Deep Generative Learning

Deep Learning for Computer Vision

Valeriya Strizhkova 15.03.23

About myself

Valeriya Strizhkova

2nd year PhD student @ Inria & 3iA & UCA
valeriya.strizhkova@inria.fr

Research topics:

- emotion detection
- computer vision
- deep learning

Outline

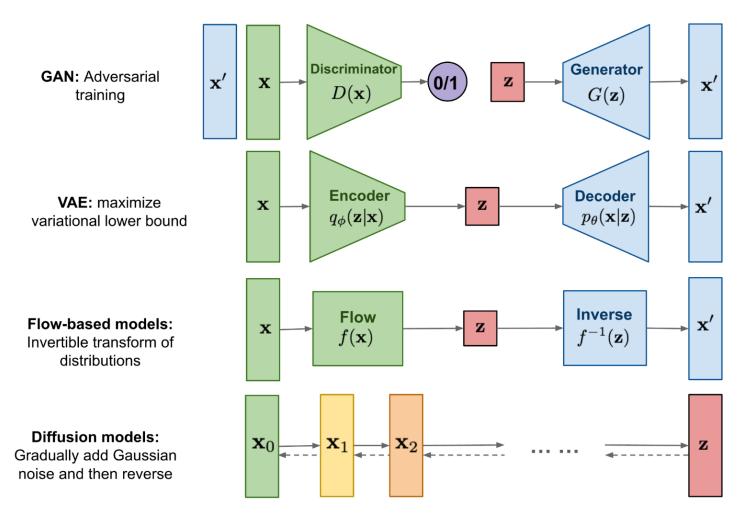
- Introduction
 - Overview of Deep Generative Models
 - OpenAl's CLIP
- Variational Autoencoders
- Autoregressive Models
- Diffusion Models
- Generative Adversarial Networks
- Evaluation

There are many interesting recent development in deep learning...The most important one, in my opinion, is adversarial training (also called GAN for Generative Adversarial Networks). This, and the variations that are now being proposed, is the most interesting idea in the last 10 years in ML.

Yann LeCun

The Landscape of Deep Generative Learning

Normalizing Autoregressive Flows Models Variational Autoencoders Denoising Generative Energy-based **Diffusion Models** Adversarial Networks Models 2022-tutorial-diffusion-models.github.io



A question to ChatGPT

Q: When is it better to use GAN and when diffusion models?

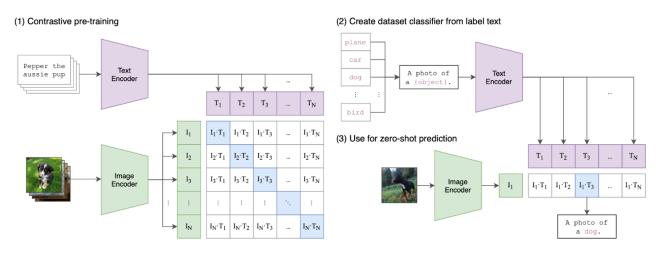
A: The choice between using GANs and diffusion models depends on the specific characteristics of the data being generated and the requirements of the generative modeling task at hand.

In general, GANs are often preferred for tasks that require generating high-quality, visually realistic images, as they have been shown to produce photorealistic images with fine details and textures. GANs are also well-suited for image-to-image translation tasks, such as style transfer or super-resolution, where the goal is to modify an existing image in a particular way while preserving its underlying structure and content.

On the other hand, diffusion models are often preferred for tasks that involve modeling complex distributions or generating samples that exhibit long-range dependencies. Diffusion models have been shown to be effective at modeling complex image and video datasets, and can generate high-quality samples that capture the underlying structure and dynamics of the data. Diffusion models can also be used for tasks such as image denoising or inpainting, where the goal is to remove noise or missing information from an image while preserving its structure and content.

OpenAl's CLIP

- encodes image, and text to similar embeddings
- is trained with contrastive learning, maximizing cosine similarity of corresponding image and text
- CLIP's output image embeddings contain both style and semantics
- is used in DALL-E 1, DALL-E 2, image-text classification



Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever. Learning Transferable Visual Models From Natural Language Supervision. ICML 2021 https://arxiv.org/abs/2103.00020 https://openai.com/research/clip

CLIP Architecture

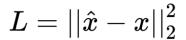
- text and image have separate transformer encoders
- visual encoder is ViT (vision transformer)
- text encoder is GPT-2 transformer.
- the fixed-length text embedding is extracted from [EOS] token position
- text token embeddings and image patch embeddings also available
- trained on 256 GPUs for 2 weeks

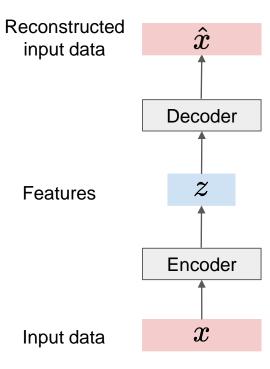
Outline

- Introduction
- Variational Autoencoders
 - Architecture
 - Maximization of variational lower bound
 - dVAE
- Autoregressive Models
- Diffusion Models
- Generative Adversarial Networks
- Evaluation

Autoencoders (non-variational)

Unsupervised method for learning latent features from data without any labels.

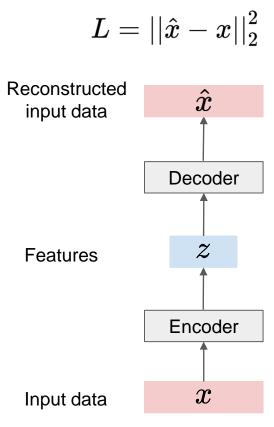




Autoencoders (non-variational)

Unsupervised method for learning latent features from data without any labels.

Features need to be **lower dimensional** than the data.

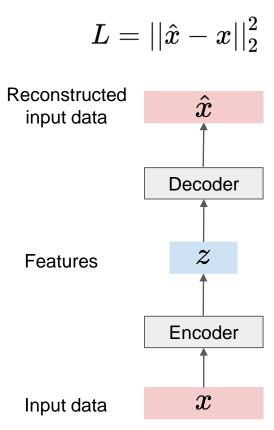


Autoencoders (non-variational)

Unsupervised method for learning latent features from data without any labels.

Features need to be **lower dimensional** than the data.

Limitation: no way to produce any new content



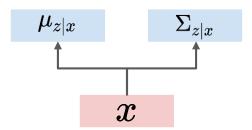
 VAE is an autoencoder that learns latent features from data and enables generative process.

- VAE is an autoencoder that learns latent features from data and enables generative process.
- Instead of encoding an input as a single point, VAE encodes it as a distribution over the latent space.

Encoder network inputs data x and outputs distribution over latent codes z

Encoder Network

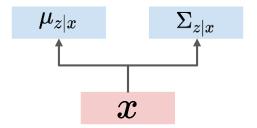
$$q_{\phi}(z|x) = N(\mu_{z|x}, \Sigma_{z|x})$$



Encoder network inputs data x and outputs distribution over latent codes z

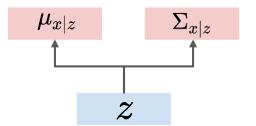
Decoder network inputs latent code z and outputs distribution over data x

$$q_{\phi}(z|x) = N(\mu_{z|x}, \Sigma_{z|x})$$



Decoder Network

$$p_{ heta}(x|z) = N(\mu_{x|z}, \Sigma_{x|z})$$



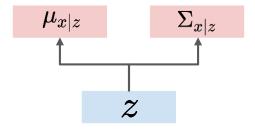
Decoder neural network represent p(x|z) where x is an image, z is latent features to generate x.

$$p_{ heta}(x|z) = N(\mu_{x|z}, \Sigma_{x|z})$$



Decoder neural network represent p(x|z) where x is an image, z is latent features to generate x. Assume prior p(z) is standard unit diagonal Gaussian.

$$p_{ heta}(x|z) = N(\mu_{x|z}, \Sigma_{x|z})$$

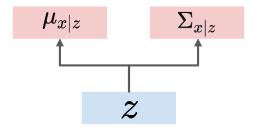


Decoder neural network represent p(x|z) where x is an image, z is latent features to generate x.

Assume prior p(z) is standard unit diagonal Gaussian.

How to train this model?

$$p_{ heta}(x|z) = N(\mu_{x|z}, \Sigma_{x|z})$$



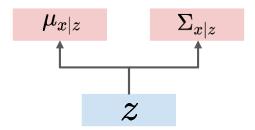
Decoder neural network represent p(x|z) where x is an image, z is latent features to generate x.

Assume prior p(z) is standard unit diagonal Gaussian.

How to train this model?

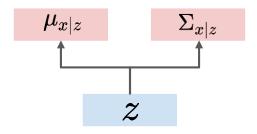
Maximize likelihood of data

$$p_{ heta}(x|z) = N(\mu_{x|z}, \Sigma_{x|z})$$



Maximize likelihood of data

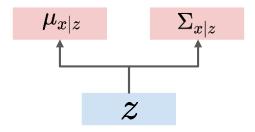
$$p_{ heta}(x) = \int p_{ heta}(x,z) dz = \int p_{ heta}(x|z) p_{ heta}(z) dz$$



Maximize likelihood of data

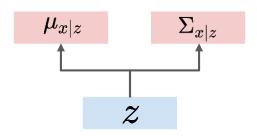
$$p_{ heta}(x) = \int p_{ heta}(x,z) dz = \int p_{ heta}(x|z) p_{ heta}(z) dz$$

Problem: impossible to integrate over all z



Maximize likelihood of data

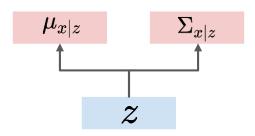
Bayes' Rule:
$$p_{ heta}(x) = rac{p_{ heta}(x|z)p_{ heta}(z)}{p_{ heta}(z|x)}$$



Maximize likelihood of data

Bayes' Rule: $p_{ heta}(x) = rac{p_{ heta}(x|z)p_{ heta}(z)}{p_{ heta}(z|x)}$

Problem: no way to compute $p_{\theta}(z|x)$

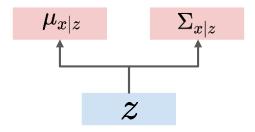


Maximize likelihood of data

Bayes' Rule: $p_{ heta}(x) = rac{p_{ heta}(x|z)p_{ heta}(z)}{p_{ heta}(z|x)}$

Problem: no way to compute $p_{\theta}(z|x)$

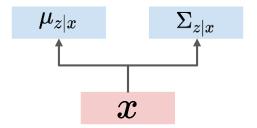
Solution: train another network (encoder) that learns $q_\phi(z|x)pprox p_ heta(z|x)$



Encoder network inputs data x and outputs distribution over latent codes z

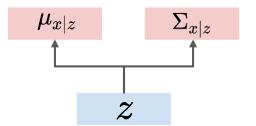
Decoder network inputs latent code z and outputs distribution over data x

$$q_{\phi}(z|x) = N(\mu_{z|x}, \Sigma_{z|x})$$



Decoder Network

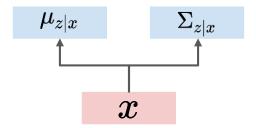
$$p_{ heta}(x|z) = N(\mu_{x|z}, \Sigma_{x|z})$$



Jointly train **encoder** q and **decoder** p

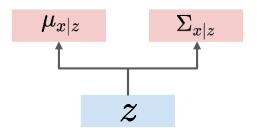
Encoder Network

$$q_{\phi}(z|x) = N(\mu_{z|x}, \Sigma_{z|x})$$



Decoder Network

$$p_{ heta}(x|z) = N(\mu_{x|z}, \Sigma_{x|z})$$



$$\log p_{ heta}(x) = \log rac{p_{ heta}(x|z)p(z)}{p_{ heta}(z|x)}$$

$$\log p_{ heta}(x) = \log rac{p_{ heta}(x|z)p(z)}{p_{ heta}(z|x)} = \log rac{p_{ heta}(x|z)p(z)q_{\phi}(z|x)}{p_{ heta}(z|x)q_{\phi}(z|x)}$$

$$\log p_{ heta}(x) = \log rac{p_{ heta}(x|z)p(z)}{p_{ heta}(z|x)} = \log rac{p_{ heta}(x|z)p(z)q_{\phi}(z|x)}{p_{ heta}(z|x)q_{\phi}(z|x)}$$

$$= \log p_{ heta}(x|z) - \log rac{q_{\phi}(z|x)}{p(z)} + \log rac{q_{\phi}(z|x)}{p_{ heta}(z|x)}$$

$$\log p_{ heta}(x) = \log rac{p_{ heta}(x|z)p(z)}{p_{ heta}(z|x)} = \log rac{p_{ heta}(x|z)p(z)q_{\phi}(z|x)}{p_{ heta}(z|x)q_{\phi}(z|x)}$$

$$= \log p_{ heta}(x|z) - \log rac{q_{\phi}(z|x)}{p(z)} + \log rac{q_{\phi}(z|x)}{p_{ heta}(z|x)}$$

$$egin{aligned} &= E_z[\log p_{ heta}(x|z)] - E_z[\log rac{q_{\phi}(z|x)}{p(z)}] + E_z[\log rac{q_{\phi}(z|x)}{p_{oldsymbol{q}}(z|x)}] \end{aligned}$$

$$egin{aligned} \log p_{ heta}(x) &= \log rac{p_{ heta}(x|z)p(z)}{p_{ heta}(z|x)} = \log rac{p_{ heta}(x|z)p(z)q_{\phi}(z|x)}{p_{ heta}(z|x)q_{\phi}(z|x)} \ &= E_z[\log p_{ heta}(x|z)] - E_z[\log rac{q_{\phi}(z|x)}{p(z)}] + E_z[\log rac{q_{\phi}(z|x)}{p_{ heta}(z|x)}] \end{aligned}$$

$$=E_{z\sim q_\phi(z|x)}[\log p_ heta(x|z)]-KL(q_\phi(z|x),p(z))+KL(q_\phi(z|x),p_ heta(z|x))$$

$$\log p_{ heta}(x) = \log rac{p_{ heta}(x|z)p(z)}{p_{ heta}(z|x)} = \log rac{p_{ heta}(x|z)p(z)q_{\phi}(z|x)}{p_{ heta}(z|x)q_{\phi}(z|x)}$$

$$E_z[\log p_{ heta}(x|z)] - E_z[\log rac{q_{\phi}(z|x)}{p(z)}] + E_z[\log rac{q_{\phi}(z|x)}{p_{ heta}(z|x)}]$$

$$=E_{z\sim q_{\phi}(z|x)}[\log p_{ heta}(x|z)]-KL(q_{\phi}(z|x),p(z))+KL(q_{\phi}(z|x),p_{ heta}(z|x))$$

$$KL \geq 0$$
 => dropping the last term gives a lower bound on the data likelihood

Kullback-Leibler Divergence: $KL(p,q) = E_{x \sim p}[lograc{p(x)}{g(x)}]$

$$\log p_{ heta}(x) = \log rac{p_{ heta}(x|z)p(z)}{p_{ heta}(z|x)} = \log rac{p_{ heta}(x|z)p(z)q_{\phi}(z|x)}{p_{ heta}(z|x)q_{\phi}(z|x)}$$

$$=E_z[\log p_ heta(x|z)]-E_z[\log rac{q_\phi(z|x)}{p(z)}]+E_z[\log rac{q_\phi(z|x)}{p_ heta(z|x)}]$$

$$=E_{z\sim q_\phi(z|x)}[\log p_ heta(x|z)]-KL(q_\phi(z|x),p(z))+KL(q_\phi(z|x),p_ heta(z|x))$$

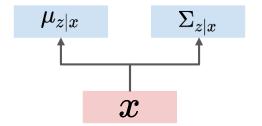
$$\log p_{ heta}(x) \geq E_{z \sim q_{\phi}(z|x)}[\log p_{ heta}(x|z)] - KL(q_{\phi}(z|x), p(z))$$

Jointly train **encoder** q and **decoder** p to maximize the **variational lower bound** on the data likelihood

$$\log p_{ heta}(x) \geq E_{z \sim q_{\phi}(z|x)}[\log p_{ heta}(x|z)] - KL(q_{\phi}(z|x), p(z))$$

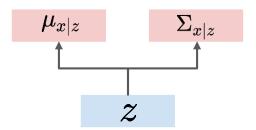
Encoder Network

$$q_{\phi}(z|x) = N(\mu_{z|x}, \Sigma_{z|x})$$



Decoder Network

$$p_{ heta}(x|z) = N(\mu_{x|z}, \Sigma_{x|z})$$



Closed form solution when q_{ϕ} is diagonal Gaussian and p is unit Gaussian:

$$\log p_{ heta}(x) \geq E_{z \sim q_{\phi}(z|x)}[\log p_{ heta}(x|z)] - KL(q_{\phi}(z|x), p(z))$$

$$-KL(q_{\phi}(z|x),p(z))=\int_{Z}q_{\phi}(z|x)\lograc{p(z)}{q_{\phi}(z|x)}dz$$

$$I=\int_Z N(z,\mu_{z|x},\Sigma_{z|x})\lograc{N(z,0,I)}{N(z,\mu_{z|x},\Sigma_{z|x})}dz$$

$$=\sum_{j=1}^{J}(1+\log((\sum_{z|x})_{j}^{2})-(\mu_{z|x})_{j}^{2}-(\Sigma_{z|x})_{j}^{2})$$

Closed form solution when q_{ϕ} is diagonal Gaussian and p is unit Gaussian:

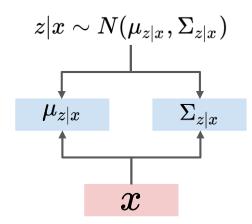
$$\log p_{ heta}(x) \geq \overline{E_{z \sim q_{\phi}(z|x)}[\log p_{ heta}(x|z)]} - KL(q_{\phi}(z|x), p(z))$$

 $E_{z\sim q_\phi(z|x)}[\log p_ heta(x|z)]$ is data reconstruction term

Train by maximize the **variational lower bound**.

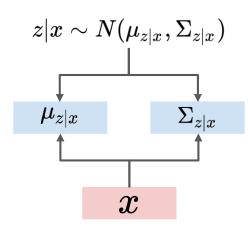
$$E_{z\sim q_\phi(z|x)}[\log p_\Theta(x|z)] - KL(q_\phi(z|x),p(z))$$

1. The input is **encoded** as distribution over the latent space



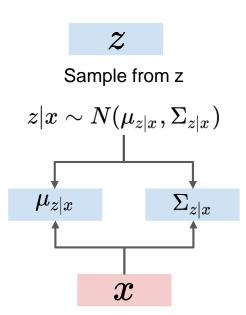
$$E_{z\sim q_\phi(z|x)}[\log p_\Theta(x|z)] - KL(q_\phi(z|x),p(z))$$

- The input is **encoded** as distribution over the latent space
- 2. Encoder output should match prior p(z)



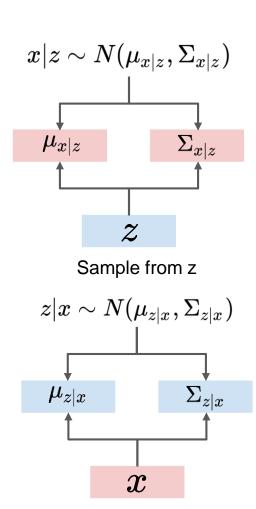
$$E_{z\sim q_\phi(z|x)}[\log p_\Theta(x|z)] - KL(q_\phi(z|x),p(z))$$

- The input is **encoded** as distribution over the latent space
- 2. Encoder output should match prior p(z)
- A point from the latent space is sampled from that distribution



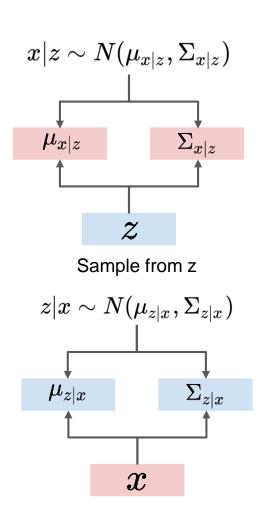
$$E_{z\sim q_\phi(z|x)}[\log p_\Theta(x|z)] - KL(q_\phi(z|x),p(z))$$

- The input is **encoded** as distribution over the latent space
- 2. Encoder output should match prior p(z)
- A point from the latent space is sampled from that distribution
- The sampled point is decoded



$$E_{z\sim q_\phi(z|x)}[\log p_\Theta(x|z)] - KL(q_\phi(z|x),p(z))$$

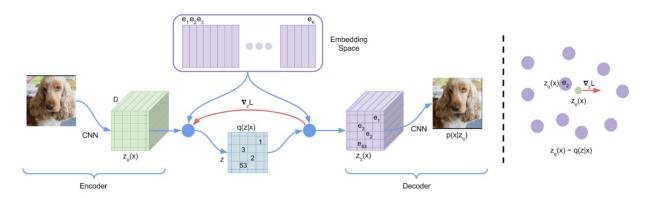
- The input is **encoded** as distribution over the latent space
- 2. Encoder output should match prior p(z)
- 3. A point from the latent space is sampled from that distribution
- 4. The sampled point is **decoded**
- 5. The reconstruction error is computed



Learned data manifold for generative models with two-dimensional latent space:

Discrete Variational Auto-Encoder (dVAE)

- introduced in VQ-VAE 1 [1] and VQ-VAE-2 [2]
- image encoder maps to latent 32x32 grid of embeddings
- vector quantization maps to 8k code words
- decoder maps from quantized grid to the image
- copy gradients from decoder input z to the encoder output

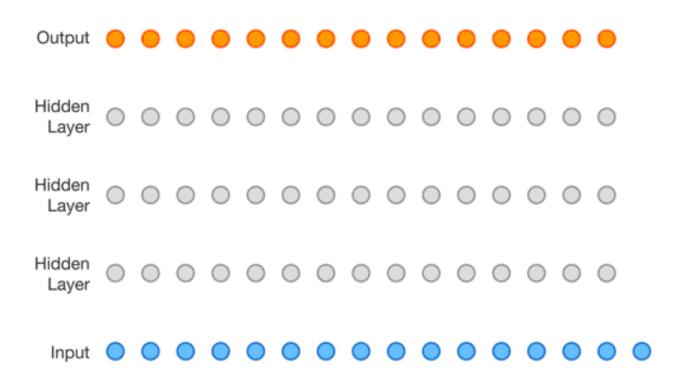


[1] Aaron van den Oord, Oriol Vinyals, Koray Kavukcuoglu. Neural Discrete Representation Learning. NeurIPS 2017 https://arxiv.org/abs/1711.00937

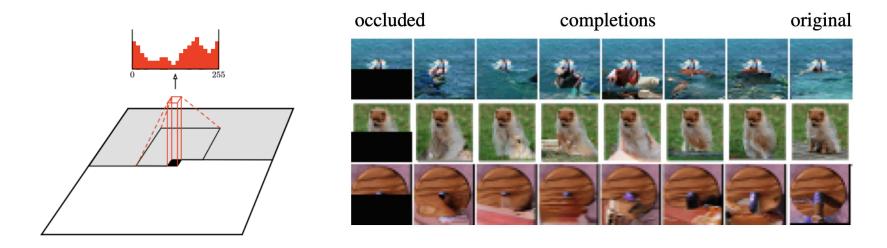
Outline

- Introduction
- Variational Autoencoders
- Autoregressive Models
 - Image generation
 - PixelCNN
 - Text-to-image generation
 - DALL-E 1
 - Text-to-video generation
 - Phenaki
- Diffusion Models
- Generative Adversarial Networks
- Evaluation

Autoregressive Models



Pixel Recurrent Neural Networks



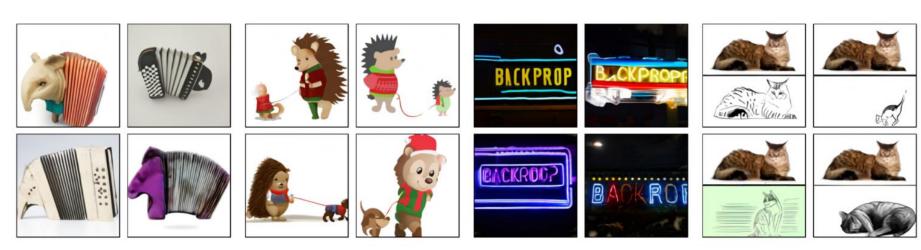
DALL-E 1

- is introduced by OpenAl
- generates 256×256 images from text via dVAE
- autoregressively generates image tokens from textual tokens on a discrete latent space

DALL-E 1 Training

- 1. train encoder and decoder image of image into 32x32 grid of 8k possible code word tokens (dVAE)
- 2. concatenate encoded text tokens with image tokens into single array
- 3. train to predict next image token from the preceding tokens (autoregressive transformer)
- 4. discard the image encoder, keep only image decoder and next token predictor

DALL-E 1 Results



accordion.

sweater walking a dog

(a) a tapir made of accordion. (b) an illustration of a baby (c) a neon sign that reads (d) the exact same cat on the a tapir with the texture of an hedgehog in a christmas "backprop". a neon sign that top as a sketch on the bottom reads "backprop". backprop neon sign

DALL-E 1 Results

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, Ilya Sutskever. Zero-Shot Text-to-Image Generation. PMLR 2021 https://arxiv.org/abs/2102.12092

Phenaki

The water is magical

Prompts used:

A photorealistic teddy bear is swimming in the ocean at San Francisco
The teddy bear goes under water
The teddy bear keeps swimming under the water with colorful fishes
A panda bear is swimming under water

Chilling on the beach

Prompts used:
A teddy bear diving in the ocean
A teddy bear emerges from the water
A teddy bear walks on the beach
Camera zooms out to the teddy bear in
the campfire by the beach

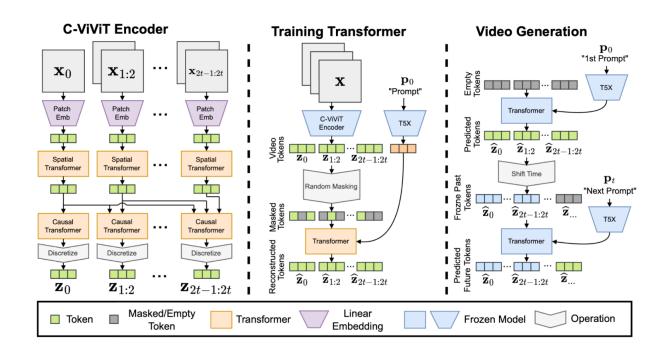
Fireworks on the spacewalk

Prompts used:
Side view of an astronaut is walking through a puddle on mars
The astronaut is dancing on mars
The astronaut walks his dog on mars
The astronaut and his dog watch fireworks

Phenaki

Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo, Han Zhang, Mohammad Taghi Saffar, Santiago Castro, Julius Kunze, Dumitru Erhan. Phenaki: Variable Length Video Generation From Open Domain Textual Description. 2022 https://arxiv.org/abs/2210.02399 https://phenaki.video

Phenaki

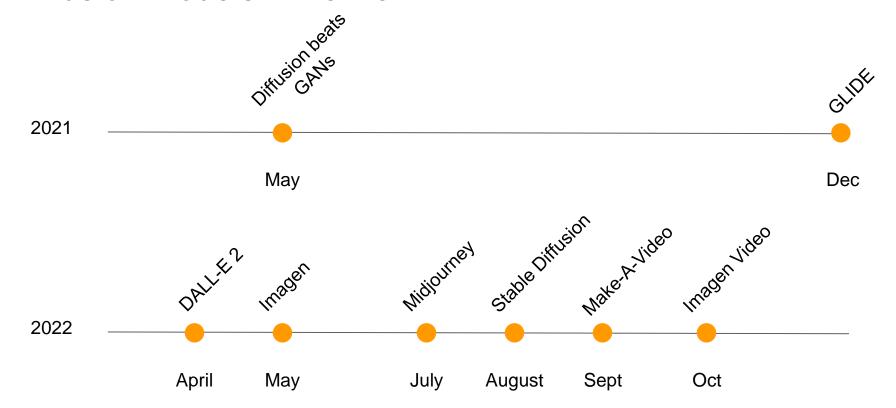


Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo, Han Zhang, Mohammad Taghi Saffar, Santiago Castro, Julius Kunze, Dumitru Erhan. Phenaki: Variable Length Video Generation From Open Domain Textual Description. 2022 https://arxiv.org/abs/2210.02399 https://phenaki.video

Outline

- Introduction
- Variational Autoencoders
- Autoregressive Models
- Diffusion Models
 - Denoising diffusion models
 - Text-to-image generation
 - DALL-E 2
 - Latent Diffusion
 - Text-to-video generation
 - Make-A-Video
- Generative Adversarial Networks
- Evaluation

Diffusion Models Timeline



Diffusion Models

- Diffusion models are inspired by non-equilibrium thermodynamics.
- They define a Markov chain of diffusion steps to slowly add random noise to data and then learn to reverse the diffusion process to construct desired data samples from the noise.
- Unlike VAE or flow models, diffusion models are learned with a fixed procedure and the latent variable has high dimensionality (same as the original data).

Slide Credits

CVPR 2022 Tutorial

Denoising Diffusion-based Generative Modeling

by Karsten Kreis, Ruiqi Gao and Arash Vahdat

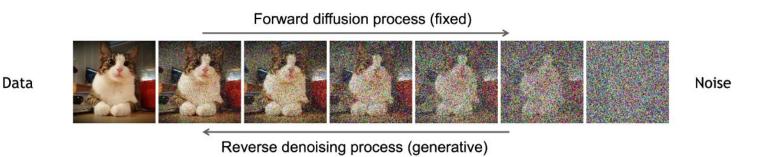
https://cvpr2022-tutorial-diffusion-models.github.io

Denoising Diffusion Models

Learning to generate by denoising

Denoising diffusion models consist of two processes:

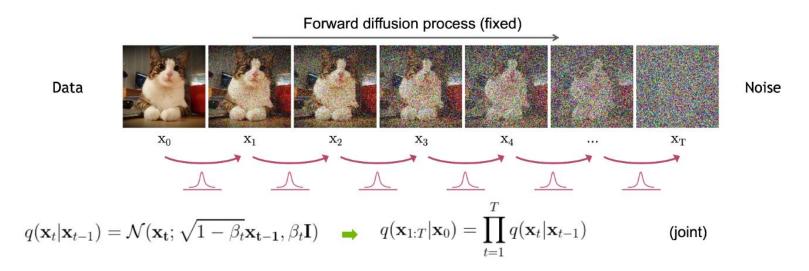
- Forward diffusion process that gradually adds noise to input
- Reverse denoising process that learns to generate data by denoising



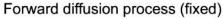
Sohl-Dickstein et al., Deep Unsupervised Learning using Nonequilibrium Thermodynamics, ICML 2015 Ho et al., Denoising Diffusion Probabilistic Models, NeurlPS 2020 Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

Forward Diffusion Process

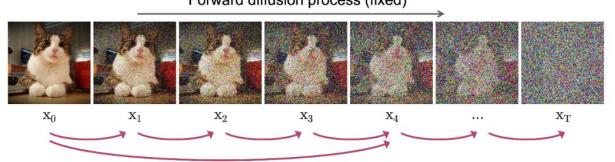
The formal definition of the forward process in T steps:



Diffusion Kernel



Data



Noise

Define
$$\bar{\alpha}_t = \prod_{s=1}^t (1 - \beta_s)$$
 \Rightarrow $q(\mathbf{x}_t | \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I}))$ (Diffusion Kernel) For sampling: $\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \ \mathbf{x}_0 + \sqrt{(1 - \bar{\alpha}_t)} \ \epsilon$ where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

For sampling:
$$\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \ \mathbf{x}_0 + \sqrt{(1 - \bar{\alpha}_t)} \ \epsilon$$
 where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

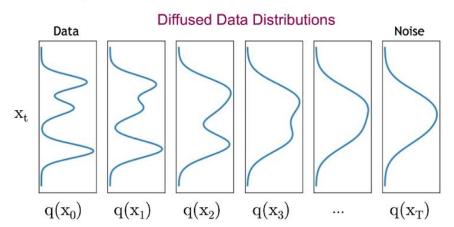
 β_t values schedule (i.e., the noise schedule) is designed such that $\bar{\alpha}_T \to 0$ and $q(\mathbf{x}_T | \mathbf{x}_0) \approx \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$

What happens to a distribution in the forward diffusion?

So far, we discussed the diffusion kernel $q(\mathbf{x}_t|\mathbf{x}_0)$ but what about $q(\mathbf{x}_t)$?

$$\underbrace{q(\mathbf{x}_t)}_{\text{Diffused data dist.}} = \int \underbrace{q(\mathbf{x}_0, \mathbf{x}_t)}_{\text{Joint dist.}} d\mathbf{x}_0 = \int \underbrace{q(\mathbf{x}_0)}_{\text{Input point data dist.}} \underbrace{q(\mathbf{x}_t|\mathbf{x}_0)}_{\text{Diffusion data dist.}} d\mathbf{x}_0$$

The diffusion kernel is Gaussian convolution.



We can sample $\mathbf{x}_t \sim q(\mathbf{x}_t)$ by first sampling $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ and then sampling $\mathbf{x}_t \sim q(\mathbf{x}_t|\mathbf{x}_0)$ (i.e., ancestral sampling).

Generative Learning by Denoising

Recall, that the diffusion parameters are designed such that $q(\mathbf{x}_T) \approx \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$

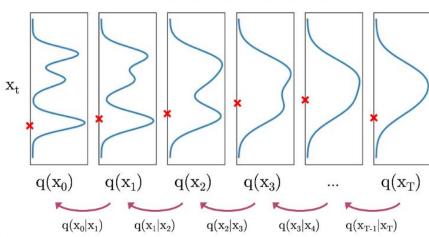
Generation:

Sample $\mathbf{x}_T \sim \mathcal{N}(\mathbf{x}_T; \mathbf{0}, \mathbf{I})$

Iteratively sample $\mathbf{x}_{t-1} \sim q(\mathbf{x}_{t-1}|\mathbf{x}_t)$

True Denoising Dist.

Diffused Data Distributions

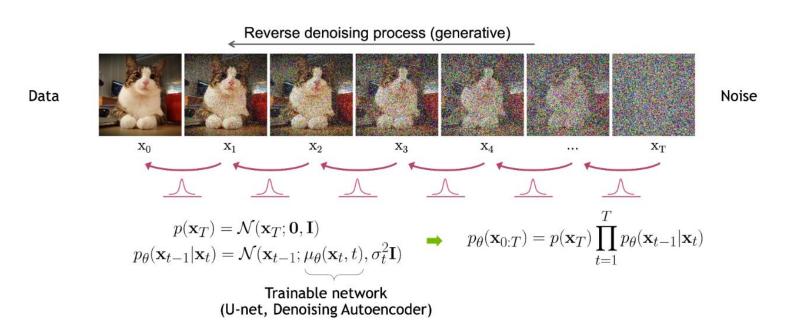


In general, $q(\mathbf{x}_{t-1}|\mathbf{x}_t) \propto q(\mathbf{x}_{t-1})q(\mathbf{x}_t|\mathbf{x}_{t-1})$ is intractable.

Can we approximate $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$? Yes, we can use a Normal distribution if β_t is small in each forward diffusion step.

Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:



Learning Denoising Model

Variational upper bound

For training, we can form variational upper bound that is commonly used for training variational autoencoders:

$$\mathbb{E}_{q(\mathbf{x}_0)}\left[-\log p_{\theta}(\mathbf{x}_0)\right] \leq \mathbb{E}_{q(\mathbf{x}_0)q(\mathbf{x}_{1:T}|\mathbf{x}_0)}\left[-\log \frac{p_{\theta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)}\right] =: L$$

Sohl-Dickstein et al. ICML 2015 and Ho et al. NeurIPS 2020 show that:

$$L = \mathbb{E}_q \left[\underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_T | \mathbf{x}_0) || p(\mathbf{x}_T))}_{L_T} + \sum_{t>1} \underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) || p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t))}_{L_{t-1}} \underbrace{-\log p_{\theta}(\mathbf{x}_0 | \mathbf{x}_1))}_{L_0} \right]$$

where $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$ is the tractable posterior distribution:

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0), \tilde{\beta}_t \mathbf{I}),$$
where $\tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) := \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t} \mathbf{x}_0 + \frac{\sqrt{1 - \beta_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t} \mathbf{x}_t$ and $\tilde{\beta}_t := \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t} \beta_t$

Parameterizing the Denoising Model

Since both $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$ and $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$ are Normal distributions, the KL divergence has a simple form:

$$L_{t-1} = D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)||p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)) = \mathbb{E}_q \left[\frac{1}{2\sigma_t^2} ||\tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) - \mu_{\theta}(\mathbf{x}_t, t)||^2 \right] + C$$

Recall that $\mathbf{x}_t = \sqrt{\bar{\alpha}_t} \ \mathbf{x}_0 + \sqrt{(1-\bar{\alpha}_t)} \ \epsilon$. Ho et al. NeurIPS 2020 observe that:

$$\tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) = \frac{1}{\sqrt{1-\beta_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon \right)$$

They propose to represent the mean of the denoising model using a *noise-prediction* network:

$$\mu_{\theta}(\mathbf{x}_t, t) = \frac{1}{\sqrt{1 - \beta_t}} \left(\mathbf{x}_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \, \epsilon_{\theta}(\mathbf{x}_t, t) \right)$$

With this parameterization

$$L_{t-1} = \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\frac{\beta_t^2}{2\sigma_t^2 (1 - \beta_t)(1 - \bar{\alpha}_t)} ||\epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \ \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \ \epsilon, t)||^2 \right] + C$$

Training Objective Weighting

Trading likelihood for perceptual quality

$$L_{t-1} = \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\underbrace{\frac{\beta_t^2}{2\sigma_t^2 (1 - \beta_t)(1 - \bar{\alpha}_t)}}_{\lambda_t} ||\epsilon - \epsilon_{\theta}(\sqrt{\bar{\alpha}_t} |\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} |\epsilon, t)||^2 \right]$$

The time dependent λ_t ensures that the training objective is weighted properly for the maximum data likelihood training. However, this weight is often very large for small t's.

<u>Ho et al. NeurIPS 2020</u> observe that simply setting $\lambda_t=1$ improves sample quality. So, they propose to use:

$$L_{\text{simple}} = \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), t \sim \mathcal{U}(1, T)} \left[||\epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \ \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \ \epsilon, t)||^2 \right]$$

For more advanced weighting see Choi et al., Perception Prioritized Training of Diffusion Models, CVPR 2022.

Summary

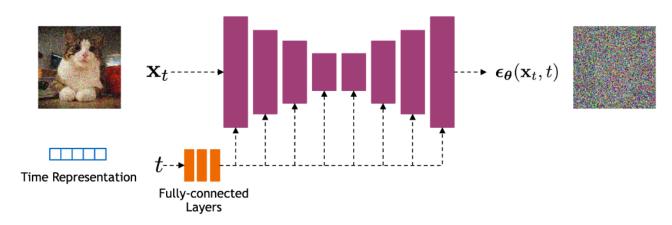
Training and Sample Generation

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\theta} \ \epsilon - \epsilon_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t) \ ^2$ 6: until converged	1: $\mathbf{x}_{T} \sim \mathcal{N}(0, \mathbf{I})$ 2: $\mathbf{for} \ t = T, \dots, 1 \ \mathbf{do}$ 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_{t}}} \left(\mathbf{x}_{t} - \frac{1-\alpha_{t}}{\sqrt{1-\bar{\alpha}_{t}}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t) \right) + \sigma_{t} \mathbf{z}$ 5: $\mathbf{end} \ \mathbf{for}$ 6: $\mathbf{return} \ \mathbf{x}_{0}$

Implementation Considerations

Network Architectures

Diffusion models often use U-Net architectures with ResNet blocks and self-attention layers to represent $\epsilon_{\theta}(\mathbf{x}_t,t)$



Time representation: sinusoidal positional embeddings or random Fourier features.

Time features are fed to the residual blocks using either simple spatial addition or using adaptive group normalization layers. (see Dharivwal and Nichol NeurIPS 2021)

Summary

Denoising Diffusion Probabilistic Models

In this part, we reviewed denoising diffusion probabilistic models.

The model is trained by sampling from the forward diffusion process and training a denoising model to predict the noise.

We discussed how the forward process perturbs the data distribution or data samples.

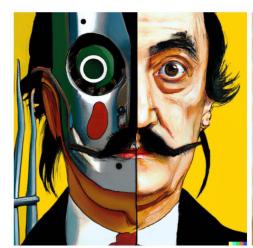
The devil is in the details:

- Network architectures
- Objective weighting
- Diffusion parameters (i.e., noise schedule)

See "Elucidating the Design Space of Diffusion-Based Generative Models" by Karras et al. for important design decisions.

DALL-E 2

- is introduced by OpenAl
- generates 1024 x 1024 images from text using diffusion models.



vibrant portrait painting of Salvador Dalí with a robotic half face

a shiba inu wearing a beret and black turtleneck

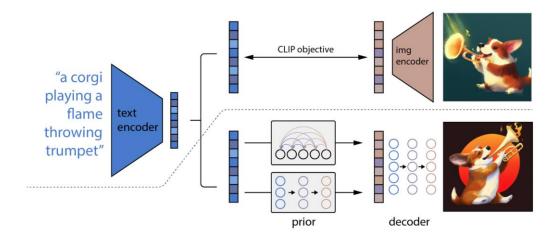
a close up of a handpalm with leaves growing from it

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, Mark Chen.

Hierarchical Text-Conditional Image Generation with CLIP Latents. 2022 https://arxiv.org/abs/2204.06125

DALL-E 2

- 1. generates a CLIP text embedding for text caption
- 2. "prior" network generates CLIP image embedding from text embedding
- 3. diffusion decoder generates image from the image embedding



Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, Mark Chen.

Hierarchical Text-Conditional Image Generation with CLIP Latents. 2022 https://arxiv.org/abs/2204.06125

DALL-E 2 training

Can vary images while preserving style and semantics in the embeddings

Figure 4: Variations between two images by interpolating their CLIP image embedding and then decoding with a diffusion model. We fix the decoder seed across each row. The intermediate variations naturally blend the content and style from both input images.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, Mark Chen.

Hierarchical Text-Conditional Image Generation with CLIP Latents. 2022 https://arxiv.org/abs/2204.06125

DALL-E 2 Limitations

A family dining for Christmas

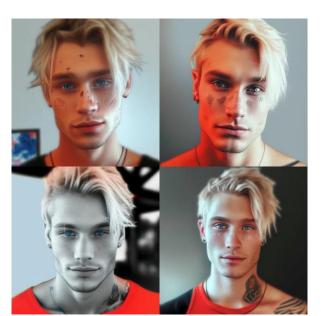
A hyperrealistic man's face smiling with a pair of sunglasses

A green-eyed woman with freckles showing happines

A green-eyed woman with freckles showing disgust

Midjourney

Capture the essence of a young footballer wearing the Paris Saint-Germain cinematic uniform through an extreme close-up portrait, focusing on the intricate details of her face and expressions, very detailed, Octane Render, cinematic, digital art



animated blonde blue eyes love tattoo soft male guy enhanced by ai smile defined --q 2 --s 750

surprised and happy man realistic

Midjourney

eiffel tower in space with an alien on top

model and robot in fashion show, public, cyberpunk,small robot ,red road , cyberpunk,8k rendering

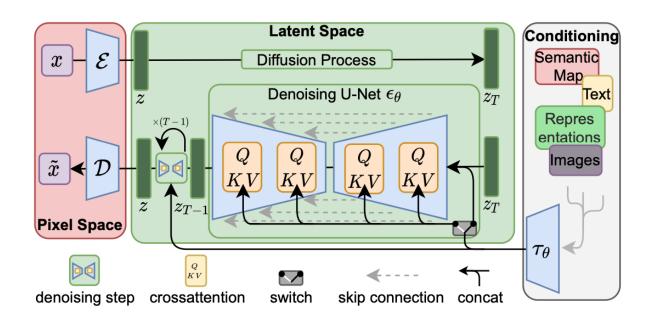
Latent Diffusion Models



Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer.

High-Resolution Image Synthesis with Latent Diffusion Models. 2022 https://arxiv.org/abs/2112.10752

Latent Diffusion Models



Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer.

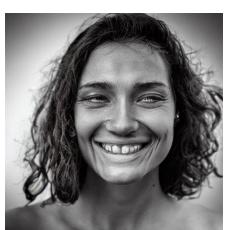
Latent Diffusion Models

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, Björn Ommer.

High-Resolution Image Synthesis with Latent Diffusion Models. 2022 https://arxiv.org/abs/2112.10752

Stable Diffusion

Prompt: realistic smiling woman



Make-A-Video

A teddy bear painting a portrait

Robot dancing in times square

Cat watching TV with a remote in hand

A fluffy baby sloth with an orange knitted hat trying to figure out a laptop close up highly detailed studio lighting screen reflecting in its eye

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, Yaniv Taigman.

Make-A-Video: Text-to-Video Generation without Text-Video Data. 2022 https://arxiv.org/abs/2209.14792

Make-A-Video architecture

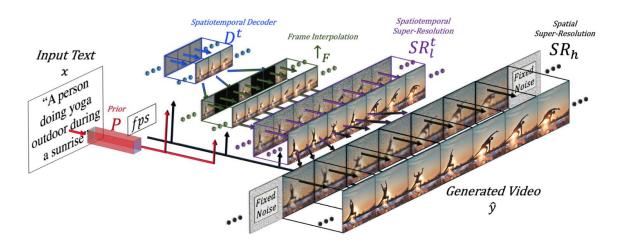


Figure 2: Make-A-Video high-level architecture. Given input text x translated by the prior P into an image embedding, and a desired frame rate fps, the decoder D^t generates 16.64×64 frames, which are then interpolated to a higher frame rate by \uparrow_F , and increased in resolution to 256×256 by SR_l^t and 768×768 by SR_h , resulting in a high-spatiotemporal-resolution generated video \hat{y} .

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, Yaniv Taigman.

Make-A-Video: Text-to-Video Generation without Text-Video Data. 2022 https://arxiv.org/abs/2209.14792

Outline

- Introduction
- Variational Autoencoders
- Autoregressive Models
- Diffusion Models
- Generative Adversarial Networks
 - Architecture and training objective
 - Image generation
 - Video generation
 - Problems of GANs
- Evaluation

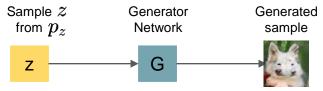
• Setup: Assume we have data x_i drawn from distribution $p_{data}(x)$. Want to sample from p_{data} .

- Setup: Assume we have data x_i drawn from distribution $p_{data}(x)$. Want to sample from p_{data} .
- Idea: Introduce a latent variable z with simple prior p(z).

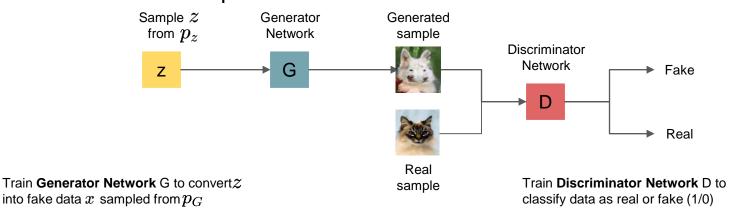
- Setup: Assume we have data x_i drawn from distribution $p_{data}(x)$. Want to sample from p_{data} .
- Idea: Introduce a latent variable z with simple prior p(z).
- ullet Sample $z\sim p(z)$ and pass to a Generator Network $\,x=G(z)\,$

- Setup: Assume we have data x_i drawn from distribution $p_{data}(x)$. Want to sample from p_{data} .
- Idea: Introduce a latent variable z with simple prior p(z).
- ullet Sample $z\sim p(z)$ and pass to a Generator Network $\,x=G(z)\,$
- ullet Then x is a sample from the Generator distribution p_{G} . Want $\mathit{p}_{G}=\mathit{p}_{data}$

- Setup: Assume we have data x_i drawn from distribution $p_{data}(x)$. Want to sample from p_{data} .
- Idea: Introduce a latent variable z with simple prior p(z).
- ullet Sample $z\sim p(z)$ and pass to a Generator Network $\,x=G(z)\,$
- ullet Then x is a sample from the Generator distribution p_{G} . Want $\mathit{p}_{G}=\mathit{p}_{data}$

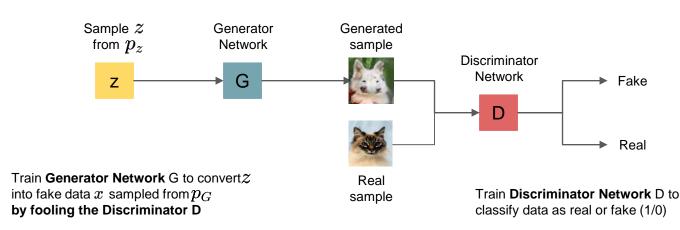


- Setup: Assume we have data x_i drawn from distribution $p_{data}(x)$. Want to sample from p_{data} .
- Idea: Introduce a latent variable z with simple prior p(z).
- ullet Sample $z\sim p(z)$ and pass to a Generator Network $\,x=G(z)\,$
- ullet Then x is a sample from the Generator distribution p_G . Want $p_G=p_{data}$



Jointly train generator G and discriminator D with a minimax game

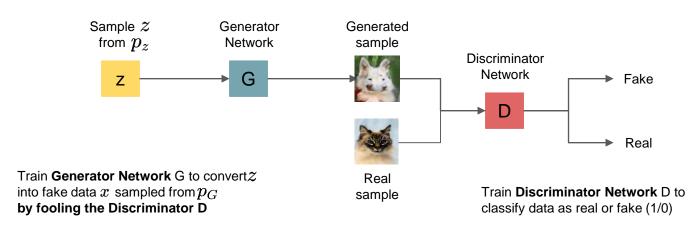
$$\min \max_{\mathbf{G}} (E_{x \sim p_{data}}[\log \mathbf{D}(x)] + E_{\mathbf{Z} \sim p(\mathbf{Z})}[\log(1 - \mathbf{D}(\mathbf{G}(\mathbf{Z})))])$$



Jointly train generator G and discriminator D with a minimax game

Discriminator wants D(x)=1 for real data

$$\min \max_{\mathbf{G}} (E_{x \sim p_{data}} [\log \mathbf{D}(x)] + E_{\mathbf{Z} \sim p(\mathbf{Z})} [\log (1 - \mathbf{D}(\mathbf{G}(\mathbf{Z})))])$$

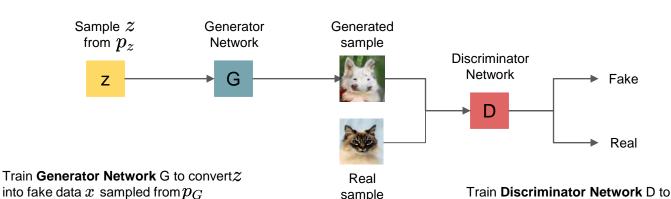


Jointly train generator G and discriminator D with a minimax game

 $\min \max(E_{x \sim p_{data}}[\log \mathbf{D}(x)] + E_{\mathbf{Z} \sim p(\mathbf{Z})}[\log(1 - \mathbf{D}(\mathbf{G}(\mathbf{Z})))])$

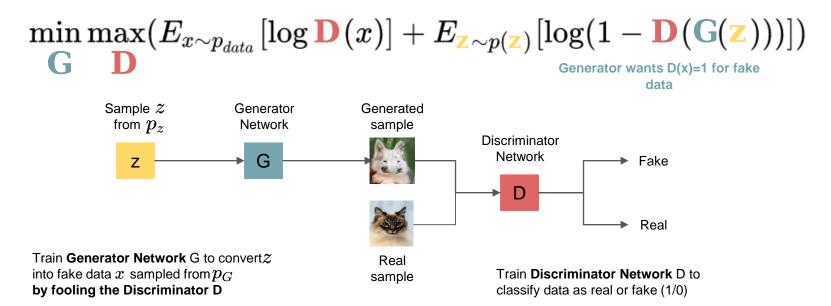
Discriminator wants D(x)=0 for

classify data as real or fake (1/0)



by fooling the Discriminator D

Jointly train generator G and discriminator D with a minimax game



Jointly train generator G and discriminator D with a minimax game

$$egin{aligned} \min\max_{\mathbf{G}} \left(E_{x \sim p_{data}} \left[\log \mathbf{D}(x) \right] + E_{\mathbf{Z} \sim p(\mathbf{Z})} \left[\log (1 - \mathbf{D}(\mathbf{G}(\mathbf{Z}))) \right]
ight) \ &= \min\max_{\mathbf{G}} \mathbf{V}(\mathbf{G}, \mathbf{D}) \end{aligned}$$

Train G and D using alternating gradient updates:

1. Update
$$\mathbf{D} = \mathbf{D} + \alpha_{\mathbf{D}} \frac{\delta \mathbf{V}}{\delta \mathbf{D}}$$
2. Update $\mathbf{G} = \mathbf{G} - \alpha_{\mathbf{G}} \frac{\delta \mathbf{V}}{\delta \mathbf{G}}$

$$\min_{G} \max_{D} (E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))])$$

$$egin{aligned} \min_{G} \max_{D} (E_{x \sim p_{data}}[\log D(x)] + E_{z \sim p(z)}[\log(1 - D(G(z)))]) \ &= \min_{G} \max_{D} (E_{x \sim p_{data}}[\log D(x)] + E_{x \sim p_{G}}[\log(1 - D(x))]) \ &= G D \end{aligned}$$

$$egin{aligned} \min_{G} \max_{D}(E_{x\sim p_{data}}[\log D(x)] + E_{z\sim p(z)}[\log(1-D(G(z)))]) \ &= \min_{G} \max_{D}(E_{x\sim p_{data}}[\log D(x)] + E_{x\sim p_{G}}[\log(1-D(x))]) \ &= \min_{G} \max_{D} \int_{X}(p_{data}(x)\log D(x) + p_{G}(x)\log(1-D(x)))dx \end{aligned}$$

$$egin{aligned} \min_{G} \max_{D} (E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))]) \ &= \min_{G} \max_{D} (E_{x \sim p_{data}} [\log D(x)] + E_{x \sim p_{G}} [\log (1 - D(x))]) \ &= \min_{G} \max_{D} \int_{X} (p_{data}(x) \log D(x) + p_{G}(x) \log (1 - D(x))) dx \ &= \min_{G} \int_{X} \max_{D} (p_{data}(x) \log D(x) + p_{G}(x) \log (1 - D(x))) dx \ &= G & D \end{aligned}$$

$$egin{aligned} \min \max_{G} \left(E_{x \sim p_{data}} \left[\log D(x)
ight] + E_{z \sim p(z)} \left[\log (1 - D(G(z)))
ight]) & f(y) = a \log y + b \log (1 - y) \ &= \min \max_{G} \left(E_{x \sim p_{data}} \left[\log D(x)
ight] + E_{x \sim p_{G}} \left[\log (1 - D(x))
ight]) \ &= \min \max_{G} \int_{X} \left(p_{data}(x) \log D(x) + p_{G}(x) \log (1 - D(x))
ight) dx \ &= \min_{G} \int_{X} \max_{D} \left(p_{data}(x) \log D(x) + p_{G}(x) \log (1 - D(x))
ight) dx \end{aligned}$$

$$egin{aligned} \min \max_{G} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))]
ight) \ &= \min \max_{G} \left(E_{x \sim p_{data}} [\log D(x)] + E_{x \sim p_{G}} [\log (1 - D(x))]
ight) \ &= \min \max_{G} \int_{X} \left(p_{data}(x) \log D(x) + p_{G}(x) \log (1 - D(x))
ight) dx \ &= \min_{G} \int_{X} \max_{D} \left(p_{data}(x) \log D(x) + p_{G}(x) \log (1 - D(x))
ight) dx \end{aligned}$$

$$f(y) = a \log y + b \log (1-y)$$
 $f'(y) = rac{a}{y} - rac{b}{1-y}$

$$egin{aligned} \min \max_{G} \left(E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))]
ight) \ &= \min \max_{G} \left(E_{x \sim p_{data}} [\log D(x)] + E_{x \sim p_{G}} [\log (1 - D(x))]
ight) \ &= \min \max_{G} \int_{X} \left(p_{data}(x) \log D(x) + p_{G}(x) \log (1 - D(x))
ight) dx \ &= \min_{G} \int_{X} \max_{D} \left(p_{data}(x) \log D(x) + p_{G}(x) \log (1 - D(x))
ight) dx \ &= G \end{array}$$

$$f(y) = a \log y + b \log(1-y)$$
 $f'(y) = rac{a}{y} - rac{b}{1-y}$
 $f'(y) = 0 \Leftrightarrow y = rac{a}{a+b}$

$$egin{aligned} \min \max_G \left(E_{x \sim p_{data}} \left[\log D(x)
ight] + E_{z \sim p(z)} \left[\log (1 - D(G(z)))
ight]) \ &= \min \max_G \left(E_{x \sim p_{data}} \left[\log D(x)
ight] + E_{x \sim p_G} \left[\log (1 - D(x))
ight]) \ &= \min \max_G \int_X \left(p_{data}(x) \log D(x) + p_G(x) \log (1 - D(x))
ight) dx \ &= \min_G \int_X \max_D \left(p_{data}(x) \log D(x) + p_G(x) \log (1 - D(x))
ight) dx \ &= G & D \end{aligned}$$

$$egin{aligned} f(y) &= a \log y + b \log (1-y) \ f'(y) &= rac{a}{y} - rac{b}{1-y} \ f'(y) &= 0 \Leftrightarrow y = rac{a}{a+b} \end{aligned}$$

Optimal Discriminator:

$$D_G^*(x) = rac{p_{data}(x)}{p_{data}(x) + p_G(x)}$$

$$egin{aligned} \min_{G} \max_{D} (E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))]) \ &= \min_{G} \max_{D} (E_{x \sim p_{data}} [\log D(x)] + E_{x \sim p_{G}} [\log (1 - D(x))]) \ &= \min_{G} \int_{X} (p_{data}(x) \log D_{G}^{*}(x) + p_{G}(x) \log (1 - D_{G}^{*}(x))) dx \end{aligned}$$

Optimal Discriminator:
$$D_G^*(x) = rac{p_{data}(x)}{p_{data}(x) + p_G(x)}$$

$$egin{aligned} \min \max_G & E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))]) \ &= \min \max_G (E_{x \sim p_{data}} [\log D(x)] + E_{x \sim p_G} [\log (1 - D(x))]) \ &G & D \end{aligned} \ &= \min_{G} \int_X (p_{data}(x) \log D_G^*(x) + p_G(x) \log (1 - D_G^*(x))) dx \ &G \ &= \min_{G} \int_X (p_{data}(x) \log rac{p_{data}(x)}{p_{data}(x) + p_G(x)} + p_G(x) \log rac{p_G(x)}{p_{data}(x) + p_G(x)}) dx \end{aligned}$$

Optimal Discriminator:
$$D_G^*(x) = rac{p_{data}(x)}{p_{data}(x) + p_G(x)}$$

$$egin{aligned} \min \max_{G} \left(E_{x \sim p_{data}} \left[\log D(x)
ight] + E_{z \sim p(z)} \left[\log (1 - D(G(z)))
ight]) \ &= \min_{G} \int_{X} (p_{data}(x) \log D_{G}^{*}(x) + p_{G}(x) \log (1 - D_{G}^{*}(x))) dx \ &= \min_{G} \int_{X} (p_{data}(x) \log rac{p_{data}(x)}{p_{data}(x) + p_{G}(x)} + p_{G}(x) \log rac{p_{G}(x)}{p_{data}(x) + p_{G}(x)}) dx \ &= \min_{G} (E_{x \sim p_{data}} \left[\log rac{p_{data}(x)}{p_{data}(x) + p_{G}(x)}
ight] + E_{x \sim p_{G}} \left[\log rac{p_{G}(x)}{p_{data}(x) + p_{G}(x)}
ight]) \end{aligned}$$

$$egin{align*} \min \max_{G} \left(E_{x \sim p_{data}} \left[\log D(x) \right] + E_{z \sim p(z)} \left[\log (1 - D(G(z))) \right]
ight) \ = \min_{G} \int_{X} \left(p_{data}(x) \log D_{G}^{*}(x) + p_{G}(x) \log (1 - D_{G}^{*}(x)) \right) dx \ G = \min_{G} \int_{X} \left(p_{data}(x) \log rac{p_{data}(x)}{p_{data}(x) + p_{G}(x)} + p_{G}(x) \log rac{p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right) dx \ = \min_{G} \left(E_{x \sim p_{data}} \left[\log rac{p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log rac{p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right]
ight) \ = \min_{G} \left(E_{x \sim p_{data}} \left[\log rac{2 \times p_{data}(x)}{p_{data}(x) + p_{G}(x)} \right] + E_{x \sim p_{G}} \left[\log rac{2 \times p_{G}(x)}{p_{data}(x) + p_{G}(x)} \right] - \log 4
ight) \ \end{array}$$

$$egin{aligned} \min \max_G (E_{x \sim p_{data}}[\log D(x)] + E_{z \sim p(z)}[\log(1 - D(G(z)))]) \ &= \min_G (E_{x \sim p_{data}}[\log rac{2 imes p_{data}(x)}{p_{data}(x) + p_G(x)}] + E_{x \sim p_G}[\log rac{2 imes p_G(x)}{p_{data}(x) + p_G(x)}] - \log 4) \end{aligned}$$

$$egin{aligned} \min_{G} \max_{D}(E_{x\sim p_{data}}[\log D(x)] + E_{z\sim p(z)}[\log(1-D(G(z)))]) \ &= \min_{G}(E_{x\sim p_{data}}[\lograc{2 imes p_{data}(x)}{p_{data}(x) + p_G(x)}] + E_{x\sim p_G}[\lograc{2 imes p_G(x)}{p_{data}(x) + p_G(x)}] - \log 4) \end{aligned}$$

Kullback-Leibler Divergence:
$$KL(p,q) = E_{x \sim p}[lograc{p(x)}{q(x)}]$$

$$egin{aligned} \min \max_{G} (E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))]) \ &= \min_{G} (E_{x \sim p_{data}} [\log rac{2 imes p_{data}(x)}{p_{data}(x) + p_{G}(x)}] + E_{x \sim p_{G}} [\log rac{2 imes p_{G}(x)}{p_{data}(x) + p_{G}(x)}] - \log 4) \ &= \min_{G} (KL(p_{data}, rac{p_{data} + p_{G}}{2}) + KL(p_{G}, rac{p_{data} + p_{G}}{2}) - \log 4) \end{aligned}$$

Kullback-Leibler Divergence:
$$KL(p,q) = E_{x \sim p}[lograc{p(x)}{q(x)}]$$

$$egin{aligned} \min \max_{G} (E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))]) \ &= \min_{G} (E_{x \sim p_{data}} [\log rac{2 imes p_{data}(x)}{p_{data}(x) + p_{G}(x)}] + E_{x \sim p_{G}} [\log rac{2 imes p_{G}(x)}{p_{data}(x) + p_{G}(x)}] - \log 4) \ &= \min_{G} (KL(p_{data}, rac{p_{data} + p_{G}}{2}) + KL(p_{G}, rac{p_{data} + p_{G}}{2}) - \log 4) \end{aligned}$$

Jensen-Shannon Divergence:
$$JSD(p,q)=rac{1}{2}KL(p,rac{p+q}{2})+rac{1}{2}KL(q,rac{p+q}{2})$$

$$egin{aligned} \min \max_{G} & E_{x \sim p_{data}} \left[\log D(x)
ight] + E_{z \sim p(z)} \left[\log (1 - D(G(z)))
ight]) \ &= \min_{G} (E_{x \sim p_{data}} \left[\log rac{2 imes p_{data}(x)}{p_{data}(x) + p_{G}(x)}
ight] + E_{x \sim p_{G}} \left[\log rac{2 imes p_{G}(x)}{p_{data}(x) + p_{G}(x)}
ight] - \log 4) \ &= \min_{G} (KL(p_{data}, rac{p_{data} + p_{G}}{2}) + KL(p_{G}, rac{p_{data} + p_{G}}{2}) - \log 4) \ &= \min_{G} (2 imes JSD(p_{data}, p_{G}) - \log 4) \end{aligned}$$

Jensen-Shannon Divergence:
$$JSD(p,q)=rac{1}{2}KL(p,rac{p+q}{2})+rac{1}{2}KL(q,rac{p+q}{2})$$

$$egin{aligned} \min \max_{G} (E_{x \sim p_{data}} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))]) \ &= \min_{G} (E_{x \sim p_{data}} [\log rac{2 imes p_{data}(x)}{p_{data}(x) + p_{G}(x)}] + E_{x \sim p_{G}} [\log rac{2 imes p_{G}(x)}{p_{data}(x) + p_{G}(x)}] - \log 4) \ &= \min_{G} (KL(p_{data}, rac{p_{data} + p_{G}}{2}) + KL(p_{G}, rac{p_{data} + p_{G}}{2}) - \log 4) \ &= \min_{G} (2 imes JSD(p_{data}, p_{G}) - \log 4) \end{aligned}$$

JSD is always nonnegative and zero when the two distributions are equal

=> the global minimum is $\,p_{data}=p_{G}$

Jensen-Shannon Divergence: $JSD(p,q)=rac{1}{2}KL(p,rac{p+q}{2})+rac{1}{2}KL(q,rac{p+q}{2})$

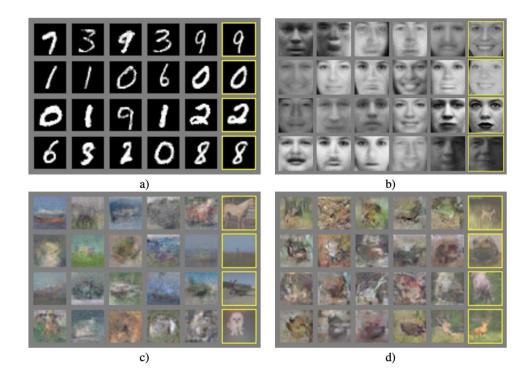
$$\min_{G} \max_{D} (E_{x \sim p_{data}}[\log D(x)] + E_{z \sim p(z)}[\log(1 - D(G(z)))])$$

$$= \min_G (2*JSD(p_{data},p_G) - \log 4)$$

Summary: The global minimum of the minimax game happens when:

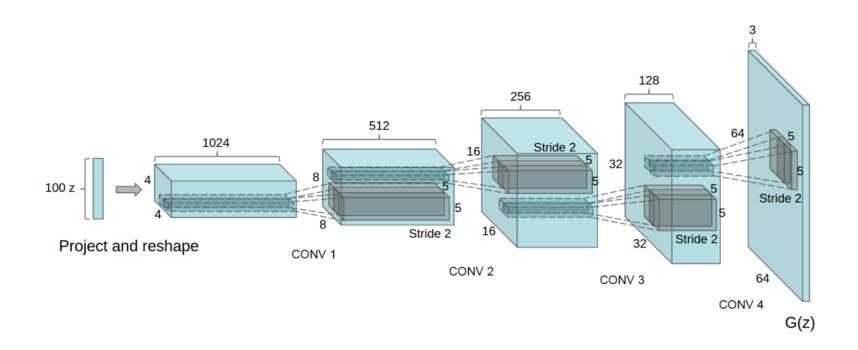
- 1. $D_G^*(x) = rac{p_{data}(x)}{p_{data}(x) + p_G(x)}$ (Optimal discriminator for any G)
- 2. $p_G(x) = p_{data}(x)$ (Optimal generator for optimal D)

Generative Adversarial Networks: results



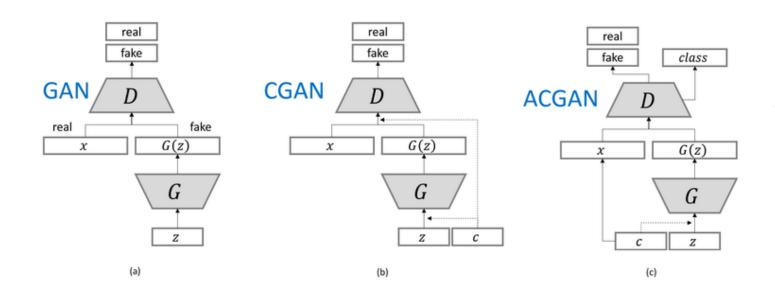
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio. Generative Adversarial Nets. Advances in Neural Information Processing Systems (NeurIPS) 2014.

Generative Adversarial Networks: DC-GAN



Generative Adversarial Networks: Interpolation

Conditional GANs



[b] Mehdi Mirza, Simon Osindero. Conditional Generative Adversarial Nets. 2014

[c] Augustus Odena, Christopher Olah, Jonathon Shlens. Conditional Image Synthesis With Auxiliary Classifier GANs. ICML 2016

Conditional GANs

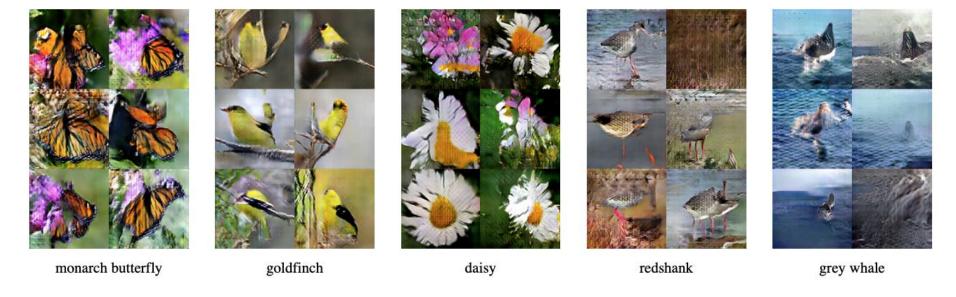


Image-to-Image Translation: Pix2Pix

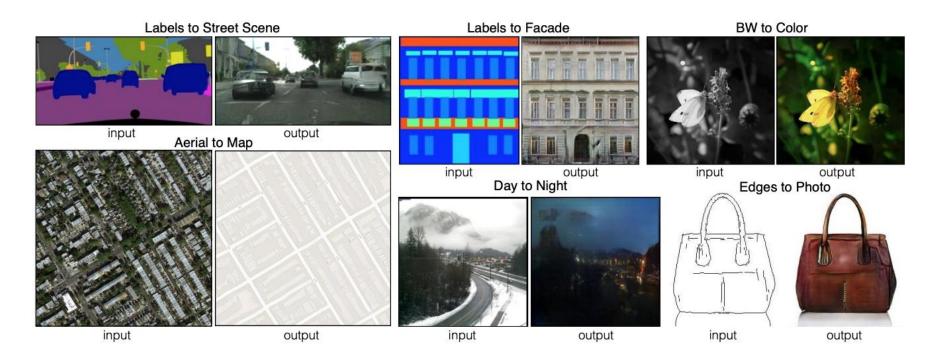


Image-to-Image Translation: Pix2Pix

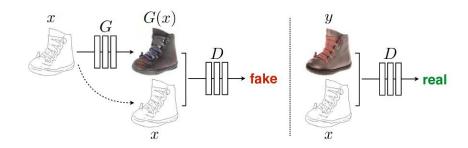
Objective:

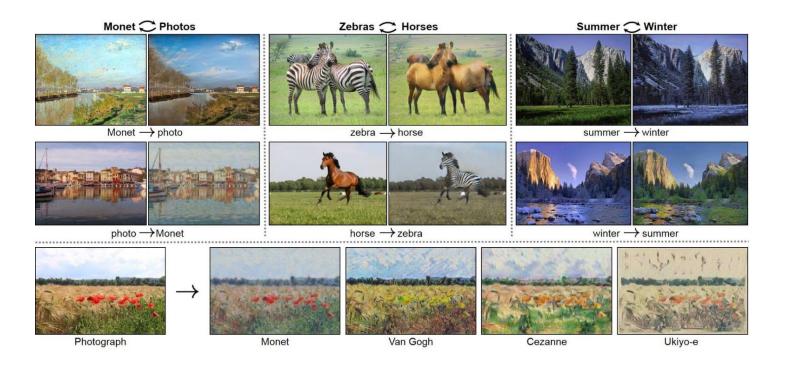
$$G^* = \arg\min_{G} \max_{D} \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G)$$

where

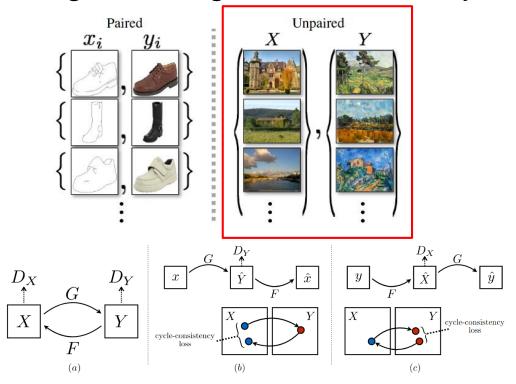
$$\mathcal{L}_{cGAN}(G, D) = \mathbb{E}_{x,y}[\log D(x, y)] + \\ \mathbb{E}_{x,z}[\log(1 - D(x, G(x, z))]$$

$$\mathcal{L}_{L1}(G) = \mathbb{E}_{x,y,z}[\|y - G(x,z)\|_1]$$





Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV 2017 https://arxiv.org/abs/1703.10593



Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV 2017 https://arxiv.org/abs/1703.10593

Objective:

$$\mathcal{L}(G, F, D_X, D_Y) = \mathcal{L}_{GAN}(G, D_Y, X, Y) + \mathcal{L}_{GAN}(F, D_X, Y, X) + \lambda \mathcal{L}_{cyc}(G, F),$$

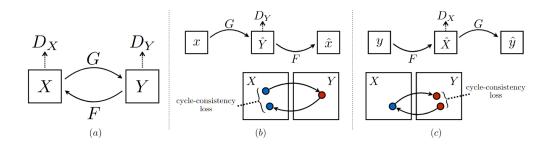
where

$$\mathcal{L}_{GAN}(G, D_Y, X, Y) = \mathbb{E}_{y \sim p_{\text{data}}(y)}[\log D_Y(y)]$$

$$+ \mathbb{E}_{x \sim p_{\text{data}}(x)}[\log(1 - D_Y(G(x))],$$

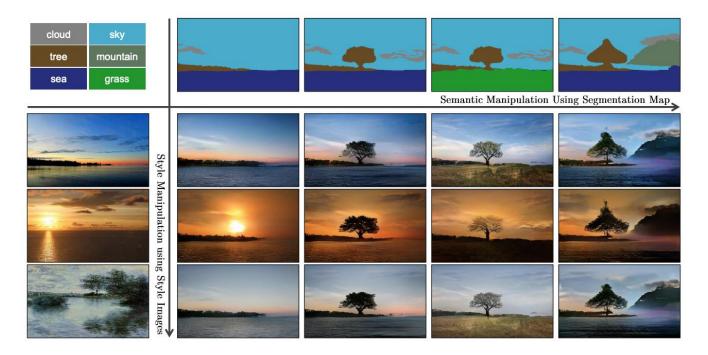
$$\mathcal{L}_{\text{cyc}}(G, F) = \mathbb{E}_{x \sim p_{\text{data}}(x)}[\|F(G(x)) - x\|_1]$$

$$+ \mathbb{E}_{y \sim p_{\text{data}}(y)}[\|G(F(y)) - y\|_1].$$



Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. ICCV 2017 https://arxiv.org/abs/1703.10593

Label Map to Image



Label Map to Image

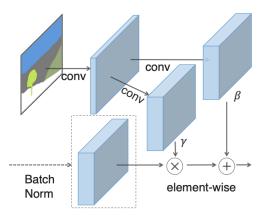


Figure 2: In the SPADE, the mask is first projected onto an embedding space and then convolved to produce the modulation parameters γ and β . Unlike prior conditional normalization methods, γ and β are not vectors, but tensors with spatial dimensions. The produced γ and β are multiplied and added to the normalized activation element-wise.

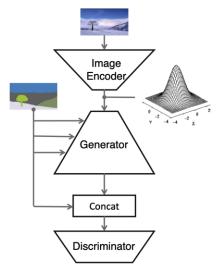
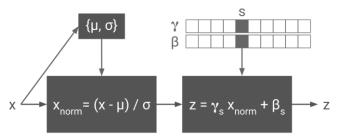


Figure 15: The image encoder encodes a real image to a latent representation for generating a mean vector and a variance vector. They are used to compute the noise input to the generator via the reparameterization trick [28]. The generator also takes the segmentation mask of the input image as input via the proposed SPADE ResBlks. The discriminator takes concatenation of the segmentation mask and the output image from the generator as input and aims to classify that as fake.

Label Map to Image

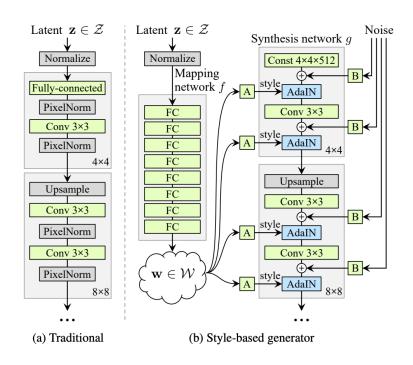


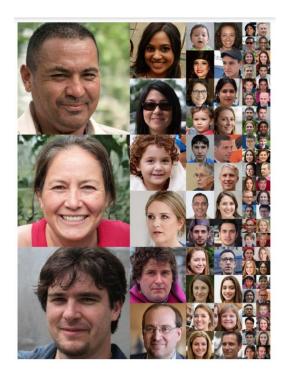
Conditional GANs: Conditional Instance Normalization



The input activation x is normalized across spatial dimensions and scaled and shifted using style-dependent parameter vectors γ_s , β_s where s indexes the style label.

StyleGAN



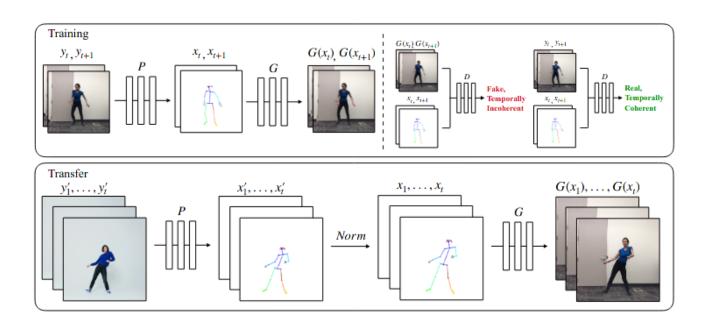


StyleGAN

Tero Karras, Samuli Laine, Timo Aila. A Style-Based Generator Architecture for Generative Adversarial Networks. CVPR 2019

Video Generation. Everybody Dance Now

Video Generation. Everybody Dance Now



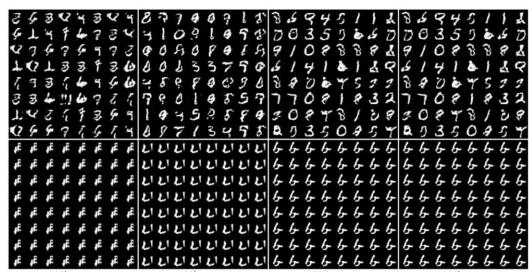
Problems of GANs

- Mode collapse:
 - G collapses providing limited sample variety
- Non-convergence:
 - model parameters oscillate, destabilize and never converge
- Diminished gradient:
 - D is so successful that the G gradient vanishes and learns nothing

Mode collapse

Real-life data is multimodal (10 in MNIST)

Mode collapse: when few modes generated



10k steps 20k steps 50K steps 100k steps

Partial mode collapse

The generator produces realistic and diverse samples, but much less diverse than the real-world data distribution.

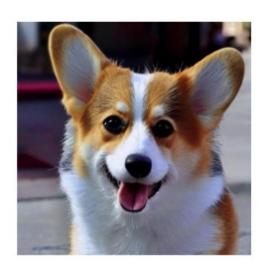
Solution to mode collapse

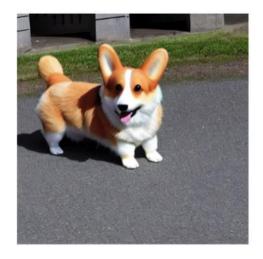
Wasserstein loss

- Trains the discriminator to optimality without worrying about vanishing gradients.
- If the discriminator doesn't get stuck in local minima, it learns to reject the outputs that the generator stabilizes on.

Which of these images looks better?

Which of these images looks more realistic?





Which of these images appears to be more similar to the text prompt?

Prompt: The saying "BE EXCELLENT TO EACH OTHER" written on a red brick wall with a graffiti image of a green alien wearing a tuxedo. A yellow fire hydrant is on a sidewalk in the foreground.

- Human-based ratings and preference judgments
- Inception Score (IS) [1]
- Frechet Inception Distance (FID) [2]
- Structured Similarity Index Metric (SSIM) [3]
- CLIP score [4]

^[1] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen. Improved Techniques for Training GANs. NeurIPS 2016 https://arxiv.org/abs/1606.03498

^[2] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp Hochreiter. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. NeurIPS 2017 https://arxiv.org/abs/1706.08500

^[3] Zhou Wang; A.C. Bovik; H.R. Sheikh; E.P. Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 2004 https://www.cns.nyu.edu/pub/eero/wang03-reprint.pdf

^[4] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, Yejin Choi.CLIPScore: A Reference-free Evaluation Metric for Image Captioning. EMNLP 2021 https://arxiv.org/abs/2104.08718

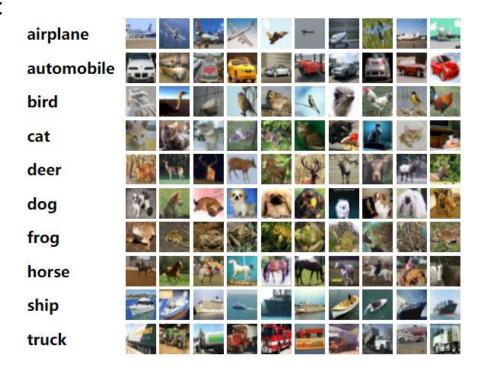
Inception Score (IS)

IS measures:

- the quality of the generated images
- their diversity

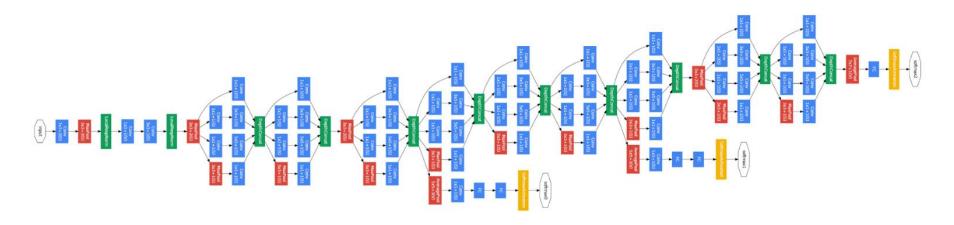
Inception Score (IS)

CIFAR10 dataset:

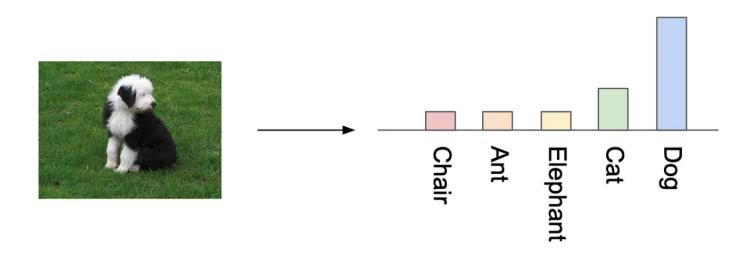


Inception Score (IS)

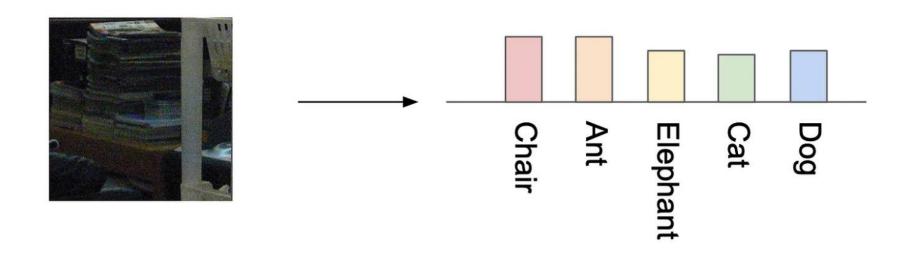
Generate 50000 images by the **Inception** image classifier pre-trained on CIFAR10



Generated images are fed into the Inception image classifier network pre-trained on the CIFAR10 dataset predict conditional probability p(y|x) — where y is the label and x is the generated data



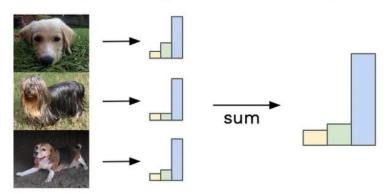
If the probability scores are widely distributed then the generated image is of low quality:



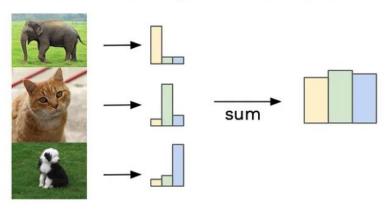
Calculate marginal probability

$$p(y)=\int_z p(y|x=G(z))dz$$

Similar labels sum to give focussed distribution



Different labels sum to give uniform distribution



- Quality: conditional probability p(y|x)
- Diversity: marginal probability p(y)

We want

- the conditional probability p(y|x) to be highly predictable (low entropy) i.e. given an image, we should know the object type easily
- the marginal probability p(y) to be uniform (high entropy)

Compute their KL-divergence to combine these two criteria: $IS(G) = \exp(E_{x \sim p_q} KL(p(y|x)||p(y)))$

Inception Score (IS) limitations

IS is limited by what the Inception classifier can detect, which is linked to the training data

FID compares the distribution of generated images with the distribution of real images

Uses the Inception network to extract features from an intermediate layer

- Uses the Inception network to extract features from an intermediate layer
- Models data distribution for these features using a multivariate Gaussian distribution with mean μ and covariance Σ

- Uses the Inception network to extract features from an intermediate layer
- Models data distribution for these features using a multivariate Gaussian distribution with mean μ and covariance Σ

• The FID between the real images x and generated images g is:
$$FID(x,g)=||\mu_x-\mu_g||_2^2+Tr(\Sigma_x+\Sigma_g-2(\Sigma_x\Sigma_g)^{\frac{1}{2}})$$

where Tr sums up all the diagonal elements

- Lower FID values mean better image quality and diversity
- FID is sensitive to mode collapse
- FID is more robust to noise than IS. If the model only generates one image per class, the distance will be high

Structured Similarity Index Metric (SSIM)

The Structural Similarity Index (SSIM) metric mimicks the human visual perception system which is highly capable of identifying **structural information** from a scene.

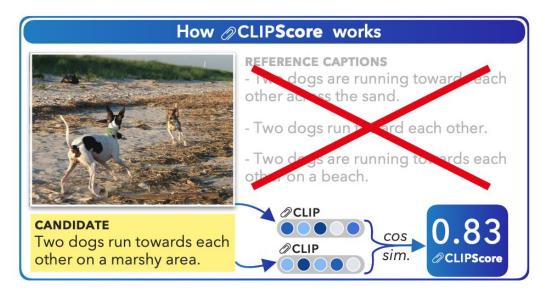
SSIM extracts 3 features from an image on a **pixel-wise** basis:

- Luminance
- Contrast
- Structure

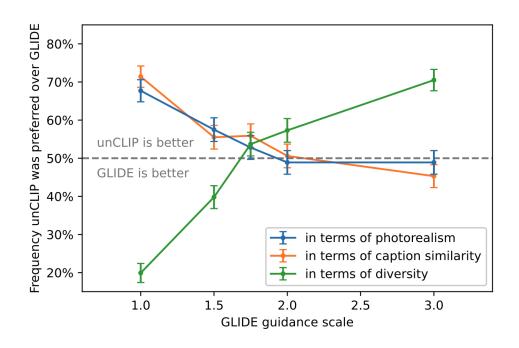
The comparison between the two images is performed on the basis of these 3 features.

CLIP score

- CLIP score measures the compatibility of image-caption pairs.
- Higher CLIP scores imply higher compatibility



DALL-E 2 evaluation results



Increasing guidance scale improves sample quality at the cost of diversity

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, Mark Chen.

Hierarchical Text-Conditional Image Generation with CLIP Latents. 2022 https://arxiv.org/abs/2204.06125

TP9

https://colab.research.google.com/drive/1PYx6qESrgTmm38eCYHpkN-1UovsK4UD7?usp=sharing https://colab.research.google.com/drive/1NWoFAZjLeaCMb3JsMUPJX5bm0PenCRYy?usp=sharing https://colab.research.google.com/drive/1xOfQOR-XCP1uw0pOqR4nXITZU6wsXGp2?usp=sharing

Q&A