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Abstract

This paper considers the Cauchy problem for a conservation law with a variable unilateral constraint,
its motivation being, for instance, the modeling of a toll gate along a highway. This problem is solved by
means of nonclassical shocks and its well posedness is proved. Then, the solutions so obtained are shown
to coincide with the limits of the classical solutions to suitable conservation laws with discontinuous flux
function that approximate the constrained problem.
© 2006 Elsevier Inc. All rights reserved.

MSC: 35L65; 90B20

Keywords: Hyperbolic conservation laws; Continuum traffic models; Riemann problem

1. Introduction

This paper is devoted to constrained Cauchy problems of the form⎧⎨
⎩

∂tρ + ∂x(f (ρ)) = 0, (t, x) ∈ R
+ × R,

ρ(0, x) = ρ0(x), x ∈ R,

f (ρ(t,0)) � q(t), t ∈ R
+,

(1.1)

ρ being the scalar conserved quantity. (Throughout, we let R
+ = [0,+∞[.) This problem is

motivated by the modeling of a toll gate along a road. In this case, ρ is the (mean) traffic density,
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f (ρ) = ρv(ρ) is the (mean) traffic flow and v(ρ) is the (mean) traffic speed at density ρ. In
other words, we deal with the classical Lighthill–Whitham [13] and Richards [15] (LWR) model
which states the conservation of the total number of vehicles and postulates that traffic speed is
a function of traffic density. In this framework, q(t) is the maximal flow of traffic that can go
through the gate at time t . Our main result is the global well posedness of (1.1) in L1.

In the literature, the LWR model is typically considered on the whole real line or on the half
line x > 0. In the latter case, the model is supplemented with both an initial datum at t = 0 and a
boundary datum along x = 0 describing the inflow into the road. Similarly, but less considered in
the literature, it is realistic to assume that also the outflow is subject to a constraint. The present
result, as a byproduct, ensures also the well posedness of the initial-boundary value problem
with an unilateral constraint on the outflow at the boundary. Similarly, these results are easily
extended to the initial-boundary value problem

⎧⎪⎪⎨
⎪⎪⎩

∂tρ + ∂x(f (ρ)) = 0, (t, x) ∈ R
+ × [0,L],

ρ(0, x) = ρ0(x), x ∈ [0,L],
f (ρ(t,0)) = f0(t), t ∈ R

+,

f (ρ(t,L)) � q(t), t ∈ R
+,

(1.2)

that refers to a road segment of length L with an inflow at time t and x = 0 prescribed by f0(t)

and an outflow at x = L constrained by q(t).
In any of the problems considered above, assume two threshold fluxes q1 and q2 are given

with q1 � q2. Then, apparently, the solution ρ1 corresponding to q1 also “solves” the problem
with constraint q2. On the contrary, the entropy condition for (1.1) introduced below, see Defini-
tion 3.2, automatically selects only maximal solutions, i.e. those solutions that allow the maximal
flow through the gate which is also compatible with the constraint.

The paper is organized as follows. First, in Section 2, we consider constrained Riemann prob-
lems. Section 3 is devoted to the constrained Cauchy problem proving existence and continuous
dependence. Then, we approximate (1.1) with a scalar conservation law with flow discontinuous
in x

{
∂tρ + ∂x(kε(t, x)f (ρ)) = 0,

ρ(x,0) = ρ0(x),
kε(t, x) =

{1, x /∈ [−ε, ε],
q(t)

maxf
, x ∈ [−ε, ε], (1.3)

and we show that the usual weak entropy solution to (1.3) converges to the nonclassical solution
of (1.1) as ε → 0.

All the proofs are collected in Section 4 and in Appendix A.
Finally, we mention that conservation laws with unilateral constraints are considered also

in [1], but with entirely different tools, motivations and results.

2. The constrained Riemann problem

This section is devoted to the Riemann problem

⎧⎨
⎩

∂tρ + ∂x(f (ρ)) = 0,

ρ(0, x) =
{

ρl if x < 0,

ρr if x > 0
(2.1)
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Fig. 1. Examples of fundamental diagrams considered here.

under the constraint

f
(
ρ(t,0)

)
� q, (2.2)

q being constant, with the assumptions

(R1) f : [0,R] �→ R is Lipschitz, f (0) = 0 = f (R), f ′(ρ)(ρ̄ − ρ) > 0 for a.e. ρ,
(R2) q ∈ [0, f (ρ̄)],

for a suitable ρ̄ ∈ ]0,R[. While the former is a regularity assumption, the latter is an obvious
consistency requirement, see Fig. 1. We denote below by R the standard (i.e. without the con-
straint (2.2)) Lax [12] or Liu [14] Riemann solver for (2.1), i.e. the map (t, x) �→R(ρl, ρr)(x/t)

is the standard weak entropy solution to (2.1), see [3, Chapter 5] for its construction.

Definition 2.1. A Riemann solver Rq for (2.1)–(2.2) is defined as follows.
If f (R(ρl, ρr))(0)) � q , then Rq(ρl, ρr) =R(ρl, ρr).

Otherwise, Rq(ρl, ρr)(x) =
{
R(ρl, ρ̂)(x) if x < 0,

R(ρ̌, ρr )(x) if x > 0.

Above, ρ̌ and ρ̂, with ρ̌ � ρ̂, are the solutions to f (ρ) = q , see Fig. 1. Note that when the
constraint is enforced, at x = 0 a nonclassical shock arises. The solution so obtained is a weak
solution to (2.1) but it violates the entropy condition as soon as q < f (ρ̄).

The Riemann solverRq generates a semigroup Sq whose orbits are solutions to Cauchy prob-
lems. A necessary condition for the L1 continuity of Sq is the consistency of Rq , see [5,6].

Definition 2.2. The Riemann Solver R is consistent if the following two conditions hold:

(C1)
R(ul, um)(x̄) = um

R(um,ur)(x̄) = um

}
⇒ R

(
ul, ur

) =
{
R(ul, um), if x < x̄,

R(um,ur), if x � x̄,

(C2) R
(
ul, ur

)
(x̄) = um ⇒

⎧⎪⎪⎨
⎪⎪⎩
R(ul, um) =

{
R(ul, ur), if x � x̄,

um, if x > x̄,

R(um,ur) =
{

um, if x < x̄,

R(ul, ur), if x � x̄.

Both (C1) and (C2) are enjoyed by the standard Lax [12] and Liu [14] solvers. Essentially,
(C1) states that whenever two solutions to two Riemann problems can be placed side by side,
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Fig. 2. Consistency of a Riemann solver.

then their juxtaposition is again a solution to a Riemann problem, see Fig. 2. (C2) is the vice
versa.

Proposition 2.3. The Riemann Solver defined by Definition 2.1 enjoys the following properties,
for all ρl, ρr ∈ [0,R]:

(RS1) (t, x) �→ (Rq(ρl, ρr))(x/t) is a self similar weak solution to (2.1) in the sense of Defini-
tion 2.1;

(RS2) Rq(ρl, ρr) ∈ BV(R; [0,R]);
(RS3) Rq(ρl, ρr) satisfies the constraint (2.2) in the sense that

lim
x→0−f

(
Rq

(
ρl, ρr

)
(x)

)
� q and lim

x→0+f
(
Rq

(
ρl, ρr

)
(x)

)
� q;

(RS4) Rq is consistent in the sense of Definition 2.2.

Moreover, the map Rq : [0,R]2 �→ L1
loc(R;R) is uniformly continuous.

The proof is deferred to Section 4.1.
Aiming at the initial-boundary value problem (1.2), the whole construction above should be

repeated with several natural modifications. Alternatively, we achieve the same goal defining as
solution to the constrained Riemann problem at the boundary

⎧⎨
⎩

∂tρ + ∂x(f (ρ)) = 0, (t, x) ∈ R
+ × ]−∞,0],

ρ(0, x) = ρ0, x ∈ ]−∞,0],
f (ρ(t,0)) � q, t ∈ R

+,

(2.3)

with ρ0 ∈ [0,R] and q ∈ [0, f (ρ̄)], the restriction to ]−∞,0] of the solution to (2.1)–(2.2) with
ρl = ρ0 and any ρr ∈ [0, ρ̄]. In fact, any such choice of the right state yields the same solution
for x � 0. We only remark here that the “maximality” intrinsic in the entropy condition implies,
for instance, that if f (ρ0) < q and ρ0 > ρ̄, then the constant function does not solve (2.3).

3. The constrained Cauchy problem

Consider now the Cauchy problem (1.1) under assumptions (R1) and

(R3) q ∈ BV(R+; [0, f (ρ̄)]).
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The constraint (2.2) and the consequent Definition 2.1 may well cause sharp increases in
TV(ρ(t, ·)). The simplest example is provided by a constant initial datum ρ0(x) = ρ̄ and a con-
straint

q(t) =
{

f (ρ̄) if t < 1,
1
2 f (ρ̄) if t > 1.

At time t = 1, two shocks arise from x = 0 and the total variation jumps from 0 to 2(ρ̂ − ρ̌),
where ρ̌ < ρ̂ and f (ρ̂) = f (ρ̌) = 1

2f (ρ̄).
To overcome this difficulty, following [4,16],we use the nonlinear mapping

Ψ (ρ) = sgn(ρ − ρ̄)
(
f (ρ̄) − f (ρ)

)
(3.1)

and bound the total variation of Ψ ◦ ρ. In fact, Ψ is one-to-one, but possibly singular at ρ = ρ̄.
Indeed, it is immediate to see that if ρ ∈ BV(R;R), then TV(Ψ ◦ ρ) � ‖f ′‖C0 · TV(ρ), while
TV(ρ) may well be infinite with Ψ (ρ) finite, as in the case of f (ρ) = ρ (1 − ρ), ρ̄ = 1/2 and
ρ = ∑+∞

n=3
1
n

χ[ 1
2 + 1

n
, 1

2 + 2n+1
2n(n+1)

[.

Definition 3.1. A weak solution to (1.1), is a map

(1) ρ ∈ C0(R+;L1(R, [0,R]));
(2) for all t ∈ R

+, Ψ (ρ(t)) ∈ BV(R; [0,R]);
(3)

∫
R

ϕ(0, x)ρ0(x) dx + ∫ +∞
0

∫
R
(ρ ∂tϕ + f (ρ)∂xϕ)dx dt = 0, for ϕ ∈ C1

c(R
2;R);

(4) for a.e. t ∈ R
+, limx→0− f (ρ(t, x)) � q(t), limx→0+ f (ρ(t, x)) � q(t).

The above limits exist and are finite because of (2). The present nonclassical setting allows
the introduction of the following entropy condition.

Definition 3.2. A weak solution ρ ∈ C0(R+;L1(R, [0,R])) is an entropy solution to (1.1) if for
every k ∈ R and for every ϕ ∈ C1

c(R
2;R

+)

+∞∫
0

∫
R

(|ρ − k|∂tϕ + sgn(ρ − k)
(
f (ρ) − f (k)

)
∂xϕ

)
dx dt

+
∫
R

|ρ0 − k|ϕ(0, x) dx + 2

+∞∫
0

(
1 − q(t)

f (ρ̄)

)
f (k)ϕ(t,0) dt � 0. (3.2)

Remark 3.3. Definition 3.2 selects the maximal solution, for a nonclassical stationary shock at
x = 0 separating states ρ̂ and ρ̌ with f (ρ̂) = f (ρ̌) < q(t) turns out to be nonentropic.

To state the first well posedness result, it is useful to introduce the translation Tt by (Tt q)(τ ) =
q(τ + t). Below we introduce a map Sq : R+×D �→D,D being a suitable subset of L1 containing
the initial data of (1.1). We then denote by S̄q the map S̄q : R+ × D̄ �→ D̄ defined by S̄

q
t (ρ, q) =

(S
q
t ρ,Tt q) with D̄ =D× BV.
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Theorem 3.4. Let (R1) and (R3) hold. Then, for every constraint q ∈ BV(R+; [0, f (ρ̄)]) there
exists a map Sq : R+ ×D �→D such that

(CRS1) D ⊇ {ρ ∈ L1(R; [0,R]): Ψ (ρ) ∈ BV(R;R)};
(CRS2) S̄q is a semigroup, i.e. S̄

q

0 = Id and S̄
q
t1

◦ S̄
q
t2

= S̄
q
t1+t2

;
(CRS3) Sq is nonexpansive in ρ, i.e. for all ρ1, ρ2 ∈D

∥∥S
q
t ρ1 − S

q
t ρ2

∥∥
L1 � ‖ρ1 − ρ2‖L1;

(CRS4) if ρ0 and q are piecewise constant, then for t sufficiently small, S
q
t ρ0 coincides with the

gluing of the solutions to standard Riemann problems centered at the points of jump of
ρ0 and to (2.1)–(2.2) at x = 0;

(CRS5) for all ρ0 ∈D, the orbit t �→ S
q
t ρ0 yields a weak entropy solution to (1.1), according to

Definitions 3.1 and 3.2.

The proof uses the standard technique of wave front tracking, see [3], and is deferred to Sec-
tion 4.2. The above statements (CRS1)–(CRS4) are clearly modeled on the definition of Standard
Riemann Semigroup, see [3, Definition 9.1] and provide an analogue to it in the present con-
strained (and nonautonomous) setting. The Lipschitz estimate (CRS3) is proved with suitable
modifications of the techniques in [11] or [3, Section 6.3].

It is now easy to tackle the initial boundary value problem

⎧⎨
⎩

∂tρ + ∂x(f (ρ)) = 0, (t, x) ∈ R
+ × ]−∞,0],

ρ(0, x) = ρ0(x), x ∈ ]−∞,0],
f (ρ(t,0)) � q(t), t ∈ R

+.

(3.3)

Indeed, as in the case of the Riemann problem, a solution to (3.3) is obtained restricting to x < 0
a solution to (1.1) with initial data, say, ρ0(x) = 0 for x > 0. The extension to (1.2) is immediate,
see [7] as a general reference on initial boundary value problems for scalar conservation laws.

The above nonclassical construction can be seen as a singular limit of the classical theory.
Indeed, recall the conservation law (1.3) where q satisfies (R3). As ε → 0, the flow kε(t, x)f (ρ)

converges in L1 to the flow in (1.1). As noted in a similar example in [2] the solution ρε to (1.3)
fails to converge to the (classical) solution of

∂tρ + ∂xf (ρ) = 0. (3.4)

Actually, we show below that the solutions to (1.3) converge in L1 to the weak entropy solution
to (1.1) in the sense of Definitions 3.1 and 3.2.

More precisely, (1.3) essentially fits in the framework provided by [9, Theorems 4.5, 5.5
and 6.5], see also [4,8]. Nevertheless, we state the following well posedness result for (1.3) in
a slightly different setting than that in [4,8,9]. In the present form, the theorem below can be
proved with the same techniques used in Theorem 3.4, see Section 4.3 and Appendix A for the
proof.

Theorem 3.5. Let (R1) and (R3) hold. Then, for every positive ε and every constraint q ∈
BV(R+; [0, f (ρ̄)]) there exists a map Sε: R+ ×D �→D such that



Aut
ho

r's
   

pe
rs

on
al

   
co

py

660 R.M. Colombo, P. Goatin / J. Differential Equations 234 (2007) 654–675

(εRS1) D ⊇ {ρ ∈ L1(R; [0,R]):Ψ (ρ) ∈ BV(R;R)};
(εRS2) S̄ε is a semigroup, i.e. S̄ε

0 = Id and S̄ε
t1

◦ S̄ε
t2

= S̄ε
t1+t2

;
(εRS3) Sε is nonexpansive in ρ, i.e. for all ρ1, ρ2 ∈D∥∥Sε

t ρ1 − Sε
t ρ2

∥∥
L1 � ‖ρ1 − ρ2‖L1;

(εRS4) if ρ0 and q are piecewise constant, then for t sufficiently small, Sε
t ρ0 coincides with the

gluing of the solutions to standard Riemann problems for (1.3) centered at the points of
jump of ρ0;

(εRS5) for all ρ0 ∈ D, the orbit t �→ Sε
t ρ0 yields a weak entropy solution to (1.3), according

to [9, Formula (4.19) and Definition 5.1].

Finally, the following result provides the connection between the nonclassical construction in
Theorem 3.4 and the classical one in Theorem 3.5.

Theorem 3.6. Fix ρ0 ∈D. For ε > 0, call ρε the solution to (1.3). Then, as ε → 0, ρε converges
in L1

loc to a function ρ which is the (unique) weak entropy solution to (1.1) in the sense of
Definitions 3.1 and 3.2.

4. Technical proofs

4.1. Proof of Proposition 2.3

Preliminarily, we introduce the following notations: λ(ρ) = f ′(ρ) is the characteristic speed

at ρ while Λ(ρl, ρr) = f (ρl)−f (ρr )

ρl−ρr is the speed of a (possibly nonentropic) shock between ρl

and ρr .

(RS1) Is immediate, since the standard solution to Riemann problems is in BV and Definition 2.1
amounts to juxtapose standard solutions.

(RS2) Self similarity is obvious. Off from x = 0, Rq yields weak solution because so does R.
Along x = 0, the Rankine–Hugoniot conditions are satisfied, since the jump between ρl

and ρr is a (possibly nonentropic) stationary shock.
(RS3) Note first that both limits exists and are finite since Rq(ρl, ρr) ∈ BV(R). For simplicity,

let us consider the case f ′′ < 0. We look at the left limit limx→0− f (Rq(ρl, ρr)(x)) (the
study of the right limit being essentially analogous):
(a) If Rq(ρl, ρr) =R(ρl, ρr), by Definition 2.1, (2.2) holds.
(b) If R(ρl, ρ̂) consists of a classical Lax shock with negative speed, then

limx→0−R(ρl, ρ̂)(x) = ρ̂, and (2.2) holds.
(c) If R(ρl, ρ̂) consists of a shock with positive speed, then f (ρl) < q and ρl < ρ̌, so

that Rq(ρl, ρr) =R(ρl, ρr) and (2.2) holds.
(d) If R(ρl, ρ̂) is a rarefaction, then ρl > ρ̂, so that the rarefaction fan has strictly nega-

tive speed and limx→0−R(ρl, ρ̂)(x) = ρ̂, which implies (2.2).
(RS4) Consistency directly follows from the analogous property of the standard Liu solver.

Finally, note that the region S on the left and above the thick line on Fig. 3 corresponds to the
states (ρl, ρr) where Rq(ρl, ρr) =R(ρl, ρr), i.e. when Definition 2.1 yields the standard Lax
solution. In the regionN , on the right and below the thick line, a nonclassical solution is selected
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Fig. 3. Standard (above left) and nonstandard (below right) solution to (2.1)–(2.2) as provided byRq .

Fig. 4. Representation of Rq (ρl , ρr ) for case ρl
0 = ρ̌, ρr

0 ∈ [0, ρ̂[: left, for (ρl , ρr ) ∈ S , middle for (ρl , ρr ) = (ρl
0, ρr

0)

and right for (ρl , ρr ) ∈N .

and Rq(ρl, ρr) �=R(ρl, ρr). Therefore, due to the properties of the standard Riemann solver, it
is sufficient to prove the continuity of Rq in each point (ρl

0, ρ
r
0) along the thick line.

Let us consider the case ρl
0 = ρ̌, ρr

0 ∈ [0, ρ̂[. Then, Rq(ρl
0, ρ

r
0) = R(ρl

0, ρ
r
0). The solution

Rq(ρl, ρr) for (ρl, ρr) in a neighborhood of (ρl
0, ρ

r
0) is represented in Figure 4. Let [a, b] be

any bounded real interval and let (ρl, ρr) vary in a neighborhood of (ρ̌, ρr
0). If (ρl, ρr) ∈ S ,

then Rq(ρl, ρr) = R(ρl, ρr) and continuity follows from the standard properties of the Liu
solver [14]. If (ρl, ρr) ∈N , then

b∫
a

∣∣Rq
(
ρl, ρr

)
(x) −Rq

(
ρl

0, ρ
r
0

)
(x)

∣∣dx

=
∫

[a,b]∩R−

∣∣Rq
(
ρl, ρr

)
(x) − ρ̌

∣∣dx +
∫

[a,b]∩R+

∣∣R(
ρ̌, ρr

)
(x) −R(

ρ̌, ρr
0

)
(x)

∣∣dx

�
(
ρl − ρ̌

)
(b − a) + (ρ̂ − ρ̌)Λ

(
ρl, ρ̂

)
+

∫
[a,b]∩R+

∣∣R(
ρ̌, ρr

)
(x) −R(

ρ̌, ρr
0

)
(x)

∣∣dx,

which is arbitrarily small as (ρl, ρr) approaches (ρl
0, ρ

r
0).

The cases ρl
0 ∈ ]ρ̌,R], ρr

0 = ρ̂ and ρl
0 = ρ̌, ρr

0 = ρ̂ are similar.
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4.2. Proofs of Theorem 3.4

Fix a positive n ∈ N, n > 0 and introduce in [0,R] the mesh Mn by

Mn = f −1(2−n
N

)
.

Let PLCn be the set of piecewise linear and continuous functions defined on [0,R] whose deriv-
ative exists in [0,R] \Mn. Let f n ∈ PLCn coincide with f on Mn. Clearly, if f satisfies (R1)
and (R3), then so does f n.

Similarly, introduce PCn, respectively PC+
n , as the set of piecewise constant functions defined

on R, respectively R
+, with values in Mn, respectively in f (Mn). Let qn ∈ PC+

n coincide with
q on f (Mn). Note that if q satisfies (R2), then so does qn. We write

ρn =
∑
α

ρn
αχ]xα−1,xα] with ρn

α ∈Mn,

qn = qn
0 χ[0,t1](t) +

∑
β�1

qn
βχ]tβ ,tβ+1] with qn

β ∈ 2−n
N (4.1)

and we agree that for α = 0, xα = 0. Both the approximations above are meant in the strong L1

topology, that is limn→+∞ ‖qn − q‖L1(R) = 0 and limn→+∞ ‖ρn − ρ‖L1(R) = 0.
LetDn = {ρ ∈ PCn: Ψ (ρ) ∈ BV(R;R)} and D̄n =Dn ×PC+

n . On any (ρn, qn) ∈ D̄n, written
as in (4.1), define the Glimm type functional

Υ
(
ρn, qn

) =
∑
α

∣∣Ψ (
ρn

α+1

) − Ψ
(
ρn

α

)∣∣ + 5
∑
tβ�0

∣∣qn
β+1 − qn

β

∣∣ + γ, (4.2)

where γ is defined by

γ =
⎧⎨
⎩

0 if ρn(0−) > ρ̄ > ρn(0+) and

f (ρn(0+)) = f (ρn(0−)) = qn(0),

4(f (ρ̄) − qn(0)) otherwise.

For small times, an approximate solution ρn = ρn(t, x) to (1.1) is constructed piecing together
the solutions to the Riemann problems

⎧⎪⎪⎨
⎪⎪⎩

∂tρ + ∂x(f
n(ρ)) = 0,

ρ(x,0) =
{

ρ0 if x < 0,

ρ1 if x > 0,

f (ρ(t,0)) � qn
0 ,

⎧⎪⎪⎨
⎪⎪⎩

∂tρ + ∂x(f
n(ρ)) = 0,

ρ(x,0) =
{

ρα if x < xα,

ρα+1 if x > xα,

α �= 0.

(4.3)

Note that the solutions to the former Riemann problem in (4.3) is constructed by means of Rq ,
the solutions to the latter by means of R. In both cases, for fixed t the solutions are piecewise
constant in x. Their juxtaposition yields a well-defined (exact) weak entropy solution ρn to⎧⎨

⎩
∂tρ

n + ∂x(f
n(ρn)) = 0,

ρn(x,0) = ρn
0 (x),

ρn(t,0) � qn(t)

(4.4)
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Fig. 5. Notations for the proof of Lemma 4.1.

as long as either two discontinuities collide, or the value of the constraint changes. In both cases,
a new Riemann problem arises and its solution, obtained in the former case with R and in the
latter with Rq , allows to extend ρn further in time. We define S̄n

t (ρn
0 , qn) = (ρn(t, ·),Tt q

n) the
approximate Riemann Semigroup.

Lemma 4.1. For any n ∈ N and (ρn
0 , qn) ∈ D̄n, at any interaction, the map t �→ Υ (t) =

Υ (S̄n
t (ρn

0 , qn)) either decreases by at least 2−n, or remains constant and the number of waves
does not increase.

Proof. The proof is obtained considering the different interactions separately, depending on the
position of the interaction point x̄ and on the flows of the interacting states. We will consider
interaction points x̄ � 0, the case x̄ � 0 being symmetric. It is not restrictive to assume that at
any interaction time either two waves interact or a single wave hits x = 0.

(I1) x̄ �= 0. As in the usual scalar case, either two shocks collide (and the number of waves
diminishes) or a shock and a rarefaction cancel (and Ψ diminishes), see Fig. 5, left.

(I2) A wave hits x̄ = 0 coming from the left and f (ρl) � qn(t̄ ), the front crosses x̄ = 0 and no
new wave is created. With reference to Fig. 5, second from the left, if ρm = ρr then each of
the three terms in (4.2) remains constant, hence Υ (t̄+) = Υ (t̄−). Otherwise, if ρm and ρr

result from an application of R̄, then γ increases at t̄ . However, Υ remains constant and no
new waves are created.

�Υ (t̄ ) = ∣∣Ψ (
ρl

) − Ψ
(
ρr

)∣∣ + 4
(
f (ρ̄) − q(t̄ )

)
− (∣∣Ψ (

ρl
) − Ψ

(
ρm

)∣∣ + ∣∣Ψ (
ρm

) − Ψ
(
ρr

)∣∣)
= 0.

(I3) A wave hits x̄ = 0 coming from the left and f (ρl) > qn(t̄ ). Then, necessarily, ρr < ρl � ρ̄.
In this case, new waves are created at (t̄ ,0) (see Fig. 5, second from the right). The func-
tional changes as follows:

�Υ (t̄ ) = Υ (t̄+) − Υ (t̄−)

= (∣∣Ψ (
ρl

) − Ψ (ρ̂)
∣∣ + ∣∣Ψ (ρ̂) − Ψ (ρ̌)

∣∣ + ∣∣Ψ (ρ̌) − Ψ
(
ρr

)∣∣)
− (∣∣Ψ (

ρl
) − Ψ

(
ρr

)∣∣ + 4
(
f (ρ̄) − qn(t̄ )

))
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= −2
(
f (ρl) + f (ρ̂) − 2f (ρr)

)
� −22−n,

where ρ̌ < ρ̂ are defined by f (ρ̌) = qn(t̄ ) = f (ρ̂) and we used the inequalities f (ρl) >

f (ρr) and f (ρ̂) > f (ρr).
(I4) ρl = ρr = ρ and the constraint qn jumps downward, see Fig. 5, right. Hence qn(t̄+) <

f (ρ) � qn(t̄−). Two waves exit the point (t̄ ,0). In both cases ρ < ρ̄ and ρ > ρ̄, we com-
pute:

�Υ (t̄ ) = (∣∣Ψ (ρ) − Ψ (ρ̂)
∣∣ + ∣∣Ψ (ρ̂) − Ψ (ρ̌)

∣∣ + ∣∣Ψ (ρ̌) − Ψ (ρ)
∣∣)

− (
5
∣∣q(t̄+) − q(t̄−)

∣∣ + 4
∣∣f (ρ̄) − qn(t̄−)

∣∣)
= f (ρ̂) − q(t̄−)

� −2−n,

where ρ̌+ < ρ̂+ are defined by f (ρ̌+) = qn(t̄+) = f (ρ̂+).
(I5) ρl < ρ̄ < ρr and the constraint qn jumps downward. Then qn(t̄+) < f (ρl) = f (ρr) �

qn(t̄−).

�Υ (t̄ ) = ∣∣Ψ (
ρl

) − Ψ (ρ̂)
∣∣ + ∣∣Ψ (ρ̂) − Ψ (ρ̌)

∣∣ + ∣∣Ψ (ρ̌) − Ψ
(
ρr

)∣∣
− ∣∣Ψ (

ρl
) − Ψ

(
ρr

)∣∣ − 5
∣∣qn(t̄+) − qn(t̄−)

∣∣ − 4
∣∣f (ρ̄) − q(t̄−)

∣∣
= q(t̄+) − q(t̄−)

� −2−n.

(I6) ρl > ρ̄ > ρr and the constraint qn jumps downward. We necessarily have f (ρl) = f (ρr) =
qn(t̄−) and the discontinuity at (t̄−,0) is a nonentropic jump resulting from the constrained
Riemann solver.

�Υ (t̄ ) = ∣∣Ψ (
ρl

) − Ψ (ρ̂)
∣∣ + ∣∣Ψ (ρ̂) − Ψ (ρ̌)

∣∣ + ∣∣Ψ (ρ̌) − Ψ
(
ρr

)∣∣
− (∣∣Ψ (

ρl
) − Ψ

(
ρr

)∣∣ + 5
∣∣q(t̄+) − q(t̄−)

∣∣)
= q(t̄+) − q(t̄−)

� −2−n.

(I7) ρl > ρ̄ > ρr and the constraint qn jumps upward. Here, ρ̂ � ρ̄ � ρ̌. The same computations
as in the latter case show that Υ is strictly decreasing:

�Υ (t̄ ) = ∣∣Ψ (
ρl

) − Ψ (ρ̂)
∣∣ + ∣∣Ψ (ρ̂) − Ψ (ρ̌)

∣∣ + ∣∣Ψ (ρ̌) − Ψ
(
ρr

)∣∣
− (∣∣Ψ (

ρl
) − Ψ

(
ρr

)∣∣ + 5
∣∣q(t̄+) − q(t̄−)

∣∣)
= q(t̄+) − q(t̄−)

� −2−n. �
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As an immediate consequence, we have:

Corollary 4.2. The total number of interactions is finite.

A standard procedure based on Helly’s Compactness Theorem, see [3, Theorem 2.4] allows
to exhibit a weak solution to (1.1). In the present case, thanks to Definition 3.2, the limit is also
an entropy solution.

Lemma 4.3. Problem (1.1) admits a weak entropy solution.

Proof. Since all other possible discontinuities are entropic in the classical sense, it is suffi-
cient to verify the entropy inequality (3.2) against a test function with support contained in
[T1, T2] × [−δ, δ], for some δ > 0 sufficiently small. Let us assume the weak solution ρ presents
a discontinuity along x = 0 which does not satisfy the usual classical entropy inequality. Hence,
apart from a countable set of times, we may assume ρ(t,0−) = ρ̂(t) and ρ(t,0+) = ρ̌(t), with
ρ̌(t) < ρ̄ < ρ̂(t) and f (ρ̌(t)) = q(t) = f (ρ̂(t)).

Integrating by parts the left-hand side of (3.2) one gets

∞∫
0

(
sgn

(
ρ̂(t) − k

) − sgn
(
ρ̌(t) − k

))(
q(t) − f (k)

)
ϕ(t,0) dt

+ 2

∞∫
0

(
1 − q(t)

f (ρ̄)

)
f (k)ϕ(t,0) dt � 0.

Since ϕ(t,0) � 0, it is sufficient to check that

(
sgn

(
ρ̂(t) − k

) − sgn
(
ρ̌(t) − k

))(
q(t) − f (k)

) + 2

(
1 − q(t)

f (ρ̄)

)
f (k) � 0

for a.e. t ∈ [T1, T2], and all k ∈ R. It is easy to check that if k � ρ̌ or k � ρ̂, then
one gets 2(1 − q(t)

f (ρ̄)
)f (k) � 0. On the other hand, if ρ̌ < k < ρ̂, easy calculations give

q(t)(1 − f (k)
f (ρ̄)

) � 0. �
The rest of this section is devoted to the Lipschitz estimate (CRS3).

Proposition 4.4. Fix two initial data ρ1, ρ2. Then, the corresponding weak entropy solutions
S

q
t ρ1 and S

q
t ρ2 to (1.1) with the same constraint q satisfy

∥∥S
q
t ρ1 − S

q
t ρ2

∥∥
L1 � ‖ρ1 − ρ2‖L1 .

Proof. We denote ρ1(t, x) = S
q
t ρ1(x) and ρ2(t, x) = S

q
t ρ2(x). Take k, k′ ∈ R and a smooth

function ϕ = ϕ(s, x, t, y) � 0 with compact support contained in the set where s, t > 0. Since
ρ1, ρ2 are entropy solutions to (1.1), they satisfy condition (3.2):
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∫ ∫ (∣∣ρ1(s, x) − k
∣∣∂sϕ(s, x, t, y)

+ sgn
(
ρ1(s, x) − k

)(
f

(
ρ1(s, x)

) − f (k)
)
∂xϕ(s, x, t, y)

)
dx ds

+ 2
∫ (

1 − q(s)

f (ρ̄)

)
f (k)ϕ(s,0, t, y) ds � 0, (4.5)

∫ ∫ (∣∣ρ2(t, y) − k′∣∣∂tϕ(s, x, t, y)

+ sgn
(
ρ2(t, y) − k′)(f (

ρ2(t, y)
) − f (k′)

)
∂yϕ(s, x, t, y)

)
dy dt

+ 2
∫ (

1 − q(t)

f (ρ̄)

)
f (k′)ϕ(s, x, t,0) dt � 0. (4.6)

Set now k = ρ2(t, y) in (4.5) and integrate w.r.t. t , y. Similarly, set k′ = ρ1(s, x) in (4.6) and
integrate w.r.t. s, x. Then add the two results, and get

∫ ∫ ∫ ∫ (∣∣ρ1(s, x) − ρ2(t, y)
∣∣ (∂sϕ + ∂tϕ)(s, x, t, y)

+ sgn
(
ρ1(s, x) − ρ2(t, y)

)(
f

(
ρ1(s, x)

) − f
(
ρ2(t, y)

))
(∂xϕ + ∂yϕ)(s, x, t, y)

)
dx dy ds dt

+ 2
∫ ∫ ∫ (

1 − q(s)

f (ρ̄)

)
f

(
ρ2(t, y)

)
ϕ(s,0, t, y) dy ds dt

+ 2
∫ ∫ ∫ (

1 − q(t)

f (ρ̄)

)
f

(
ρ1(s, x)

)
ϕ(s, x, t,0) dx ds dt � 0. (4.7)

Take

ϕ(s, x, t, y) = ψ

(
s + t

2
,
x + y

2

)
δh

(
s − t

2

)
δh

(
x − y

2

)
, (4.8)

where ψ = ψ(T ,X) � 0 is a smooth function with compact support contained in the half plane
T > 0, and δh, h � 1, is a smooth approximation of the Dirac mass at the origin. More precisely,
given a C∞ function δ : R → [0,1] such that

∫
R

δ(z) dz = 1, δ(z) = 0 for all z /∈ [−1,1], define
δh(z) = hδ(hz) and αh(z) = ∫ z

−∞ δh(s) ds. We then have

(∂sϕ + ∂tϕ)(s, x, t, y) = ∂T ψ

(
s + t

2
,
x + y

2

)
δh

(
s − t

2

)
δh

(
x − y

2

)
, (4.9)

(∂xϕ + ∂yϕ)(s, x, t, y) = ∂Xψ

(
s + t

2
,
x + y

2

)
δh

(
s − t

2

)
δh

(
x − y

2

)
. (4.10)

For h sufficiently large, the support of ϕ is contained in the set where s > 0, t > 0. Replac-
ing (4.8), (4.9) and (4.10) in (4.7), and performing the change of variables

T = s + t

2
, S = s − t

2
, X = x + y

2
, Y = x − y

2
,

inequality (4.7) becomes
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∫ ∫ ∫ ∫ (∣∣ρ1(T + S,X + Y) − ρ2(T − S,X − Y)
∣∣∂T ψ(T ,X)

+ sgn
(
ρ1(T + S,X + Y) − ρ2(T − S,X − Y)

)(
f

(
ρ1(T + S,X + Y)

)
− f

(
ρ2(T − S,X − Y)

))
∂Xψ(T ,X)

)
δh(S)δh(Y )dX dY dS dT

+ 2
∫ ∫ ∫ (

1 − q(T + S)

f (ρ̄)

)
f

(
ρ2(T − S,y)

)
δh(S)δh

(
−y

2

)
ψ

(
T ,

y

2

)
dy dS dT

+ 2
∫ ∫ ∫ (

1 − q(T − S)

f (ρ̄)

)
f

(
ρ1(T + S,x)

)
δh(S)δh

(
x

2

)
ψ

(
T ,

x

2

)
dx dS dT

� 0. (4.11)

We let h → ∞ in (4.11) and we rename the variables T , X, thus obtaining

∫ ∫ (∣∣ρ1(t, x) − ρ2(t, x)
∣∣ ∂tψ(t, x)

+ sgn
(
ρ1(t, x) − ρ2(t, x)

)(
f

(
ρ1(t, x)

) − f
(
ρ2(t, x)

))
∂xψ(t, x)

)
dx dt

+ 2
∫ (

1 − q(t)

f (ρ̄)

)(
f

(
ρ1(t,0)

) + f
(
ρ2(t,0)

))
ψ(t,0) dt � 0. (4.12)

For ε > 0, let us define the Lipschitz function

Θε(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1
ε
x − 1, x ∈ [−2ε,−ε],

0, x ∈ [−ε, ε],
1
ε
x − 1, x ∈ [ε,2ε],

1, |x| � 2ε.

Note that Θε → 1 in L1(R) as ε → 0, and it vanishes in a neighborhood of x = 0. Take any Φ

smooth with compact support contained in the half-plane t > 0, and set ψ = ΦΘε in (4.12):

∫ ∫ (|ρ1 − ρ2|∂tΦ + sgn(ρ1 − ρ2)
(
f (ρ1) − f (ρ2)

)
∂xΦ

)
Θε dx dt + J (ε) � 0,

where we have set J (ε) = ∫∫
sgn(ρ1 −ρ2)(f (ρ1)−f (ρ2))ΦΘ ′

ε dx dt . We now pass to the limit
as ε → 0. Observe that

lim
ε→0

J (ε) = lim
ε→0

1

ε

∞∫
0

{ −ε∫
−2ε

sgn(ρ1 − ρ2)
(
f (ρ1) − f (ρ2)

)
Φ dx

−
2ε∫

ε

sgn(ρ1 − ρ2)
(
f (ρ1) − f (ρ2)

)
Φ dx

}
dt
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=
∞∫

0

{
sgn

(
ρ1(t,0−) − ρ2(t,0−)

)(
f

(
ρ1(t,0−)

) − f
(
ρ2(t,0−)

))

− sgn
(
ρ1(t,0+) − ρ2(t,0+)

)(
f

(
ρ1(t,0+)

) − f
(
ρ2(t,0+)

))}
dt,

and the integrand in the last term is non-negative for a.e. t , by the Rankine–Hugoniot conditions
satisfied by the traces of ρ1 and ρ2 at x = 0, and the concavity of the function f . Hence we
recover ∫ ∫ (|ρ1 − ρ2| ∂tΦ + sgn(ρ1 − ρ2)

(
f (ρ1) − f (ρ2)

)
∂xΦ

)
dx dt � 0,

and we can proceed with standard arguments to get the conclusion. �
4.3. Proof of Theorems 3.5 and 3.6

Proof of Theorem 3.5. The proof follows closely the construction in [4]. We explain below the
main arguments, leaving the details to Appendix A.

We denote fε(ρ) = kε(t, x)f (ρ), and define the nonlinear mapping

Ψε(ρ) = sgn(ρ − ρ̄)
(
fε(ρ̄) − fε(ρ)

)
. (4.13)

For any T > 0, let ρn
0 , qn be piecewise constant approximations of ρ0, q defined as in (4.1), such

that

lim
n→+∞

∥∥ρn
0 − ρ0

∥∥
L1(R)

= 0, Υε

(
ρn

0

)
� TV(Ψε ◦ ρ0),

lim
n→+∞

∥∥qn − q
∥∥

L1(R+)
= 0, TV

(
qn, [0, T ]) � TV

(
q, [0, T ]). (4.14)

We construct now a wave front tracking approximate solution ρn to (1.3) as in [4,10]. At each
time t ∈ ]tβ−1, tβ [, ρn is made of constant states separated either by ρ-waves, or by kε-waves
sited at x = −ε, ε. To measure the strength of a wave w connecting two states ρ− and ρ+, we
use the Temple functional

Υε(w) =
⎧⎨
⎩

|�Ψε| if w is a ρ-wave,

4|�fε(ρ̄)| if w is a kε-wave and ρ− < ρ+,

2|�fε(ρ̄)| if w is a kε-wave and ρ− > ρ+.

We define the functional Υε(ρ
n(t)) as the sum of the strengths of the waves. Interaction estimates

similar to those in Lemma 4.1 ensure that Υε verifies

Υε

(
ρn(t+)

)
� Υε

(
ρn(t−)

) + 5
∣∣qn(t+) − qn(t−)

∣∣ (4.15)

at any interaction (see Appendix A for a detailed analysis of all possible interactions). It follows
that for every t ∈ [0, T ]
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Υε

(
ρn(t)

)
� Υε

(
ρn

0

) + 5
∑
β�1

∣∣qn
β − qn

β−1

∣∣ � TV(Ψε ◦ ρ0) + 8f (ρ̄) + 5 TV(q)

� TV(Ψ ◦ ρ0) + 8f (ρ̄) + 5TV(q).

Hence the total variation of Ψε(ρ
n) is bounded independently of n (and of ε). An application of

Helly’s compactness theorem [3, Chapter 2] yields the existence of solutions to (1.3). Uniqueness
and the entropy inequalities are proved as in Lemma 4.3 and Proposition 4.4. �
Proof of Theorem 3.6. Fix a flow f , an initial datum ρ0 ∈D and a constraint q . Approximate
ρ0 in L1 with a PC function ρn

0 valued in Mn and such that Υε(ρ
n
0 ) � TV(Ψε ◦ ρ0). For any

positive sequence εn converging to 0, let ρn be an approximate solution to (1.3) constructed as
in the proof of Theorem 3.5 with ε = εn and ρεn be the exact solution to (1.3). Then, for all n,

Υεn

(
ρn(t)

)
� TV(Ψεn ◦ ρ0) + 8f (ρ̄) + 5 TV(q)

� TV(Ψ ◦ ρ0) + 8f (ρ̄) + 5 TV(q).

An application of Helly’s theorem ensures the convergence of the ρn to a limit ρ. To show that
ρ solves (1.1), it is enough to pass to the limit in n under the integrals in the definition of weak
entropy solution. Finally,

lim
n→+∞

∥∥ρεn(t) − ρ(t)
∥∥ � lim

n→+∞
∥∥ρεn(t) − ρn(t)

∥∥ + lim
n→+∞

∥∥ρn(t) − ρ(t)
∥∥ = 0

completing the proof. �
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Appendix A

We present here the study of the various interactions that leads to (4.15). We will focus on
interactions involving kε-waves at x = −ε, the case x = ε being completely symmetric. We
consider first the interaction between a ρ-wave and a kε-wave, see Figs. 6–8. Then we list the
various interaction types between a kε-wave and a q-discontinuity, see Figs. 10–13. Finally we
analyze how a ρ-wave behaves across a q-discontinuity, see Fig. 15.

(Iε1): A ρ-wave hits x = −ε coming from the left and f (ρl) � qn(t̄ ). We assume ρr > ρ̄

(the other case being entirely analogous) and recall that fε(ρ1) = qn(t̄ )f (ρ1)/f (ρ̄) = f (ρr)

and fε(ρ2) = qn(t̄ )f (ρ2)/f (ρ̄) = f (ρl):

�Υε(t̄ ) = 4
∣∣f (ρ̄) − qn(t̄ )

∣∣ + ∣∣Ψε(ρ2) − Ψε(ρ1)
∣∣

− ∣∣Ψ (
ρl

) − Ψ
(
ρr

)∣∣ − 2
∣∣f (ρ̄) − qn(t̄ )

∣∣ = 0.
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Fig. 6. Notations for case (Iε1).

Fig. 7. Notations for case (Iε2).

(Iε2): A ρ-wave hits x = −ε coming from the left and f (ρl) > qn(t̄ ):

�Υε(t̄ ) = ∣∣Ψ (
ρl

) − Ψ (ρ̂)
∣∣ + 2

∣∣f (ρ̄) − qn(t̄ )
∣∣ + ∣∣Ψε(ρ̄) − Ψε(ρ1)

∣∣
− ∣∣Ψ (

ρl
) − Ψ

(
ρr

)∣∣ − 4
∣∣f (ρ̄) − qn(t̄ )

∣∣
= −2

(
f

(
ρl

) − f
(
ρr

))
< 0.

(Iε3): A ρ-wave hits x = −ε coming from the right and ρl � ρ̄. Since fε(ρ1) = qn(t̄ )f (ρ1)/

f (ρ̄) = f (ρl) and fε(ρ2) = qn(t̄ )f (ρ2)/f (ρ̄) = f (ρr):

�Υε(t̄ ) = ∣∣Ψ (ρ2) − Ψ (ρ1)
∣∣ + 2

∣∣f (ρ̄) − qn(t̄ )
∣∣

− 2
∣∣f (ρ̄) − qn(t̄ )

∣∣ − ∣∣Ψε

(
ρl

) − Ψε

(
ρr

)∣∣ = 0.

(Iε4): A ρ-wave hits x = −ε coming from the right and ρl < ρ̄:

�Υε(t̄ ) = ∣∣Ψ (ρ2) − Ψ (ρ1)
∣∣ + 2

∣∣f (ρ̄) − qn(t̄ )
∣∣

− 4
∣∣f (ρ̄) − qn(t̄ )

∣∣ − ∣∣Ψε

(
ρl

) − Ψε

(
ρr

)∣∣ = 0.
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Fig. 8. Notations for case (Iε3).

Fig. 9. Notations for case (Iε4).

(Iε5): The constraint qn jumps downward at t̄ . Assume first that ρ � ρ̄ and qn(t̄−) � f (ρ) >

qn(t̄+):

�Υε(t̄ ) = ∣∣Ψ (ρ) − Ψ (ρ̂)
∣∣ + 2

∣∣f (ρ̄) − qn(t̄+)
∣∣ + ∣∣Ψε(ρ̄) − Ψε(ρ1)

∣∣
− 4

∣∣f (ρ̄) − qn(t̄−)
∣∣

= 4qn(t̄−) − 2qn(t̄+) − f (ρ)

(
1 + qn(t̄+)

qn(t̄−)

)

� 4qn(t̄−) − 2qn(t̄+) − qn(t̄+)

(
1 + qn(t̄+)

qn(t̄−)

)

=
(

4 + qn(t̄+)

qn(t̄−)

)(
qn(t̄−) − qn(t̄+)

)
� 5

(
qn(t̄−) − qn(t̄+)

)
,

since kε(t̄+, x)f (ρ1) = qn(t̄+)

qn(t̄−)
f (ρ).



Aut
ho

r's
   

pe
rs

on
al

   
co

py

672 R.M. Colombo, P. Goatin / J. Differential Equations 234 (2007) 654–675

Fig. 10. Notations for case (Iε5).

Fig. 11. Notations for case (Iε6).

(Iε6): The constraint qn jumps downward at t̄ . If ρ � ρ̄ and f (ρ) � qn(t̄+):

�Υε(t̄ ) = 4
∣∣f (ρ̄) − qn(t̄+)

∣∣ + ∣∣Ψε(ρ2) − Ψε(ρ1)
∣∣ − 4

∣∣f (ρ̄) − qn(t̄−)
∣∣

= 4
(
qn(t̄−) − qn(t̄+)

) + f (ρ)

qn(t̄−)

(
qn(t̄−) − qn(t̄+)

)
� 5

(
qn(t̄−) − qn(t̄+)

)
,

since kε(t̄+, x)f (ρ1) = qn(t̄+)

qn(t̄−)
f (ρ) and kε(t̄+, x)f (ρ2) = f (ρ).

(Iε7): The constraint qn jumps downward at t̄ . Assume now that ρ > ρ̄, and qn(t̄−) � f (ρ) >

qn(t̄+):

�Υε(t̄ ) = ∣∣Ψ (ρ) − Ψ (ρ2)
∣∣ + 2

∣∣f (ρ̄) − qn(t̄+)
∣∣ − 2

∣∣f (ρ̄) − qn(t̄−)
∣∣

= 2
(
qn(t̄−) − qn(t̄+)

) + f (ρ)

qn(t̄−)

(
qn(t̄−) − qn(t̄+)

)
� 3

(
qn(t̄−) − qn(t̄+)

)
,
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since f (ρ2) = qn(t̄+)

qn(t̄−)
f (ρ). The case f (ρ) � qn(t̄+) is handled similarly.

(Iε8): The constraint qn jumps upward at t̄ . If ρ � ρ̄:

�Υε(t̄ ) = 4
∣∣f (ρ̄) − qn(t̄+)

∣∣ + ∣∣Ψε(ρ2) − Ψε(ρ1)
∣∣ − 4

∣∣f (ρ̄) − qn(t̄−)
∣∣

= 4
(
qn(t̄−) − qn(t̄+)

) + f (ρ)

qn(t̄−)

(
qn(t̄+) − qn(t̄−)

)
� −3

(
qn(t̄+) − qn(t̄−)

)
< 0.

(Iε9): The constraint qn jumps upward at t̄ . If ρ > ρ̄:

�Υε(t̄ ) = ∣∣Ψ (ρ) − Ψ (ρ2)
∣∣ + 2

∣∣f (ρ̄) − qn(t̄+)
∣∣ − 2

∣∣f (ρ̄) − qn(t̄−)
∣∣

= 2
(
qn(t̄−) − qn(t̄+)

) + f (ρ)

qn(t̄−)

(
qn(t̄+) − qn(t̄−)

)
� −(

qn(t̄+) − qn(t̄−)
)
< 0.

Fig. 12. Notations for case (Iε7).

Fig. 13. Notations for case (Iε8).
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Fig. 14. Notations for case (Iε9).

Fig. 15. Notations for case (Iε10).

(Iε10): In the interval ]−ε, ε[, the constraint qn has a jump at t = t̄ . Consider a ρ-wave
between ρl and ρr , with ρl � ρ̄ < ρr (the other cases are similar).

�Υε(t̄ ) = �
∣∣Ψε

(
ρl

) − Ψε

(
ρr

)∣∣
= 2

(
qn(t̄+) − qn(t̄−)

) + qn(t̄−)

f (ρ̄)

(
f

(
ρl

) + f
(
ρr

))(
1 − qn(t̄+)

qn(t̄−)

)

� 4
∣∣qn(t̄+) − qn(t̄−)

∣∣,
since kε(t̄+, x)f (ρ) = qn(t̄+)

qn(t̄−)
kε(t̄−, x)f (ρ).
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