma 4.5. With the notation in (4.1),

d (ρvc (L1(ρ; ρo, qo)))

dρ
(ρo; ρo, qo) = λ1(ρo, qo).

The proof is straightforward and, hence, omitted.

Proof of Proposition 3.3. Note that condition (3.5) ensures that supΩ f ∪Ωc
λ1 < 0. Indeed,

referring to the notation in Fig. 5, if λ1(ρ
+
f , q+

f ) < 0, then λ1 < 0 on all Ω f ∪ Ωc, by the
convexity of the regions {(ρ, q): λ1 > 0} and {(ρ, q): q < ρV }. A simple computation leads to

λ1(ρ
+
f , q+

f ) = (RV − Q+)(Q+ − Q)− RV Q

R(RV − Q+ + Q)

whose denominator is positive by (3.2). We thus obtain λ1(ρ
+
f , q+

f ) < 0 if and only if (3.5)
holds.

1. If (ρ̄, q̄) is in Ω f , then for any f̃ ∈ [0, F], the line ρv = f̃ intersects Ω f at a unique point
(ρ̃, q̃). The standard Riemann problem with data (ρ̃, q̃), (ρ̄, q̄) admits a solution consisting of
a simple wave with positive speed. The restriction of this solution to x ≥ 0, t ≥ 0 is a solution
to the Riemann problem for (3.1)–(3.6).
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Fig. 5. Notation for the proof of Proposition 3.3.

2. (a) If (ρ̄, q̄) is in Ωc, then the 2-Lax curve through (ρ̄, q̄) has a unique intersection with the
line ρv = f̃ at a point (ρ̃, q̃) if and only if f̃ ∈ [ f min, f max], see Fig. 5.

(b) If (ρ̄, q̄) is in Ωc and f̃ ∈ [0, f min[, then the line ρv = f̃ intersects Ω f at a single point,
say (ρ̃, q̃). Lemma 4.5 ensures that the standard Riemann problem with data (ρ̃, q̃), (ρ̄, q̄)
has a solution consisting of a phase boundary having positive speed, no 1 wave and a 2
contact discontinuity. The restriction of this solution to x ≥ 0, t ≥ 0 is a solution to the
Riemann problem for (3.1)–(3.6). �
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